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BAYESIAN ESTIMATION OF LORENZ CURVE, GINI-INDEX 
AND VARIANCE OF LOGARITHMS IN A PARETO DISTRIBUTION 

E.I. Abdul-Sathar, E.S. Jeevanand, K.R. Muraleedharan Nair 

1. INTRODUCTION

The use of the Pareto distribution as a model for various socio-economic phe-
nomena dates back to the late nineteenth century when Pareto observed that the 

number of persons whose income exceed x can be approximated as , 0acx a .

The distribution has played a very important role in the investigation of city 
population, occurrence of natural resources, insurance risk and business failures. 
Arnold and Press (1983) gave an extensive historical survey of its use in the con-
text of income distribution. The Lorenz curve and Gini-index play a central role 
in the analysis of income distribution and the evaluation of welfare judgements. 
Also they have been extensively used in the study of inequality of distributions. 
The variance of logarithms is a widely used measure of dispersion, owing in part 
to its natural link with wage determination models and its special relationship 
with the lognormal distribution. 

Given a distribution function ( )F x  with finite mean , the Lorenz curve 

( )L p  (Gastwirth, 1972) is defined as 

1

0

1
( ) ( ) , 0 1

p

L p F x dx p  (1) 

where 

1( ) { : ( ) }F x Sup y F y x .

If the distribution which is studied is the income of a certain population then 
( )L p  denotes the fraction of the total income received by the 100 %p  of the 

population which has the lowest income. The Gini-index is twice the area be-
tween the Lorenz curve and the elegatarian line. The Gini-index G is defined as 

1

0

1 2 ( )G L p dp . (2) 
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Also, the variance of logarithm (Foster and Ok, 1999) is defined as 

(log )V Var X . (3) 

For the applications of Lorenz curve and Gini-index we refer to Chandra and 
Singpurwalla (1981), Moothathu (1991) and Bhattacharjee (1993). Most of the 
methods concerning estimators of the Lorenz curve and Gini-index are centered 
on classical procedures. For example, Kakwani and Podder (1973, 1976) pro-
posed a prominent method for the estimation of Lorenz curve and inequality 
measures with grouped data. Further, Chotikapanich and Griffiths (2002) esti-
mated the Lorenz curve using the Dirichlet distribution for the error terms. 
Moothathu (1990) discussed the problem of estimation of Lorenz curve and Gin-
index for the Pareto distribution in the classical framework. In the present work, 
we estimate the Lorenz curve and Gini-index for the Pareto distribution, in the 
Bayesian framework with a conjugate prior. Also, we obtain the Bayesian and 
classical estimators of variance of logarithms for the Pareto distribution. 

The present article is organized as follows. In section 2, we consider the Bayes-
ian estimation of Lorenz curve and Gini-index in the two situations namely when 

 is known and when  is unknown. In section 3, the Bayes and the maximum 
likelihood estimators of variance of logarithm have been obtained, in the two 
situations mentioned above. The performance of the estimators are compared on 
the basis of bias and mean square errors, in the last section. 

2. ESTIMATION OF LORENZ CURVE AND GINI-INDEX

Let 1 2, , ..., nx x x  be a random sample from the Pareto distribution with density 

function 

( 1)( , , ) , 0, 1.a af x a a x x a  (4) 

For the model (4), the Lorenz curve and Gini-index simplifies to 

11( ) 1 (1 ) , 0 1aL p p p  (5) 

and

1(2 1)G a  (6) 

2.1 Estimation with known 

The likelihood function in this set-up can be easily written as 

1( | , ) exp( )nl x a C a at  (7) 
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where 

1

log
n

i

i

x
t .

The inferential procedures for Pareto model in the Bayesian framework has been 
studied and discussed by Malik (1970), Zellner (1971), Arnold and Press (1983) 
and Jeevanand and Nair (1992). The likelihood function provides a conjugate 
prior namely 

1
2( ) exp( ), , , 0rg a C a a r a . (8) 

The symbol C  with various suffixes stands for the normalizing constants. Com-
bining (7) and (8), the posterior density turns out to be 

1
3( | ) exp( ), 0Nf a x C a aT a  (9) 

where 

, .T t N n r

Using equation (5), the posterior distribution of L  can be obtained as 

1
( , )4[ ( ,0)]

( | ) ( , ) ( , )(1 ) , 0
1

B L p T
N

C p
f L x A L p B L p p L p

L
 (10) 

where 

( , )
4

0

( , ) ( , ) ( , )(1 )
1

p d
B L p T

N

L
C p d A L p B L p p dL

L
 (11) 

with

log(1 )
( , )

log(1 ) log(1 )

k

k

p
A L p

p L

and

1
( , )

log(1 ) log(1 )
B L p

p L
.

(11) can be easily evaluated by using suitable numerical methods. One can have 
estimators for L  by specifying appropriate loss functions and using (10). Under 
squared error loss function the Bayes estimator for Lorenz curve simplifies to 
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4
1

4

( ,1)

( ,0)

C p
L

C p
 (12) 

with Bayes risk 

24
1 1

4

( , 2)
( , ) ( )

( , 0)

C p
R L L L

C p
 (13) 

Now we derive a Bayesian estimator for the Gini-index. Using (6) and (9), we 
get the posterior distribution of G  as 

1
5

1 12

[ (0)]
( | ) ( )exp( ( ) ), 0 1N

C
f G x D G D G T G

G
 (14) 

where 

1
2

5 1 1

0

( ) ( )exp( ( ) ) , 0 1d
NC d G D G D G T dG G  (15) 

with

1
( )

2

k

k

G
D G

G
.

The Bayes estimate of Gini-index under squared error loss function is 

5
1

5

(1)

(0)

C
G

C
 (16) 

and the expected loss when (16) is used as estimate is 

25
1 1

5

(2)
( , ) ( )

(0)

C
R G G G

C
 (17) 

To evaluate (16) and (17) we seek numerical integration. 

2.2 Estimation with unknown 

The most general and perhaps a more realistic situation is when both the loca-
tion and scale parameters are unknown. In this section we attend to the problem 
of estimation of Lorenz curve and Gini-index when and a are unknown. Here 
the likelihood can be written as 

6( | , ) exp( )n nal x a C a az  (18) 
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where 

1

log
n

i

i

z x .

The kernel of the likelihood suggests the following conjugate prior for ( , )a ,

namely

7 0 0( , ) exp( ), 1, 0 , , , , 0ag a C a a a . (19) 

The corresponding posterior distribution simplifies to 

1
8 0 (1)( , | ) exp( ), 1, 0 min( , )M Naf a x C a aZ a X  (20) 

where 

(1) 1 2, , , min( , , ..., )nM n N n Z z X X X X .

Now using (5) and (20), we get the joint posterior distribution of ( , )L , and 

marginal posterior distribution of L  is obtained by integrating the joint posterior 
distribution with respect to , we get the marginal posterior density of the Lo-
renz curve, after simplification, as 

1
( , )9[ ( , 0)]

( | ) ( , ) ( , )(1 ) , 0
1

B L p
N

C p
f L x A L p B L p p L p

L
 (21) 

where 

( , )
9

0

( , ) ( , ) ( , )(1 )
1

p d
B L p

N

L
C p d A L p B L p p dL

L
 (22) 

with

0logZ N .

Under the squared error loss function the Bayes estimate and the corresponding 
risk of the Lorenz curve is given by 

9
2

9

( ,1)

( ,0)

C p
L

C p
 (23) 

and

29
2 2

9

( , 2)
( , ) ( )

( ,0)

C p
R L L L

C p
 (24) 
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Now we derive an estimator for the Gini-index. When both  and a are un-
known. Proceeding analogous to the estimation of Lorenz curve, we get the pos-
terior distribution of ( , )G  as 

1

1
( ( )) 111

1 02

[ (0)]
( , | ) ( ) exp( ( ) ), 0 1, 0D G N

M

C
f G x D G D G Z G

G
(25)

Integrating out , from (25), we get the marginal posterior distribution of G  as 

1
11

1 12

[ (0)]
( | ) ( )exp( ( ) ), 0 1M

C
f G x D G D G G

G
 (26) 

where 

1
2

11 1 1

0

( ) ( )exp( ( ) )d
MC d G D G D G dG  (27) 

From (27), we obtain the Bayes estimate of the Gini-index as 

11
2

11

(1)

(0)

C
G

C
 (28) 

and the expected loss when (28) is used as estimate is 

211
2 2

11

(2)
( , ) ( )

(0)

C
R G G G

C
 (29) 

3. ESTIMATION OF VARIANCE OF LOGARITHMS

In this section we find the MLE and the Bayes estimators for the variance of 
logarithms under the two alternatives namely (i) the scale parameter  is known 
and (ii)  is unknown. The variance of logarithm for model (4) simplifies to 

2

1
V

a
 (30) 

3.1 Maximum likelihood estimator when  is known 

The likelihood function (7) can be written as, (using (30)) 

1

2 2
12( | ) exp

n

l x V C V tV  (31) 
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The normal equation for estimating V  takes the form 

3/2

log
0

22

d l t n

dV VV
 (32) 

Solving (32), we get the MLE of V , 1 , as 

2

1

t

n
 (33) 

The expected information is 

2

1 2 2 5/2

log 3
( ) ( )

2 4

l n
I E E t

V V V

Since
1

log
n

i

i

x
t  follow the Gamma distribution ( , )G a n , we get 

1 2
( )

4

n
I

V
 (34) 

Using (34), the variance of the estimator can be expressed as 

2

1

1

1 4
( )

( )

V
Var

nI
 (35) 

3.2 Maximum likelihood estimator when  is unknown 

The likelihood function in this set-up can be written as 

1

2

1

2 2
13( | ) exp

n

nVl x V C V zV  (36) 

Differentiating logarithm of (40) with respect to V  and equating to zero, we get 

3

2

log log
0

2
2

d l z nn

dV V
V

 (37) 

Solving (37), we get the MLE of V , denoted by 2 , as 

2 2 2
(1) (1)

2 2

2 log( ) (log( ))z nz X n X

n
 (38) 
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The expected information, using the distribution of 
1 (1)

log
n

i

i

x
t

x
( ( , 1))G a n ,

2 2 5/2 2

3 3
( ) ( )

2 4 4

n n
I E t

V V V
 and (39) 

the variance of the estimator can be expressed as 

2

2

4
( ) , 3.

3

V
Var n

n
 (40) 

3.3 Bayes estimator when  is known 

Using (9) and (30), we get the posterior distribution of V  as 

1
1 2

14( | ) [ (0)] exp ,0 1

N
T

f V x C V V
V

 (41) 

where 

21 1
2

14

0

( ) exp

d N
T

C d V dV
V

 (42) 

Under squared error loss function the Bayes estimator for V  simplifies to 

14
1

14

(1)

(0)

C
V

C
 (43) 

with Bayes risk 

214
1 1

14

(2)
( , ) ( )

(0)

C
R V V V

C
. (44) 

3.4 Bayes estimator when  is unknown 

Finally when both  and a  are unknown, w get the posterior distribution of V
as

1
1 2

15( | ) [ (0)] exp ,0 1

N

f V x C V V
V

 (45) 

where 
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21 1
2

15

0

( ) exp

d N

C d V dV
V

 (46) 

Under squared error loss function the Bayes estimator for V  is defined as 

15
2

15

(1)

(0)

C
V

C
 (47) 

with Bayes risk 

215
2 2

15

(2)
( , ) ( )

(0)

C
R V V V

C
 (48) 

To evaluate (46), we seek numerical integration. 

4. COMPARISON

In this section we compare the Bayes estimators of the Lorenz curve and Gini-
index with the corresponding classical estimators (Moothathu, 1990) using a 
simulation study. We also make comparisons of the Bayes estimators and the ma-
ximum likelihood estimators of the variance of logarithms proposed in this arti-
cle. We present the simulation results concerning the average, bias and mean 
square errors of all these estimators. In all the simulation results presented here, 
the bias of an estimator can be determined as the average value of the estimate 
report in the table - parameter value set. The variance of an estimator was deter-
mined as the sample variance obtained from all the simulations carried out. Fi-
nally, the mean square error of estimator is (variance of the estimator + (bias) 2).

We simulated the average, bias and mean square error values of these estima-
tors for sample sizes 25, 50, 100 and 150 using 2000 Monte Carlo runs. The val-
ues of the Bayes and maximum likelihood estimators of the Lorenz curve, Gini-
index and variance of logarithms, are presented in the tables listed below, for dif-
ferent choices of the parameters a  and . Bayes estimator was evaluated for the 
prior hyper-parameters , , 0,1m , 2 and their corresponding values are shown 

in various tables. From the tables listed below, it is revealed that the Bayes esti-
mator is not seems very sensitive with variation of the prior parameters. It is to 
be noted that the bias and mse of the various Bayes estimators becomes smaller 
as the sample size increases. 

It is clear from the tables that the proposed Bayes estimators for the Lorenz 
curve, Gini-index and variance of logarithms are on the whole superior in all the 
cases considered as compared to the MLEs in terms of bias and mse. 

In figure 1, we plot the original Lorenz curve and estimates of Lorenz curves us-
ing Bayesian and MLE, for various values of p . From the figure it can be seen that 

the Lorenz curve estimated using the proposed estimator is very close to the origi-
nal Lorenz curve than the Lorenz curve estimated using MLE, uniformly in p .
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TABLE 1 

Estimators of Lorenz curve when known ( 0.2p )

Parameter Estimator Average Bias MSE 

25, 2.2n a 1L  0.11472 0.00012 0.00023 

0, 3.5m 1  0.11251 -0.00208 0.00031 

50, 2.5n a 1L  0.12315 -0.00216 0.00008 

1, 3.6m 1  0.12642 0.00112 0.00011 

100, 2.8n a 1L  0.13396 0.00032 0.00004 

2, 3.7m 1  0.13330 -0.00033 0.00005 

150, 2.8n a 1L  0.13396 0.00032 0.00004 

1, 2, 3.7m 1  0.13330 -0.00033 0.00005 

TABLE 2

Estimators of Lorenz curve when unknown ( 0.2p )

Parameter Estimator Average Bias MSE 

25, 2.2n a 2L  0.11381 -0.00078 0.00028 

0, 3.5 2  0.09260 -0.02199 0.00082 

50, 2.5n a 2L  0.12581 0.00050 0.00013 

1, 3.6 2  0.08752 -0.03778 0.00158 

100, 2.8n a 1L  0.13468 0.00104 0.00007 

2, 3.7 2  0.07661 -0.05702 0.00331 

150, 2.8n a 2L  0.13574 -0.00027 0.00002 

1, 2, 3.7 2  0.07432 -0.06170 0.00383 

TABLE 3

Estimators of Gini-index when known

Parameter Estimator Average Bias MSE 

25, 2.2n a 1G  0.31196 0.01784 0.00609 

0, 3.5m 1  0.30691 0.01279 0.00678 

50, 2.5n a 1G  0.25264 0.00264 0.00162 

1, 3.6m 1  0.23410 -0.01589 0.00171 

100, 2.8n a 1G  0.22912 0.01173 0.00079 

2, 3.7m 1  0.21345 -0.00394 0.00083 

150, 2.9n a 1G  0.21994 0.01161 0.00044 

1, 2, 3.8m 1  0.20876 0.00043 0.00052 
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TABLE 4

Estimators of Gini-index when unknown

Parameter Estimator Average Bias MSE 

25, 2.2n a 2G  0.32947 0.03535 0.01034 

0, 3.5 2  0.32072 0.02661 0.01073 

50, 2.5n a 2G  0.29167 0.04167 0.00547 

1, 3.6 2  0.29463 0.04463 0.00569 

100, 2.8n a 2G  0.24529 0.02790 0.00174 

2, 3.7 2  0.24992 0.03253 0.00205 

150, 2.9n a 2G  0.21405 0.00571 0.00035 

1, 2, 3.8 2  0.21678 0.00845 0.00040 

TABLE 5

Estimators of variance of logarithms when known

Parameter Estimator Average Bias MSE 

25, 2.2n a 1V  0.22673 0.02012 0.00910 

0, 3.5m 1  0.23064 0.02403 0.01128 

50, 2.5n a 1V  0.18368 0.02367 0.00322 

1, 3.6m 1  0.18076 0.00208 0.00388 

100, 2.8n a 1V  0.13265 0.00510 0.00059 

2, 3.7m 1  0.12460 -0.00295 0.00063 

150, 2.8n a 1V  0.11820 -0.00070 0.00047 

1, 2, 3.7m 1  0.12504 0.00614 0.00058 

TABLE 6

Estimators of variance of logarithms when unknown

Parameter Estimator Average Bias MSE 

25, 2.2n a 2V  0.18528 -0.02134 0.00569 

0, 3.5 2  0.16425 -0.04236 0.00593 

50, 2.5n a 2V  0.16219 0.00219 0.00306 

1, 3.6 2  0.17976 0.01976 0.00369 

100, 2.8n a 2V  0.12091 -0.00664 0.00050 

2, 3.7 2  0.14097 0.01342 0.00072 

150, 2.9n a 2V  0.11785 -0.00105 0.00035 

1, 2, 3.8 2  0.12321 0.00430 0.00038 
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Figure 1 – Estimates of Lorenz curve (simulated data). 
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RIASSUNTO

Stima bayesiana della curva di Lorenz, dell’indice di Gini e della varianza dei logaritmi in una distribu-
zione di Pareto 

In questo articolo stimiamo la curva di Lorenz, l’indice di Gini e la varianza dei loga-
ritmi per la distribuzione di Pareto adoperando l’impostazione bayesiana con distribuzio-
ne a priori coniugata. Il metodo Monte Carlo è stato usato per confrontare gli stimatori da 
noi proposti con lo stimatore di massima verosimiglianza suggerito da Moothathu (1990): 
gli stimatori proposti risultano molto efficienti. 

SUMMARY

Bayesian estimation of Lorenz curve, Gini-index and variance of logarithms in a Pareto distribution 

In this article, we estimate Lorenz curve, Gini-index and variance of logarithms for Pa-
reto distribution using Bayesian framework with a conjugate prior. Our proposed Bayes-
ian estimators are compared using a Monte Carlo study, to the MLE estimator proposed 
by Moothathu (1990) in terms of variance. It is found that the proposed estimators are 
highly efficient. 


