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1. INTRODUCTION

Benjamin Gompertz in 1825 introduced the Gompertz distribution in connection with
human mortality and actuarial tables. Since then, considerable attention has received
from demographers and actuaries. This distribution is a generalization of the exponen-
tial distribution and has many real life applications, especially in medical and actuarial
studies. It has some nice relations with some of the well-known distributions such as
exponential, double exponential, Weibull, extreme value (Gumbel distribution) or gen-
eralized logistic distribution (see Willekens, 2001). An important characteristic of the
Gompertz distribution is that it has an exponentially increasing failure rate for the life
of the systems. In recent past, many authors have contributed to the studies of statis-
tical methodology and characterization of this distribution, for example Read (1983),
Makany (1991), Rao and Damaraju (1992), Franses (1994), Chen (1997) and Wu and Lee
(1999).

The statistics literature has numerous distributions for modeling lifetime data. But
many if not most of these distributions arise either due to theoretical considerations or
practical applications or both. For example, there is no apparent physical motivation
for the gamma distribution. It only has a more general mathematical form than the
exponential distribution with one additional parameter, so it has nicer properties and
provides better fits. The same arguments apply to Weibull and many other distributions.
Many generalizations of the Gompertz distribution have been attempted by researchers.
Notable among them are: Bemmaor (1994) proposed the shifted Gompertz distribution,
Roy and Adnan (2012) introduced the wrapped generalized Gompertz distribution, El-
Gohary et al. (2013) studied the generalized Gompertz distribution, Jafari et al. (2014)
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introduced four parameter beta-Gompertz distribution, El-Damcese et al. (2015) pro-
posed the odd generalized exponential Gompertz distribution, Jafari and Tahmasebi
(2016) introduced the generalized Gompertz-power series distributions and Benkhelifa
(2017) introduced the beta generalized Gompertz distribution.

The aim of this note is to derive a new distribution from the Gompertz distribu-
tion by a transformation of the type X = e−Y , where Y has the Gompertz distri-
bution. The proposed distribution encompasses the behavior of and provides better
fits than some well known lifetime distributions, such as Beta and Kumaraswamy (Ku-
maraswamy, 1980) distributions. We are motivated to introduce the UG distribution
because (i) it is capable of modeling constant, increasing, upside-down bathtub and then
bathtub shaped hazard rate; (ii) it can be viewed as a suitable model for fitting the skewed
data which may not be properly fitted by other common distributions and can also be
used in a variety of problems in different areas such as environmental studies and in-
dustrial reliability and survival analysis; and (iii) two real data applications show that it
compares well with other three competing lifetime distributions in modeling environ-
mental and failure data.

The rest of the paper is organized as follows. In Section 2, we introduce the unit-
Gompertz distribution and discuss basic properties of this family of distributions. In
Section 3, maximum likelihood estimators of the unknown parameters along with the
expected Fisher information matrix are obtained. Monte Carlo simulations are con-
ducted in Section 4 to investigate the performance of the maximum likelihood estima-
tors and the asymptotic confidence intervals of the parameters. The analysis of two real
data sets have been presented in Section 5. Finally, Section 6 concludes the paper.

2. MODEL DESCRIPTION AND SOME PROPERTIES

In this section, we describe the new bounded distribution, which arises from a logarith-
mic transformation in the Gompertz distribution. This transformation is also consid-
ered in Grassia (1977) for the unit-Gamma distribution and Gómez-Déniz et al. (2014)
for the log-Lindley distribution.

Let Y be a non negative random variable with Gompertz distribution, then its prob-
ability density function is given by:

f (y | α,β) = αβ exp
�

β y +α−α eβ y
�

, (1)

where y > 0, β> 0 and α > 0 are scale and shape parameters, respectively.
By considering the transformation:

X = e−Y , (2)

we obtain a new distribution with support on (0,1), which we refer to as unit-Gompertz
distribution. Its probability density function is given by:

f (x | α,β) = αβ x−(β+1) exp
�

−α (x−β− 1)
�

, (3)
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for x ∈ (0,1). The corresponding cumulative distribution function and hazard functions
are given, respectively, by:

F (x | α,β) = exp
�

−α (x−β− 1)
�

, (4)

h(x | α,β) =
αβ x−(β+1) exp

�

−α (x−β− 1)
�

1− exp
�

−α (x−β− 1)
� . (5)

For x → 1, limx→1 h(x) = αβ for all possible choices of the parameter β and α. From
the above, it can be observed the following:

• Monotonically increasing shapes are possible for all values of α > 1 and β≥ 1.

• Possibly bathtub shapes of the hazard rate function will happen when α≤ 0.5.

2.1. Shapes

PROPOSITION 1. The p.d.f. of the UG distribution is log-concave and unimodal.

PROOF. The second derivative of log f (x | α,β) is

d 2

d x2
log f (x | α,β) =−

β+ 1
x2

�

αβ

xβ
− 1

�

< 0. (6)

Since
�

αβ

xβ
− 1

�

> 0 for allβ> 0, α > 0 and x ∈ (0,1) then log f (x | α,β) is concave

for all β> 0, α > 0. Then, f (x) is log-concave and unimodal. 2

2.2. Quantile function

The quantile function x = Q(p) = F −1(p), for 0 < p < 1, of the UG distribution is
obtained by inverting Equation (4) is given by:

Q(p | α,β) = exp
�

− 1
β

log(α− log p)− logα
�

. (7)

2.3. Mode

The first derivative of log f (x | α,β) is

d
d x

log f (x | α,β) = αβx−(β+1)−
(β+ 1)

x
. (8)
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Therefore, the mode of f (x | α,β) is the root of the equation

d
d x

log f (x | α,β) = αβx−(β+1)−
(β+ 1)

x
= 0. (9)

Thus, if x = x0:

x0 =
�

αβ

β+ 1

�
1
β

(10)

implies that x0 =
�

αβ
β+1

�
1
β is the unique critical point at which f (x | α,β) is maximized.

2.4. Hazard rate function

LEMMA 2. Let X be a nonnegative continuous random variable with twice differen-
tiable p.d.f. f (x) and hazard rate function h(x). Let η(x) =− d

dx log f (x).

(i) If η(x) is decreasing (increasing) in x, then h(x) is increasing (decreasing) in x.

(ii) If η(x) has a bathtub (upside-down bathtub) shape, then h(x) also has a bathtub (upside-
down bathtub) shape.

From Glaser’s result we can determine the shape of the hazard rate function of the
UG distribution as follows.

THEOREM 3. The hazard rate of the UG distribution is upside-down bathtub shaped.

PROOF. Since

η(x) =
β+ 1

x
−αβx−(β+1), (11)

it follows that

η′(x) =−
β+ 1

x2
+αβ(β+ 1)x−(β+2). (12)

Then, η(x) = 0 implies that η(x) has a global maximum at x∗ = (αβ)
1
β , since

η′′(x) =−
αβ2

(x∗)(β+3)
< 0. (13)

This means that η(x) is upside-down bathtub shaped. Hence, by Glaser’s lemma it
follows that h(x) is also upside-down bathtub shaped. Note that with η′(x)> 0 for given
x ∈ (0,1), α≥ 1 and β≥ 1. Thus η(x) is an increasing function. 2
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Figures 1 and 2 show the various curves for the p.d.f. and the hazard rate function,
respectively, of UG distribution with various values of α and β. Figure 1 indicates that
the UG distribution can be increasing, unimodal, reversed J-shaped and positively right
skewed. Figure 2 shows that the hazard rate function h(x | α,β) of UG distribution
is constant, increasing and upside-down bathtub-shaped. One of the advantages of the
UG distribution over the Gompertz distribution is that the latter cannot model phe-
nomenon showing an upside-down bathtub-shaped hazard function.
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Figure 1 – Density plots of the unit-Gompertz distribution considering different values of α and
β.
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Figure 2 – Hazard rate plots of the unit-Gompertz distribution considering different values of α
and β.
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2.5. Moments and associated measures

We hardly need to emphasize the necessity and importance of the moments in any sta-
tistical analysis especially in applied work. Some of the most important features and
characteristics of a distribution can be studied through moments (e.g., tendency, disper-
sion, skewness, and kurtosis). If the random variable X is UG distributed, then its r th
moment around zero can be expressed as

µ′r =E(X
r ) =

∫ 1

0
x rαβ x−(β+1) exp

�

−α (x−β− 1)
�

dx = α
r
β eα Γ

�

1− r
β

,α
�

, (14)

where Γ (·, ·) is the upper incomplete gamma function. Note that, the moments exists
only when

r
β
< 1.
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Figure 3 – Mean, variance, skewness and kurtosis of the unit-Gompertz distribution considering
different values of α and β.
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Thus, the mean and variance are then obtained by:

µ= α
1
β eα Γ

�

1− 1
β

,α
�

,

σ2 = α
2
β e2α

¨

Γ

�

1− 2
β

,α
�

−
�

Γ

�

1− 1
β

,α
��2«

.

The skewness and kurtosis measures can be calculated using the relations

Skewness(X ) =
µ′3− 3µ′2µ+µ

3

σ3
,

Kurtosis(X ) =
µ′4− 4µ′3µ+ 6µ′2µ

2− 3µ4

σ4
.

Figure 3 displays the mean, variance, skewness and kurtosis of UG distribution as a
function of α and β.

3. ESTIMATION AND INFERENCE

In this section, we obtain the maximum likelihood estimators and the observed Fisher
information matrix from complete samples for the UG distribution. Let x= (x1, . . . , xn)
be a random sample of size n from the unit-Gompertz distribution with unknown pa-
rameter vector θ= (α,β). The likelihood function for θ is given by:

L(x | θ) = αnβn
n
∏

i=1

x−(β+1)
i exp

�

−α (x−βi − 1)
�

. (15)

Thus, the log-likelihood function, apart constant terms, can be written as:

`(x | θ) = n logα+ n logβ− (β+ 1)
n
∑

i=1

log xi −α
n
∑

i=1

x−βi + nα. (16)

By taking the partial derivatives with of the log-likelihood function with respect to
α and β we have the Score vector Uθ = [Uα Uβ], which their components are

Uα = n
�

1+
1
α

�

−
n
∑

i=1

x−βi (17)

and

Uβ =
n
β
+α

n
∑

i=1

log xi

xβi
−

n
∑

i=1

log xi . (18)
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The maximum likelihood estimates bθ = (bα, bβ) of θ = (α,β) is obtained by setting
Uα =Uβ = 0 and solving these equations simultaneously. From (17), it follows immedi-
ately that the maximum likelihood estimator of α can be get by:

bα=
n

n
∑

i=1
x−

bβ
i − n

. (19)

The Hessian matrix corresponds to the second derivatives of the log-likelihood with
respect to the unknown parameters is given by:

H=



















− n
α2

n
∑

i=1

log xi

xβi

n
∑

i=1

log xi

xβi
−α

n
∑

i=1

(log xi )
2

xβi
+

n
β2



















(20)

So, the expected Fisher information matrix is given by:

I(θ) = n















1
α2

eα E1(α)+ 1
βα

eα E1(α)+ 1
βα

α2β I22+
1
β2















, (21)

where En(·) represents the exponential integral function defined as

Ek (x) =
∫ ∞

1

e−x t

t k
d t = xk−1 Γ (1− k , x) (22)

and

I22 =
∫ 1

0

�

(log x)2

xβ

�

x−(β+1) exp
�

−α (x−β− 1)
�

d x. (23)

It is well known that under mild regularity conditions (see Lehmann and Casella,
1998), the asymptotic distribution of the maximum likelihood estimator bθ of θ is such
that p

n (bθ−θ) D→N2(0, I−1(θ)), (24)

where
D→ denotes convergence in distribution and I−1(θ) is the inverse of expected Fisher

information matrix.
Lindsay and Li (1997) have shown that the observed Fisher information is a consis-

tent estimator of the expected Fisher information. Therefore the asymptotic behavior
remains if I(θ) = lim

n→∞
n−1J(θ), where J(θ) denotes the observed Fisher information

matrix.
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4. SIMULATION STUDY

In this section we evaluate the performance of the maximum likelihood estimators and
the asymptotic confidence intervals of the parameters that index the unit-Gompertz dis-
tribution discussed in the previous sections through Monte Carlo simulation. We fixed
the sample size at n = 20,30,50 and 100 and the parameters at α = 0.5,1.0,1.5 and 2.0
and β = 0.5,1.0,1.5,2.0,3.0 and 4.0. For each combination, we generate M = 10,000
pseudo-random samples from the unit-Gompertz distribution using the inverse cumu-
lative distribution function method, that is:

x = exp
�

−
log(α− log u)− logα

β

�

, (25)

where u is a uniform (0,1) observation.
To assess the performance of the maximum likelihood estimators and their asymp-

totic confidence intervals we calculate the bias, root mean-squared error and coverage
probabilities of 90% and 95% confidence levels. The following observations can be
drawn from Tables 1-4:

1. All the estimators show the property of consistency i.e., the RMSE decreases as
sample size increases.

2. The bias of bα decreases with increasing n.

3. The bias of bβ decreases with increasing n for all the method of estimations.

4. The RMSE of bα increases with increasing α.

5. The RMSE of bβ increases with increasing β.

6. The RMSE of bβ increases with increasing α.

7. As n increases the CPs of α and β become very close to the nominal levels 90%
and 95%.
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TABLE 1
Estimated bias, root mean-squared and coverage probability α and β (α= 0.5).

Bias RMSE CP90% CP95%
β n α β α β α β α β

0.5

20 0.0618 0.0923 0.5979 0.2422 0.7698 0.8920 0.8068 0.9469
30 0.0390 0.0600 0.4468 0.1838 0.8054 0.8960 0.8396 0.9488
50 0.0205 0.0351 0.2909 0.1354 0.8387 0.9008 0.8761 0.9468
100 0.0086 0.0178 0.1886 0.0919 0.8724 0.8959 0.9061 0.9495

1.0

20 0.0593 0.1892 0.5945 0.4888 0.7625 0.8918 0.8022 0.9469
30 0.0439 0.1194 0.4527 0.3743 0.8014 0.8902 0.8381 0.9442
50 0.0220 0.0706 0.2967 0.2749 0.8373 0.8936 0.8691 0.9415
100 0.0074 0.0371 0.1873 0.1847 0.8679 0.8948 0.9031 0.9461

1.5

20 0.0763 0.2784 0.6613 0.7406 0.7671 0.8908 0.8024 0.9456
30 0.0427 0.1838 0.4574 0.5630 0.7990 0.8923 0.8389 0.9463
50 0.0173 0.1108 0.2966 0.4064 0.8357 0.8950 0.8729 0.9517
100 0.0061 0.0566 0.1837 0.2740 0.8694 0.9006 0.9051 0.9509

2.0

20 0.0706 0.3622 0.6292 0.9704 0.7713 0.8896 0.8086 0.9477
30 0.0415 0.2372 0.4338 0.7439 0.8029 0.8916 0.8387 0.9441
50 0.0215 0.1390 0.2911 0.5404 0.8387 0.8978 0.8748 0.9497
100 0.0093 0.0695 0.1862 0.3669 0.8702 0.8975 0.9062 0.9504

3.0

20 0.0680 0.5542 0.6054 1.4510 0.7723 0.8926 0.8096 0.9455
30 0.0463 0.3537 0.4553 1.1124 0.8046 0.8934 0.8430 0.9454
50 0.0247 0.2028 0.2948 0.8083 0.8430 0.8980 0.8778 0.9480
100 0.0101 0.1036 0.1895 0.5466 0.8745 0.8991 0.9079 0.9502

4.0

20 0.0770 0.6680 0.6521 1.8171 0.7793 0.8994 0.8140 0.9554
30 0.0449 0.4605 0.4681 1.4558 0.8055 0.8927 0.8415 0.9472
50 0.0201 0.2798 0.2914 1.0791 0.8419 0.8971 0.8760 0.9469
100 0.0117 0.1246 0.1881 0.7266 0.8781 0.8983 0.9118 0.9491

TABLE 2
Estimated bias, root mean-squared and coverage probability α and β (α= 1.0).

Bias RMSE CP90% CP95%
β n α β α β α β α β

0.5

20 0.1227 0.1475 1.2322 0.3405 0.7404 0.8977 0.7789 0.9479
30 0.1156 0.0948 1.0260 0.2602 0.7784 0.8969 0.8131 0.9488
50 0.0762 0.0547 0.7457 0.1887 0.8138 0.8981 0.8523 0.9489
100 0.0308 0.0272 0.4519 0.1267 0.8595 0.8987 0.8913 0.9492

1.0

20 0.1331 0.2923 1.2212 0.6825 0.7464 0.8952 0.7810 0.9444
30 0.1341 0.1804 1.0415 0.5155 0.7845 0.8952 0.8213 0.9487
50 0.0877 0.1034 0.7575 0.3732 0.8250 0.8996 0.8607 0.9487
100 0.0405 0.0508 0.4666 0.2536 0.8610 0.8992 0.8962 0.9461

1.5

20 0.1227 0.4380 1.2015 1.0190 0.7410 0.9012 0.7775 0.9481
30 0.1263 0.2732 1.0473 0.7628 0.7801 0.9053 0.8212 0.9523
50 0.0815 0.1605 0.7576 0.5618 0.8165 0.8944 0.8518 0.9484
100 0.0327 0.0816 0.4636 0.3771 0.8566 0.9008 0.8950 0.9510

2.0

20 0.1118 0.6000 1.1865 1.3790 0.7448 0.8983 0.7823 0.9444
30 0.1194 0.3756 1.0277 1.0406 0.7826 0.8943 0.8204 0.9460
50 0.0774 0.2200 0.7451 0.7568 0.8156 0.8943 0.8555 0.9473
100 0.0326 0.1116 0.4582 0.5091 0.8527 0.8964 0.8887 0.9496

3.0

20 0.1373 0.8354 1.2156 1.9506 0.7428 0.9044 0.7793 0.9534
30 0.1278 0.5612 1.0591 1.5515 0.7807 0.8940 0.8196 0.9461
50 0.0899 0.3211 0.7738 1.1384 0.8230 0.8921 0.8585 0.9466
100 0.0411 0.1522 0.4599 0.7648 0.8572 0.9000 0.8968 0.9466

4.0

20 0.1774 0.8789 1.2629 2.2344 0.7719 0.9383 0.8148 0.9850
30 0.1421 0.6758 1.0647 1.9487 0.7841 0.9039 0.8221 0.9576
50 0.0870 0.4219 0.7629 1.4985 0.8169 0.8962 0.8518 0.9469
100 0.0354 0.2130 0.4592 1.0135 0.8551 0.8956 0.8907 0.9467
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TABLE 3
Estimated bias, root mean-squared and coverage probability α and β (α= 1.5).

Bias RMSE CP90% CP95%
β n α β α β α β α β

0.5

20 0.0848 0.2165 1.6318 0.4439 0.7005 0.8911 0.7367 0.9436
30 0.1462 0.1354 1.4851 0.3287 0.7540 0.9011 0.7908 0.9444
50 0.1487 0.0746 1.2200 0.2346 0.8004 0.9032 0.8395 0.9566
100 0.0873 0.0362 0.8104 0.1584 0.8502 0.8989 0.8842 0.9517

1.0

20 0.0005 0.4566 1.5378 0.9033 0.6890 0.8867 0.7288 0.9374
30 0.0827 0.2909 1.4206 0.6673 0.7402 0.9005 0.7782 0.9448
50 0.1166 0.1647 1.2175 0.4808 0.7958 0.8981 0.8314 0.9508
100 0.0782 0.0769 0.8320 0.3201 0.8396 0.8952 0.8748 0.9467

1.5

20 0.0336 0.6511 1.5329 1.3232 0.7066 0.8968 0.7441 0.9431
30 0.1178 0.4024 1.4466 0.9659 0.7553 0.9087 0.7949 0.9528
50 0.1346 0.2267 1.1989 0.7021 0.7989 0.9044 0.8338 0.9553
100 0.0962 0.1040 0.8392 0.4751 0.8432 0.8979 0.8800 0.9492

2.0

20 0.0421 0.8527 1.5534 1.7308 0.7116 0.8933 0.7485 0.9424
30 0.1108 0.5515 1.4403 1.3153 0.7573 0.9047 0.7937 0.9467
50 0.1575 0.2981 1.2628 0.9388 0.8028 0.8999 0.8417 0.9532
100 0.0967 0.1351 0.8397 0.6264 0.8468 0.9029 0.8831 0.9525

3.0

20 0.0985 1.0942 1.6018 2.2813 0.7322 0.9207 0.7684 0.9672
30 0.1465 0.7630 1.4603 1.8860 0.7618 0.9092 0.8006 0.9525
50 0.1526 0.4395 1.2360 1.4052 0.8056 0.9036 0.8410 0.9529
100 0.1031 0.1986 0.8459 0.9465 0.8457 0.9010 0.8809 0.9511

4.0

20 0.1703 1.0804 1.5934 2.4808 0.7818 0.9748 0.8174 0.9975
30 0.1711 0.8544 1.4581 2.2091 0.7793 0.9368 0.8199 0.9795
50 0.1499 0.5874 1.2407 1.8267 0.7984 0.9053 0.8364 0.9582
100 0.0962 0.2780 0.8455 1.2707 0.8414 0.8978 0.8794 0.9484

TABLE 4
Estimated bias, root mean-squared and coverage probability α and β (α= 2.0).

Bias RMSE CP90% CP95%
β n α β α β α β α β

0.5

20 -0.1570 0.2913 1.7606 0.5391 0.6766 0.8887 0.7169 0.9368
30 0.0111 0.1877 1.7161 0.3970 0.7238 0.8959 0.7642 0.9439
50 0.1231 0.1053 1.5482 0.2828 0.7802 0.9094 0.8160 0.9523
100 0.1572 0.0445 1.2237 0.1874 0.8338 0.9034 0.8700 0.9555

1.0

20 -0.1716 0.5958 1.7730 1.0895 0.6777 0.8818 0.7138 0.9361
30 -0.0017 0.3853 1.7145 0.8059 0.7165 0.8968 0.7571 0.9416
50 0.1477 0.2108 1.5957 0.5694 0.7789 0.9075 0.8143 0.9533
100 0.1426 0.0965 1.2289 0.3792 0.8282 0.8997 0.8620 0.9511

1.5

20 -0.1587 0.8742 1.7863 1.5993 0.6758 0.8890 0.7148 0.9382
30 -0.0049 0.5649 1.7164 1.1868 0.7239 0.9024 0.7670 0.9453
50 0.1082 0.3229 1.5554 0.8470 0.7790 0.9100 0.8158 0.9540
100 0.1431 0.1431 1.2260 0.5646 0.8302 0.9038 0.8669 0.9535

2.0

20 -0.1814 1.1585 1.7289 2.1048 0.6793 0.8884 0.7165 0.9392
30 0.0073 0.7641 1.7342 1.6076 0.7253 0.8997 0.7611 0.9410
50 0.1620 0.4153 1.6278 1.1367 0.7788 0.9107 0.8128 0.9516
100 0.1495 0.1828 1.2140 0.7483 0.8292 0.9054 0.8673 0.9556

3.0

20 -0.0925 1.4311 1.7841 2.6231 0.6998 0.9266 0.7398 0.9785
30 0.0189 1.0427 1.7108 2.1899 0.7396 0.9092 0.7743 0.9576
50 0.1329 0.6228 1.5720 1.6689 0.7813 0.9109 0.8178 0.9531
100 0.1463 0.2837 1.2266 1.1307 0.8304 0.9024 0.8662 0.9507

4.0

20 0.1014 1.2108 1.8102 2.6171 0.7869 0.9951 0.8275 0.9997
30 0.1248 1.0255 1.7349 2.4043 0.7818 0.9672 0.8239 0.9955
50 0.1905 0.7097 1.6204 2.0623 0.7928 0.9250 0.8299 0.9677
100 0.1791 0.3450 1.2812 1.4977 0.8305 0.8988 0.8649 0.9497
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5. APPLICATIONS

In this section, we compare the fits of the UG distribution with beta, Kumaraswamy and
McDonald (McDonald, 1984) distributions since they are used for modeling bounded
data by means of two data sets to illustrate the potentiality of the UG model.

The beta, Kumaraswamy and McDonald distribution have p.d.f. written, respec-
tively, as

(i) beta distribution:

f (x;α,β) =
Γ (α+β)
Γ (α)Γ (β)

xα−1 (1− x)β−1.

(ii) Kumaraswamy distribution:

f (x;α,β) = αβ xα−1 (1− xα)β−1.

(iii) McDonald distribution:

f (x;µ,σ , ν ,τ) =
τνβxτα−1(1− xτ)β−1

Beta(α,β) [ν +(1− ν)xτ]α+β
,

where in (iii) we have α=µ
�

1
σ2 − 1

�

and β= α
�

1−µ
µ

�

(see, Stasinopoulos et al., 2017).
The data sets are reported in Table 5. The first data set represents 20 observations of

the maximum flood level (in millions of cubic feet per second) for Susquehanna River at
Harrisburg, Pennsylvania and is reported in Dumonceaux and Antle (1973). The second
data set related to 30 measurements of tensile strength of polyester fibers Quesenberry
and Hales (1980).

TABLE 5
Flood level and tensile strength data sets.

Data Set I
0.26, 0.27, 0.30, 0.32, 0.32, 0.34, 0.38, 0.38, 0.39, 0.40, 0.41, 0.42, 0.42, 0.42,
0.45, 0.48, 0.49, 0.61, 0.65, 0.74

Data Set II
0.023, 0.032, 0.054, 0.069, 0.081, 0.094, 0.105, 0.127, 0.148, 0.169, 0.188,
0.216, 0.255, 0.277, 0.311, 0.361, 0.376, 0.395, 0.432, 0.463, 0.481, 0.519,
0.529, 0.567, 0.642, 0.674, 0.752, 0.823, 0.887, 0.926

In Table 6 we present the maximum likelihood estimates and their corresponding
standard errors in parentheses of the fitted distributions.

For model comparison, we have taken into account the likelihood-based statistics
Akaike’s Information Criterion (AIC) and Bayesian information criterion (BIC), and
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TABLE 6
Maximum likelihood estimates (standard-error).

Data Set I
Distribution bα bβ bν bτ
Unit-Gompertz 0.02 (0.02) 4.14 (0.74) - -
Beta 6.76 (2.10) 9.11 (2.85) - -
Kumaraswamy 3.36 (0.60) 11.79 (5.36) - -
McDonald 17.05 (148.57) 2.13 (3.23) 0.01 (0.04) 2.57 (4.38)

Data Set II
Distribution bα bβ bν bτ
Unit-Gompertz 1.04 (0.77) 0.43 (0.19) - -
Beta 0.97 (0.22) 1.62 (0.41) - -
Kumaraswamy 0.96 (0.20) 1.61 (0.41) - -
McDonald 103.08 (873.34) 1.20 (0.45) 0.02 (0.16) 0.30 (0.32)

the goodness-of-fit measures Kolmogorov-Smirnov statistic (KS), Anderson -Darling statis-
tic (AD) and Cramér-von Mises statistic (CvM). The statistics with smaller values and
larger p-values are said to be better fit. The results for the two data sets are reported in
Table 7.

The results in Table 7 revels that both the data sets may be modeled by the four
distributions. The superiority of the unit-Gompertz model, in terms of goodness-of-fit
statistics, in comparison to the beta and Kumaraswamy distributions, is observed for
both the data sets. However, McDonal distribution performs little bit better than unit-
Gompertz distribution in terms all considered criteria. It is important to note that the
McDonald distribution has four parameters and they are not estimated accurately.

TABLE 7
Goodness-of-fit measures ( p-values) and likelihood-based statistics.

Data Set I
Distribution KS CvM AD AIC BIC
Unit-Gompertz 0.15 (0.78) 0.05 (0.88) 0.29 (0.95) -28.72 -26.73
Beta 0.20 (0.41) 0.12 (0.49) 0.73 (0.53) -24.13 -22.13
Kumaraswamy 0.21 (0.34) 0.16 (0.35) 0.93 (0.39) -21.73 -19.74
McDonald 0.13 (0.87) 0.05 (0.90) 0.28 (0.95) -24.77 -20.79

Data Set II
Distribution KS CvM AD AIC BIC
Unit-Gompertz 0.07 (0.99) 0.02 (1.00) 0.11 (1.00) -3.90 -1.10
Beta 0.07 (1.00) 0.02 (1.00) 0.17 (1.00) -2.61 0.19
Kumaraswamy 0.07 (1.00) 0.02 (1.00) 0.16 (1.00) -2.62 0.18
McDonald 0.07 (1.00) 0.01 (1.00) 0.10 (1.00) -0.04 5.57
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Figure 4 – PP-Plots of the fitted distributions — Data Set I.

Finally, the probability-probability plots for all fitted models are shown in Figures
4 and 5. These plots show that the unit-Gompertz distribution provides the good fit to
these data sets compared to the other two models, beta and Kumaraswamy distributions.
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Figure 5 – PP-Plots of the fitted distributions — Data Set II.
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6. CONCLUSION

In this article, a new distribution is proposed which can serve as an alternatives to beta
and Kumaraswamy distributions having two shape parameters. The estimation of model
parameters are obtained by maximum likelihood estimation. Two applications to real
data sets are presented as an illustration of the potentiality of the new model as compared
to beta, Kumaraswamy and McDonald models. After comparing the values of five pop-
ular goodness-of-fit statistics, we may say that our model UG is better as compared to
beta and Kumaraswamy distributions for these two data sets. We expect the utility of
the newly proposed model in different fields especially in life-time and reliability when
hazard rate is increasing, unimodal (upside-down bathtub) or bathtub.
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SUMMARY

The transformed family of distributions are sometimes very useful to explore additional prop-
erties of the phenomenons which non-transformed (baseline) family of distributions cannot. In
this paper, we introduce a new transformed model, called the unit-Gompertz (UG) distribution
which exhibit right-skewed (unimodal) and reversed-J shaped density while the hazard rate has
constant, increasing, upside-down bathtub and then bathtub shaped hazard rate. Some statistical
properties of this new distribution are presented and discussed. Maximum likelihood estimation
for the parameters that index UG distribution are derived along with their corresponding asymp-
totic standard errors. Monte Carlo simulations are conducted to investigate the bias, root mean
squared error of the maximum likelihood estimators as well as the coverage probability. Finally,
the potentiality of the model is presented and compared with three others distributions using two
real data sets.

Keywords: Gompertz distribution; Maximum likelihood estimators; Monte Carlo simulation.


