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1. INTRODUCTION

Benjamin Gompertz in 1825 introduced the Gompertz distribution in connection with
human mortality and actuarial tables. Since then, considerable attention has received
from demographers and actuaries. This distribution is a generalization of the exponen-
tial distribution and has many real life applications, especially in medical and actuarial
studies. It has some nice relations with some of the well-known distributions such as
exponential, double exponential, Weibull, extreme value (Gumbel distribution) or gen-
eralized logistic distribution (see Willekens, 2001). An important characteristic of the
Gompertz distribution is that it has an exponentially increasing failure rate for the life
of the systems. In recent past, many authors have contributed to the studies of statis-
tical methodology and characterization of this distribution, for example Read (1983),
Makany (1991), Rao and Damaraju (1992), Franses (1994), Chen (1997) and Wu and Lee
(1999).

The statistics literature has numerous distributions for modeling lifetime data. But
many if not most of these distributions arise either due to theoretical considerations or
practical applications or both. For example, there is no apparent physical motivation
for the gamma distribution. It only has a more general mathematical form than the
exponential distribution with one additional parameter, so it has nicer properties and
provides better fits. The same arguments apply to Weibull and many other distributions.
Many generalizations of the Gompertz distribution have been attempted by researchers.
Notable among them are: Bemmaor (1994) proposed the shifted Gompertz distribution,
Roy and Adnan (2012) introduced the wrapped generalized Gompertz distribution, El-
Gohary et al. (2013) studied the generalized Gompertz distribution, Jafari et al. (2014)
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introduced four parameter beta-Gompertz distribution, El-Damcese ez al. (2015) pro-
posed the odd generalized exponential Gompertz distribution, Jafari and Tahmasebi
(2016) introduced the generalized Gompertz-power series distributions and Benkhelifa
(2017) introduced the beta generalized Gompertz distribution.

The aim of this note is to derive a new distribution from the Gompertz distribu-
tion by a transformation of the type X = e, where Y has the Gompertz distri-
bution. The proposed distribution encompasses the behavior of and provides better
fits than some well known lifetime distributions, such as Beta and Kumaraswamy (Ku-
maraswamy, 1980) distributions. We are motivated to introduce the UG distribution
because (i) it is capable of modeling constant, increasing, upside-down bathtub and then
bathtub shaped hazard rate; (i1) it can be viewed as a suitable model for fitting the skewed
data which may not be properly fitted by other common distributions and can also be
used in a variety of problems in different areas such as environmental studies and in-
dustrial reliability and survival analysis; and (iii) two real data applications show that it
compares well with other three competing lifetime distributions in modeling environ-
mental and failure data.

The rest of the paper is organized as follows. In Section 2, we introduce the unit-
Gompertz distribution and discuss basic properties of this family of distributions. In
Section 3, maximum likelihood estimators of the unknown parameters along with the
expected Fisher information matrix are obtained. Monte Carlo simulations are con-
ducted in Section 4 to investigate the performance of the maximum likelihood estima-
tors and the asymptotic confidence intervals of the parameters. The analysis of two real
data sets have been presented in Section 5. Finally, Section 6 concludes the paper.

2. MODEL DESCRIPTION AND SOME PROPERTIES

In this section, we describe the new bounded distribution, which arises from a logarith-
mic transformation in the Gompertz distribution. This transformation is also consid-
ered in Grassia (1977) for the unit-Gamma distribution and Gémez-Déniz et al. (2014)
for the log-Lindley distribution.

Let Y be a non negative random variable with Gompertz distribution, then its prob-
ability density function is given by:

fOlap)=afesp[fy+a—ac®], 0

where y >0, 8> 0and a > 0 are scale and shape parameters, respectively.
By considering the transformation:

X = e_Y, @

we obtain a new distribution with support on (0, 1), which we refer to as unit-Gompertz
distribution. Its probability density function is given by:

fxlafy=afx P exp[—a(x —1)], 6)
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for x € (0,1). The corresponding cumulative distribution function and hazard functions
are given, respectively, by:

F(x|a, f)=exp[—a(x 7 —1)], )

a Bx Pt exp[—a(x P —1)]

h(x|a,B)= 1—exp[—a(x#—1)]

®)
For x — 1, lim _, h(x) = a3 for all possible choices of the parameter S and a. From
the above, it can be observed the following:

e Monotonically increasing shapes are possible for all values of @ > 1 and 8 > 1.

e Possibly bathtub shapes of the hazard rate function will happen when o <0.5.

2.1.  Shapes
PROPOSITION 1. The p.d.f. of the UG distribution is log-concave and unimodal.

PROOF. The second derivative of log f (x | a, B) is
2

= logf(x|a,ﬂ):—ﬁ<%—l><0. (6)

x2

x
) af )
Since 5 1)>0forall 5>0,a>0andx €(0,1)thenlog f(x | &, B) is concave
x
forall 8>0, a > 0. Then, f(x) is log-concave and unimodal. O

2.2, Quantile function

The quantile function x = Q(p) = F~(p), for 0 < p < 1, of the UG distribution is
obtained by inverting Equation (4) is given by:

Qp ) =esp [—% 1og<a—logp>—loga]. %

2.3. Mode
The first derivative of log f(x | 2, 8) is

£+ o

d
| - —(B+1) _
—log (x|, )= apx
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Therefore, the mode of f(x | a, B) is the root of the equation

4 togf (x| f=apr iy - E¥ oo o)

dx
“=(5% 1> "o

Thus, if x = x,:
implies that x, = (g—ﬁ)ﬁ is the unique critical point at which f(x | 2, B) is maximized.

2.4.  Hazard rate function

LEMMA 2. Let X be a nonnegative continuous random wriable with twice differen-

tiable p.d.f. f(x)and hazard rate function h(x). Let n(x)=—= logf(x)
(1) If n(x) is decreasing (increasing) in x, then h(x) is increasing (decreasing) in x.

(12) If n(x) has a bathtub (upside-down bathtub) shape, then h(x) also has a bathtub (upside-
down bathtub) shape.

From Glaser’s result we can determine the shape of the hazard rate function of the
UG distribution as follows.

THEOREM 3. The hazard rate of the UG distribution is upside-down bathtub shaped.

PROOF. Since

=" ) (11)
it follows that
+1
Fy=—E > )x ), (12)

Then, n(x) = 0 implies that n(x) has a global maximum at x* = (aﬂ)% , since

Vi _ OIIB2
n (x> - (x )/E+3) (13)

This means that n(x) is upside-down bathtub shaped. Hence, by Glaser’s lemma it
follows that h(x) is also upside-down bathtub shaped Note that with 7’(x) > 0 for given

x €(0,1), @ >1and 8> 1. Thus n(x) is an increasing function. O
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Figures 1 and 2 show the various curves for the p.d.{. and the hazard rate function,
respectively, of UG distribution with various values of @ and /3. Figure 1 indicates that
the UG distribution can be increasing, unimodal, reversed J-shaped and positively right
skewed. Figure 2 shows that the hazard rate function h(x | a, 3) of UG distribution
is constant, increasing and upside-down bathtub-shaped. One of the advantages of the
UG distribution over the Gompertz distribution is that the latter cannot model phe-
nomenon showing an upside-down bathtub-shaped hazard function.
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2.5.  Moments and associated measures

We hardly need to emphasize the necessity and importance of the moments in any sta-
tistical analysis especially in applied work. Some of the most important features and
characteristics of a distribution can be studied through moments (e.g., tendency, disper-
sion, skewness, and kurtosis). If the random variable X is UG distributed, then its rth
moment around zero can be expressed as

1
W =EX")= f x"a Bx~ P exp [—a (xP— 1)] dx=a?e’T <1 — %,a) , (14)

0
where I'(-,-) is the upper incomplete gamma function. Note that, the moments exists

only when <.
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Thus, the mean and variance are then obtained by:
1 r< 1 >
u=afeI'{1——,a],
p

o= o]

The skewness and kurtosis measures can be calculated using the relations

0'2:(1

@l

Hs=3uypu

Skewness(X) = S
o

B

py— A 6yt =3t

o4

Kurtosis(X) =

Figure 3 displays the mean, variance, skewness and kurtosis of UG distribution as a
function of « and 5.

3. ESTIMATION AND INFERENCE

In this section, we obtain the maximum likelihood estimators and the observed Fisher
information matrix from complete samples for the UG distribution. Let x = (x4,...,x,)
be a random sample of size 7 from the unit-Gompertz distribution with unknown pa-
rameter vector = (a, 3). The likelihood function for @ is given by:

Lx|0)=a"p" ﬁxi_(ﬁH) exp [—a (xl_/g — 1)] (15)
1=1

Thus, the log-likelihood function, apart constant terms, can be written as:
{(x]|0)=nloga+nlogB—(8+ 1)2 logx;, —a Z xl._’B—I—na. (16)
=1 =1

By taking the partial derivatives with of the log-likelihood function with respect to
a and 3 we have the Score vector Uy =[U, Ug], which their components are

U,=n <1+1>—Zn1xl_‘ﬁ (17)

a =1

and

n 2y logx; &
Uﬁ:ﬁﬂ‘z 7 —Zlogxl-. (18)
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The maximum likelihood estimates § = (2, /g ) of & = (a, ) is obtained by setting
U, = Uz =0 and solving these equations simultaneously. From (17), it follows immedi-

ately that the maximum likelihood estimator of @ can be get by:

G=— (19)

n
> x;ﬁ —n
=1

The Hessian matrix corresponds to the second derivatives of the log-likelihood with
respect to the unknown parameters is given by:

[ no. 2, logx; i
a? i =1 xﬁ
H=| . L (20)
" logx; ! 2 (logx,? n
, —a +=
| =1 X:B 1 ; x’B IB2 i
So, the expected Fisher information matrix is given by:
1 . e*E(a)+1
a? Ba
WO)=n | , (21)
CE(a)+1 ! 1
~Ba  \° Bln+ B
where E (-) represents the exponential integral function defined as
_ o e Xt o
Ek<x>_£ " dt =x""T(1—k,x) (22)
and ) ,
1
I, = J [m] x P exp [—a (x P — 1)] dx. (23)
0 X

It is well known that under mild regularity conditions (see Lehmann and Casella,

1998), the asymptotic distribution of the maximum likelihood estimator 6 of 6 is such
that R
Y (0—0) = N,0,17(9)), @49

where 2 denotes convergence in distribution and I71(6) is the inverse of expected Fisher
information matrix.

Lindsay and Li (1997) have shown that the observed Fisher information is a consis-
tent estimator of the expected Fisher information. Therefore the asymptotic behavior
remains if I(6) = nlirgo nJ(8), where J(6) denotes the observed Fisher information

matrix.
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4. SIMULATION STUDY

In this section we evaluate the performance of the maximum likelihood estimators and
the asymptotic confidence intervals of the parameters that index the unit-Gompertz dis-
tribution discussed in the previous sections through Monte Carlo simulation. We fixed
the sample size at » = 20,30,50 and 100 and the parameters at « = 0.5,1.0,1.5 and 2.0
and 8 = 0.5,1.0,1.5,2.0,3.0 and 4.0. For each combination, we generate = 10,000
pseudo-random samples from the unit-Gompertz distribution using the inverse cumu-
lative distribution function method, that is:

log(a—logu)—loga]’ 25)

where # is a uniform (0, 1) observation.

To assess the performance of the maximum likelihood estimators and their asymp-
totic confidence intervals we calculate the bias, root mean-squared error and coverage
probabilities of 90% and 95% confidence levels. The following observations can be
drawn from Tables 1-4:

1. All the estimators show the property of consistency i.e., the RMSE decreases as
sample size increases.

2. The bias of @ decreases with increasing 7.

3. The bias of ,3 decreases with increasing 7 for all the method of estimations.
4. The RMSE of 7 increases with increasing a.

5. The RMSE of B\ increases with increasing 3.

6. The RMSE of ,@ increases with increasing a.

7. As n increases the CPs of @ and 8 become very close to the nominal levels 90%
and 95%.
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TABLE 1
Estimated bias, root mean-squared and coverage probability o and [ (@ =0.5).
Bias RMSE CPoon CPosr
B n a e a B a a
20 00618 0.0923 05979 02422 0.7698  0.8920 0.8068 09469
05 30 00390 00600 04468 0.1838 0.8054  0.8960 0.839%  0.9488
© 50 00205 00351 0.2909  0.1354 0.8387  0.9008 0.8761  0.9468
100 00086  0.0178 0.1886  0.0919 0.8724  0.8959 0.9061 09495
20 00595 0.1892 05945 0.4888 07625 0.8918 08022 0.9469
Lo 0 00439 0119 04527 03743 0.8014  0.8902 0.8381 09442
Y50 00220 00706 0.2967  0.2749 0.8373  0.8936 0.8691 09415
100 00074 0.0371 0.1873  0.1847 0.8679 08948 0.9031 09461
20 007635 0.2784 0.6613  0.7406 07671 0.8908 0.8024 09456
L5 30 00427 01838 04574 0.5630 0.7990  0.8923 0.8389  0.9463
© 50 00173 0.1108 0.2966  0.4064 0.8357  0.8950 0.8729 09517
100 0.0061  0.0566 0.1837  0.2740 0.8694  0.9006 0.9051 09509
20 00706 03622 06292 0.9704 07713 0.88% 0.8086  0.9477
,o 30 o045 02372 04338 0.7439 0.8029  0.8916 0.8387  0.9441
Y50 00215 01390 02911  0.5404 0.8387 08978 0.8748 09497
100 00093 0.0695 0.1862  0.3669 0.8702 08975 09062 09504
20 00680 05542 0.6054 14510 07723 0.8926 08096 09455
5o 30 00463 03537 04553 1.1124 0.8046  0.8934 0.8430 09454
50 00247 02028 0.2948  0.8083 0.8430  0.8980 0.8778  0.9480
100 00101  0.1036 0.1895  0.5466 0.8745 08991 09079 0.9502
20 00770 0.6680 06521 18171 07793 0.89% 08140 09554
w0 0 00H9 04605 04681 14558 0.8055  0.8927 0.8415 09472
Y50 00201 02798 0.2914 10791 0.8419 08971 0.8760  0.9469
100 00117 0.1246 0.1881  0.7266 0.8781 08983 09118 0.9491
TABLE 2
Estimated bias, root mean-squared and coverage probability o and 3 (@ = 1.0).
Bias RMSE CPyq, CPys,
/6 n a a /B a a

0 01227 0.147%5 12322 03405 07404 08977 07789 09479
05 30 01136 0098 10260 0.2602 0.7784  0.8969 0.8131 09488
50 00762  0.0547 0.7457  0.1887 0.8138  0.8981 08523  0.9489
100 00308 00272 04519 01267 0.8595  0.8987 0.8913 09492
0 0331 0.923 12212 0.6825 07464 0.8952 07810 09444
Lo 30 01341 0.1804 10415 05155 07845  0.8952 0.8213 09487
50 00877 0.1034 07575 03732 08250  0.89% 0.8607  0.9487
100 0.0405  0.0508 0.4666  0.2536 0.8610  0.8992 0.8962 09461
0 01227 04380 12015 1.019 07410 0.9012 07775 0.9481
L5 30 01263 02732 10473 07628 0.7801  0.9053 08212 09523
© 50 00815 0.1605 07576  0.5618 0.8165  0.8944 0.8518  0.9484
100 00327 0.0816 0.4636 03771 0.8566 09008 0.8950 09510
20 01118 0.6000 11865 1.3790 07448 0.8983 07823 0.9444
,o 30 01194 03756 10277 1.0406 0.7826  0.8943 0.8204 09460
Y50 00774 02200 07451  0.7568 0.8156  0.8943 0.8555  0.9473
100 00326 0.1116 0.4582 05091 0.8527  0.8964 0.8887  0.94%
20 0.1375  0.8354 12156 1.9506 07428 0.9044 07793 0.9534
5o 30 012758 0612 10591 15515 0.7807  0.8940 0.819  0.9461
Y50 00899 03211 07738 1.1384 0.8230 08921 0.8585  0.9466
100 00411 0.1522 04599 07648 0.8572  0.9000 0.8968 09466
20 01774 08789 12629 2.2544 07719 09385 08148 09850
b0 30 o011 06738 10647 1.9487 07841  0.9039 08221 09576
Y50 00870 04219 07629 1.4985 0.8169  0.8962 0.8518  0.9469

100 0.0354 0.2130 0.4592 1.0135 0.8551 0.8956 0.8907  0.9467




36

J. Mazucheli et al.

TABLE 3
Estimated bias, root mean-squared and coverage probability o and [ (@ =1.5).
Bias RMSE CPoon CPosr
B n a B a B a B a
20 00848 02165 16318 0.4439 07005 0.8911 07367 0.9436
05 0 01462 01354 14851 03287 07540 0.9011 07908  0.9444
2 50 0.1487 00746 12200 0.2346 0.8004  0.9032 0.8395  0.9566
100 00873  0.0362 0.8104  0.1584 0.8502  0.8989 0.8842  0.9517
20 0.0005  0.4566 15378 0.9033 06890 0.8867 07288 0.9374
Lo 0 00827 0299 14206 0.6673 07402 0.9005 07782 0.9448
Y 50 01166 0.1647 12175 0.4808 07958  0.8981 0.8314  0.9508
100 00782  0.0769 08320 03201 0.8396  0.8952 0.8748  0.9467
20 00336  0.6511 15329 13232 07066 0.8968 07441 0.9431
L5 30 01178 04024 14466 0.9659 07553 0.9087 07949 0.9528
250 01346 02267 11989 0.7021 07989 0.9044 0.8338  0.9553
100 00962  0.1040 08392 04751 08432 0.8979 0.8800  0.9492
20 00421 08527 15534 1.7308 07116 0.8933 07485 0.9424
,o 30 o108 05515 14403 13153 07573 0.9047 07937 0.9467
Y 50 01575 02981 12628 0.9388 0.8028  0.8999 0.8417  0.9532
100 00967  0.1351 08397  0.6264 0.8468  0.9029 0.8831  0.9525
20 00985 L0942 16018 2.2813 07322 00207 07684 09672
5o 30 ol465 07630 14603 1.8860 07618 0.9092 0.8006  0.9525
Y50 01526 04395 12360 1.4052 0.8056  0.9036 08410  0.9529
100 0.1031  0.1986 0.8459  0.9465 0.8457  0.9010 0.8809  0.9511
20 01703 10804 15934 2.4808 07818 0.0748 08174 0.9975
w0 0 01711 08544 14581 2.2091 07793 0.9368 0.8199  0.9795
P50 01499 05874 12407  1.8267 07984  0.9053 0.8364  0.9582
100 00962  0.2780 0.8455  1.2707 0.8414  0.8978 0.8794  0.9484
TABLE 4
Estimated bias, root mean-squared and coverage probability o and 3 (@ =2.0).
Bias RMSE [o CPyo,
/8 n a ﬁ a ﬁ a a

20 0.1570 02913 17606 0.5391 06766 0.8887 07169 0.9368
05 30 ool o187 17161 0.3970 07238 0.8959 07642 0.9439
50 01231  0.1053 15482 0.2828 07802 0.9094 08160  0.9523
100 01572  0.0445 12237 0.1874 0.8338  0.9034 08700  0.9555
20 0.1716 05958 17730  1.08% 06777 08818 07138 0.9361
Lo 30 00017 03853 17145 0.8059 07165  0.8968 07571  0.9416
9 50 ow77 02108 15957 0.5694 07789 0.9075 08143 0.9533
100 0.1426  0.0965 1.2289 03792 08282  0.8997 08620  0.9511
20 0.1587 08742 17863 15993 06758 0.8890 07148 0.9382
L5 30 00049 05649 17164 1.1868 07239 0.9024 07670 0.9453
2 50 01082 03229 1.5554  0.8470 07790  0.9100 08158  0.9540
100 0.1431  0.1431 12260 0.5646 0.8302  0.9038 0.8669  0.9535
20 0.1814 L1585 17289 2.1048 06793 0.8884 07165 0.9392
,o 30 00073 07641 17342 1.6076 07253 0.8997 07611  0.9410
P 50 01620 04153 1.6278  1.1367 07788 0.9107 08128  0.9516
100 0.1495  0.1828 12140 07483 0.8292  0.9054 0.8673  0.9556
20 00925 14311 17841 2.6231 0.6998  0.9266 07398 0.9785
5o 30 00189 10427 17108 2.1899 07396 0.9092 07743 0.9576
P 50 01329 06228 15720 1.6689 07813 0.9109 08178  0.9531
100 0.1463  0.2837 12266 1.1307 0.8304  0.9024 08662  0.9507
20 0.1014  1.2108 18102 2.6171 07869 0.9951 08275 0.9997
4o 30 01248 10255 17349 2.4043 07818  0.9672 08239 0.9955
Y 50 01905 07097 16204  2.0623 07928 0.9250 08299  0.9677

100 0.1791 0.3450 1.2812 1.4977 0.8305 0.8988 0.8649 0.9497
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5. APPLICATIONS

In this section, we compare the fits of the UG distribution with beta, Kumaraswamy and
McDonald (McDonald, 1984) distributions since they are used for modeling bounded
data by means of two data sets to illustrate the potentiality of the UG model.

The beta, Kumaraswamy and McDonald distribution have p.d.f. written, respec-
tively, as

(i) beta distribution:

xa a+,5 x/j_1
P targ ™ T

(i) Kumaraswamy distribution:
flse,B)=aBx (1—x*)PL
(i11) McDonald distribution:
P xTe (1 —x7 )51

flpove)= Beta(a, B)[v+ (1 —v)xT]H’B ’

where in (iii) we have o = u <— — 1) and 8= a< > (see, Stasinopoulos et al., 2017).

The data sets are reported in Table 5. The first data set represents 20 observations of
the maximum flood level (in millions of cubic feet per second) for Susquehanna River at
Harrisburg, Pennsylvania and is reported in Dumonceaux and Antle (1973). The second
data set related to 30 measurements of tensile strength of polyester fibers Quesenberry
and Hales (1980).

TABLE 5
Flood level and tensile strength data sets.

Data Set I
0.26,0.27,0.30,0.32, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40, 0.41, 0.42, 0.42, 0.42,

0.45, 0.48, 0.49, 0.61, 0.65, 0.74
Data Set II

0.023, 0.032, 0.054, 0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 0.188,
0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 0.432, 0.463, 0.481, 0.519,
0.529, 0.567, 0.642, 0.674,0.752, 0.823, 0.887, 0.926

In Table 6 we present the maximum likelihood estimates and their corresponding
standard errors in parentheses of the fitted distributions.

For model comparison, we have taken into account the likelihood-based statistics
Akaike’s Information Criterion (AIC) and Bayesian information criterion (BIC), and
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TABLE 6
Maximum likelihood estimates (standard-error).

Data Set I
Distribution a Jé v T
Unit-Gompertz 0.02 (0.02) 4.14 (0.74) - -
Beta 676 (2.10)  9.11 (2.85) - ;
Kumaraswamy 3.36 (0.60) 11.79 (5.36) - -
McDonald 17.05(148.57)  2.13(3.23) 0.01(0.04) 2.57 (4.38)

Data Set I
Distribution a Jé v T
Unit-Gompertz 1.04 (0.77) 0.43 (0.19) -
Beta 097 (0.22)  1.62 (0.41) - -
Kumaraswamy 0.96 (0.20) 1.61 (0.41) - -
McDonald 103.08 (873.34)  1.20(0.45) 0.02 (0.16) 0.30 (0.32)

the goodness-of-fit measures Kolmogorov-Smirnov statistic (KS), Anderson -Darling statis-
tic (AD) and Cramér-von Mises statistic (CvM). The statistics with smaller values and
larger p-values are said to be better fit. The results for the two data sets are reported in

Table 7.

The results in Table 7 revels that both the data sets may be modeled by the four
distributions. The superiority of the unit-Gompertz model, in terms of goodness-of-fit
statistics, in comparison to the beta and Kumaraswamy distributions, is observed for
both the data sets. However, McDonal distribution performs little bit better than unit-
Gompertz distribution in terms all considered criteria. It is important to note that the
McDonald distribution has four parameters and they are not estimated accurately.

TABLE 7
Goodness-of fit measures (p-values) and likelihood-based statistics.
Data Set I
Distribution KS CvM AD AIC BIC
Unit-Gompertz 015 (0.78) 005 (0.88) 0.29 (0.95) 28.72 -26.73
Beta 0.20 (0.41) 0.12(0.49) 073 (0.53) -24.13 -22.13
Kumaraswamy ~ 0.21 (0.34) 0.16 (0.35) 0.93(0.39) -21.73 -19.74
McDonald 0.13(0.87) 0.05(0.90) 0.8 (0.95) -24.77 -20.79
Data Set I
Distribution KS CvM AD AIC BIC
Unit-Gompertz 0.0/ (0.99) 0.02 (1.00) 0.1 (1.00)  3.90  -1.10
Beta 0.07 (1.00) 0.02(1.00) 0.17(1.00) -2.61  0.19

Kumaraswamy  0.07 (1.00) 0.02(1.00) 0.16 (1.00) -2.62 0.18
McDonald 0.07 (1.00) 0.01(1.00) 0.10(1.00) -0.04  5.57
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Figure 4 - PP-Plots of the fitted distributions — Data Set L.
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Finally, the probability-probability plots for all fitted models are shown in Figures
4 and 5. These plots show that the unit-Gompertz distribution provides the good fit to
these data sets compared to the other two models, beta and Kumaraswamy distributions.
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6. CONCLUSION

In this article, a new distribution is proposed which can serve as an alternatives to beta
and Kumaraswamy distributions having two shape parameters. The estimation of model
parameters are obtained by maximum likelihood estimation. Two applications to real
data sets are presented as an illustration of the potentiality of the new model as compared
to beta, Kumaraswamy and McDonald models. After comparing the values of five pop-
ular goodness-of-fit statistics, we may say that our model UG is better as compared to
beta and Kumaraswamy distributions for these two data sets. We expect the utility of
the newly proposed model in different fields especially in life-time and reliability when
hazard rate is increasing, unimodal (upside-down bathtub) or bathtub.
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SUMMARY

The transformed family of distributions are sometimes very useful to explore additional prop-
erties of the phenomenons which non-transformed (baseline) family of distributions cannot. In
this paper, we introduce a new transformed model, called the unit-Gompertz (UG) distribution
which exhibit right-skewed (unimodal) and reversed-] shaped density while the hazard rate has
constant, increasing, upside-down bathtub and then bathtub shaped hazard rate. Some statistical
properties of this new distribution are presented and discussed. Maximum likelihood estimation
for the parameters that index UG distribution are derived along with their corresponding asymp-
totic standard errors. Monte Carlo simulations are conducted to investigate the bias, root mean
squared error of the maximum likelihood estimators as well as the coverage probability. Finally,
the potentiality of the model is presented and compared with three others distributions using two
real data sets.

Keywords: Gompertz distribution; Maximum likelihood estimators; Monte Carlo simulation.



