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1. INTRODUCTION

Maurice Fréchet (1878-1973), a French mathematician, introduced the Fréchet distribu-
tion. This distribution is also known as the type II extreme value distribution and is
a family of continuous probability distributions developed within the general extreme
value theory, which deals with the stochastic behavior of the maximum and minimum
of independent and identically distributed (i.i.d.) random variables (Kotz and Nadara-
jah, 2000). Fréchet distribution has found to be a better model for describing stochastic
phenomena, like the lifetime of components and analyzing the extreme events such as
floods, earthquakes, rainfall, wind speed, sea currents, etc.

The random variable X is said to follow Fréchet distribution with the shape param-
eter α > 0 and the scale parameterβ> 0, if the cumulative distribution function (cdf) is
given by

G(x) = e−(
β
x )
α
, x > 0. (1)

This distribution is equivalent to taking the reciprocal of values from a standard Weibull
distribution. Extreme value theories shows that the Weibull distribution is a better
model for the minimum of large number of independent positive random variables,
where as, the Fréchet distribution is a better model for the maximum of a large number
of random variables from a certain class of distributions, see Abbas and Tang (2015).

There have been growing interest in developing new classes of distributions for mod-
elling a variety of data sets from various fields (see Jayakumar and Pillai, 1993; Pillai and
Jayakumar, 1995; Jayakumar, 2003; Nadarajah et al., 2013; Jayakumar and Babu, 2018).
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Gumbel (1965) studied the parameter estimation of Fréchet distribution. Nadara-
jah and Kotz (2008) discussed the various sociological models based on Fréchet ran-
dom variables. Several extensions of the Fréchet distribution are discussed in the lit-
erature. Some of them are as follows: the exponentiated Fréchet (EF) distribution in
Nadarajah and Kotz (2003), the beta Fréchet (BF) distribution in Barreto-Souza et al.
(2011), the Marshall-Olkin Fréchet (MOF) distribution in Krishna et al. (2013), the
transmuted Fréchet (TF) distribution in Mahmoud and Mandouh (2013), the gamma
extended Fréchet distribution in da Silva et al. (2013), the transmuted exponentiated
Fréchet (TEF) distribution in Elbatal et al. (2014), the Kumaraswamy Fréchet distri-
bution in Mead and Abd-Eltawab (2014), the transmuted Marshall-Olkin Fréchet dis-
tribution in Afify et al. (2015), the Kumaraswamy transmuted Marshall-Olkin Fréchet
(KTMOF) distribution in Yousof et al. (2016), the Weibull Fréchet distribution in Afify
et al. (2016), the beta exponential Fréchet distribution in Mead et al. (2017), the Burr-X
exponentiated Fréchet (BXEF) distribution in Zayed and Butt (2017) and the generalized
transmuted Fréchet (GTFr) distribution in Nofal and Ahsanullah (2019). In the present
paper, we study the properties and application of a new generalization of Fréchet distri-
bution, namely, exponential transmuted Fréchet (ETF) distribution.

This paper is organized as follows. In Section 2, we introduce the ETF distribution
and provide its sub models. In Section 3, some structural properties of ETF distribution,
including the quantile function, moments, moment generating function and order statis-
tics are studied. The method of maximum likelihood is used to estimate the unknown
parameters of the model and a simulation study is carried out to check the performance
of the MLEs of the model parameters. These results are presented in Section 4. In Sec-
tion 5, we study empirically the flexibility of ETF distribution by using a real data set.
Finally, conclusions are presented in Section 6.

2. A NEW GENERALIZATION OF THE FRÉCHET DISTRIBUTION

Even though there are many generalizations of Fréchet distribution are available in the
literature, the complexity in modelling extreme values demands more flexible distribu-
tions. To generate one such flexible generalization of Fréchet distribution, we consider
the T-transmuted X family of Jayakumar and Babu (2017), which is defined as

F (x) = R
§

− ln
�

1−G(x)
�

1+λḠ(x)
�

�ª

, (2)

where R{t} is the cdf of the random variable T with probability density function (pdf)
r (t ), G(x) is the base distribution function, Ḡ(x) = 1−G(x) and |λ| ≤ 1.
We consider a member of this family, where R(t ) follows exponential distribution with
cdf R(t ) = 1− e−θt ,θ > 0, t > 0, and G(x) is the Fréchet distribution with cdf, G(x) =
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e−(
β
x )
α
,α > 0,β> 0, x > 0. Then

F (x) = 1−
�

1− e−(
β
x )
α�

1+λ(1− e−(
β
x )
α
)
�

�θ

, x > 0. (3)

We call the distribution (3) as exponential transmuted Fréchet(ETF) distribution with
parameters α > 0,β > 0,θ > 0 and |λ| ≤ 1. The pdf, survival function and hazard rate
function(hrf) of ETF distribution are respectively

f (x) = θαβαx−(α+1) e−(
β
x )
α (1+λ− 2λe−(

β
x )
α )

�

1− e−(
β
x )α
�

1+λ(1− e−(
β
x )α )

��1−θ
, (4)

S(x) = 1− F (x) =
�

1− e−(
β
x )
α�

1+λ(1− e−(
β
x )
α
)
��θ, (5)

and

h(x) =
f (x)

1− F (x)
= θαβαx−(α+1) e−(

β
x )
α (1+λ− 2λe−(

β
x )
α )

1− e−(
β
x )α
�

1+λ(1− e−(
β
x )α )

�

. (6)

2.1. Sub models

The following are the sub models of the ETF distribution given in (3).

1. When λ = 0, exponentiated Fréchet distribution studied in Nadarajah and Kotz
(2003).

2. When θ = 1, transmuted exponentiated Fréchet distribution studied in Elbatal
et al. (2014).

3. When θ = 1 and β = 1, transmuted Fréchet distribution studied in Mahmoud
and Mandouh (2013).

4. When θ= 1,β= 1 and λ= 0, Fréchet distribution.

5. When θ = 1,β= 1 and α = 1, transmuted inverse exponential distribution stud-
ied in Oguntunde and Adejumo (2015).

6. When θ = 1,β = 1,α = 1 and λ = 0, inverse exponential distribution studied in
Keller and Kamath (1982).

7. When θ = 1,β = 1 and α = 2, transmuted inverse Rayleigh distribution studied
in Ahmad et al. (2014).

8. When θ = 1,β = 1,α = 2 and λ = 0, inverse Rayleigh distribution studied in
Voda (1972).
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3. STRUCTURAL PROPERTIES

The shape of the pdf of ETF distribution can be described analytically by examining
the roots of the equation ∂ ln( f (x))

∂ x = 0. It can be easily seen that limx→∞ f (x) = 0. The
following result shows limx→0 f (x) = 0.

PROPOSITION 1. limx→0 f (x) = 0.

PROOF. We have

lim
x→0

f (x) = θαβα lim
x→0

�

x−(α+1)e−(
β
x )
α
�

lim
x→0

�

1+λ− 2λe−(
β
x )
α
�

lim
x→0

�

�

1− e−(
β
x )
α�

1+λ(1− e−(
β
x )
α
)
��θ−1

�

. (7)

Since x > 0,α > 0 and β> 0, we have 0≤ e−(
β
x )
α ≤ 1.

Next, we can show that limx→0

�

x−(α+1)e−(
β
x )
α�= 0.

We know that for all n ∈N, limx→∞ xn e−x = 0.
Letting u = (βx )

α, we have, x = β

u
1
α

. Thus x→ 0 if and only if u→∞ and therefore,

lim
x→0

�

x−(α+1)e−(
β
x )
α�

= lim
u→∞

u
α+1
α e−u

βα+1
. (8)

Now, let n ∈N such that α+1
α ≤ n.

Then for u ≥ 1, we have u
α+1
α ≤ un and thus

0≤ lim
u→∞

u
α+1
α e−u

βα+1
≤ lim

u→∞

un e−u

βα+1
= 0. (9)

Thus

lim
x→0

�

x−(α+1)e−(
β
x )
α�

= 0. (10)

Using (10) in (7), we obtain limx→0 f (x) = 0. 2

Since limx→∞ f (x) = limx→0 f (x) = 0, the pdf of ETF distribution must have at least
one mode.
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We have

∂ ln( f (x))
∂ x

=
−(α+ 1)

x
+
αβα

xα+1
−

2λαβαe−(
β
x )
α

xα+1(1+λ− 2λe−(
β
x )α )

−(1−θ)
αβα

xα+1

�

λ(2e−(
β
x )
α − 1)− 1

�

1− e−(
β
x )α
�

1+λ(1− e−(
β
x )α )

�

= 0. (11)

Here the Equation (11) may have more than one root. If x = x0 is a root, then it cor-
responds to a local maximum if ∂ 2 ln( f (x))

∂ x2 < 0, a local minimum if ∂ 2 ln( f (x))
∂ x2 > 0, and a

point of inflection if ∂
2 ln( f (x))
∂ x2 = 0.

From (11) we have

f
′(x)

f (x)
=
−(α+ 1)+α(βx )

α

x
−

2λα(βx )
αe−(

β
x )
α

x(1+λ− 2λe−(
β
x )α )

−
(1−θ)(βx )

α(αx )e
−( βx )

α (1+λ− 2λe−(
β
x )
α )

1− e−(
β
x )α
�

1+λ(1− e−(
β
x )α )

�

=
s(x)

x(1+λ− 2λe−(
β
x )α )(1− e−(

β
x )α
�

1+λ(1− e−(
β
x )α )

�

)
, (12)

where

s(x) =
�

α(
β

x
)α−α− 1

��

1+λ− 2λe−(
β
x )
α�

�

1− e−(
β
x )
α
[1+λ(1− e−(

β
x )
α
)]
�

−2λα(
β

x
)αe−(

β
x )
α�

1− e−(
β
x )
α
[1+λ(1− e−(

β
x )
α
)]
�

+

α(1−θ)(
β

x
)αe−(

β
x )
α�

1+λ− 2λe−(
β
x )
α�2. (13)

Now, put y = (βx )
α. Since x > 0, we have y > 0. Then

s(y) =
�

1− e−y (1+λ)+λe−2y )
�

�

(1+λ)(y(α− 1)− 1)− 2λe−y (y(2α− 1)− 1)
�

+α(1−θ)ye−y�1+λ− 2λe−y�2

= u(y)v(y)+w(y), (14)

where, u(y) = 1−e−y (1+λ)+λe−2y ), v(y) = (1+λ)(y(α−1)−1)−2λe−y (y(2α−1)−1)
and w(y) = α(1−θ)ye−y

�

1+λ− 2λe−y
�2. The function u(y) is positive for y > 0 and
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|λ| ≤ 1. Also note that s(y) < 0 for 0 < α ≤ 1,θ > 1 and |λ| ≤ 1. Hence, s(x) < 0
and f (x) is a decreasing function. In all other cases, f (x) is a unimodal function and
the mode is obtained by solving the non linear Equation (11). Some possible shapes
of the pdf and hrf for selected parameter values for the ETF distribution are presented
in Figure 1 and Figure 2 respectively. These figures shows the flexibility of the ETF
distribution. The hrf is initially increasing and then decreasing.

Figure 1 – Plot of the pdf of ETF distribution for given parameter values.

Figure 2 – Plot of the hrf of ETF distribution for given parameter values.
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3.1. Quantile function

The following theorem gives the quantile function of ETF distribution.

THEOREM 2. The u t h quantile φ(u) of ETF distribution is given by

φ(u) =







β
�

− ln( (1+λ)−[(1−λ)
2+4λ(1−u)

1
θ ]

1
2

2λ )
�− 1

α , if |λ| ≤ 1 and λ 6= 0,

β
�

− ln(1− (1− u)
1
θ )
�− 1

α , if λ= 0.
(15)

PROOF. Using (3), we have

1−
�

1− e−(
β
xu
)α�1+λ(1− e−(

β
xu
)α )
��θ = u

⇒ λe−2( βxu
)α − (1+λ)e−(

β
xu
)α +

�

1− (1− u)
1
θ
�

= 0. (16)

Put k = e−(
β
xu
)α , and this implies xu =β[− ln(k)]−

1
α .

Now from (16),
λk2− (1+λ)k +

�

1− (1− u)
1
θ
�

= 0. (17)

Here (17) is a quadratic equation in k and the possible root is

k =
(1+λ)−

�

(1−λ)2+ 4λ(1− u)
1
θ

�
1
2

2λ
, (18)

where λ 6= 0. That is

φ(u) = xu =β
�

− ln
� (1+λ)−

�

(1−λ)2+ 4λ(1− u)
1
θ

�
1
2

2λ

��− 1
α .

Now if λ= 0, then we have

F (x) = 1− [1− e−(
β
x )
α
]θ,

which implies

φ(u) =β
�

− ln(1− (1− u)
1
θ )
�− 1

α .

This completes the proof. 2

Using (15) we can generate random numbers from ETF distribution.
In particular when u = 0.5, the median is given by

Median=φ(0.5) =β
�

− ln
� (1+λ)−

�

(1−λ)2+λ22− 1
θ

�
1
2

2λ

��− 1
α

. (19)
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The skewness and kurtosis can be defined based on the quantile function. The Galton’s
skewness S and the Moors kurtosis K are, respectively

S =
Q( 68 )− 2Q( 48 )+Q( 28 )

Q( 68 )−Q( 28 )
,

K =
Q( 78 )−Q( 58 )+Q( 38 )−Q( 18 )

Q( 68 )−Q( 28 )
.

For S = 0, the distribution is symmetric, when S > 0 (or S < 0), the distribution is right
(or left) skewed. As the value of kurtosis increases, the tail of the distribution becomes
heavier. Table 1, shows the changes of skewness and kurtosis for various parameter
values of the ETF distribution. Here we can observe that the skewness and kurtosis of
the ETF distribution, (i) decreases as α increases andβ,θ, λ are fixed , (ii) decreases as θ
increases and α,β, λ are fixed , (iii) remains constant asβ increases and α,θ, λ are fixed,
and (iv) increasing when −1≤ λ < 0 and decreasing when 0≤ λ≤ 1, for fixed α,β and
θ.

TABLE 1
Measures of skewness and kurtosis of ETF distribution for given parameter values.

α β θ λ Skewness (S) Kurtosis (K)
0.5 0.5 0.5 -1.0 0.910 16.730

-0.5 0.913 16.815
0.0 0.911 16.730
0.5 0.885 14.962
1.0 0.729 4.529

1.0 1.0 1.0 1.0 0.330 1.599
1.5 0.260 1.460
2.0 0.230 1.397
5.0 0.144 1.292

1.0 0.5 1.0 0.9 0.351 1.681
1.0 0.351 1.681
2.0 0.351 1.681
5.0 0.351 1.681

0.5 0.5 0.5 0.9 0.778 6.857
1.0 0.527 2.680
2.0 0.350 1.788
5.0 0.231 1.479



A New Generalization of the Fréchet Distribution: Properties and Application 275

3.2. Moments

The following theorem gives the r th raw moment of the ETF distribution.

THEOREM 3. If X has the ETF distribution with |λ| ≤ 1, then the r t h raw moment is
given by

µ
′

r (x) =
∞
∑

j=0

∞
∑

k=0

∞
∑

l=0

(−1) j+lθβr (1+λ)
�

θ− 1
j

��

j
k

��

k
l

�

Γ (1− r
α )

(1+ j + l )1−
r
α

−
∞
∑

j=0

∞
∑

k=0

∞
∑

l=0

2(−1) j+lθβrλk+1
�

θ− 1
j

��

j
k

��

k
l

�

Γ (1− r
α )

(2+ j + l )1−
r
α

. (20)

PROOF. We have

µ
′

r (x) = E(X r ) =
∫ ∞

0
x r f (x)d x

=
∫ ∞

0

θαβαx r−(α+1)e−(
β
x )
α[1+λ− 2λe−(

β
x )
α]

�

1− e−(
β
x )α
�

1+λ(1− e−(
β
x )α )

�

�1−θ
d x. (21)

Let t = (βx )
α, then x =βt−(

1
α ). Therefore (21) becomes

µ
′

r (x) =
∫ ∞

0

θβr t−(
r
α )e−t [1+λ− 2λe−t ]

�

1− e−t
�

1+λ(1− e−t )
�

�1−θ
d t . (22)

Using the expansion (1− z)θ−1 =
∑∞

j=0(−1) j
�θ−1

j

�

z j , we have

�

1− e−t �1+λ(1− e−t )
�

�θ−1

=
∞
∑

j=0

(−1) j
�

θ− 1
j

�

�

e−t �1+λ(1− e−t )
�

� j

.
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Thus

µ
′

r (x) =
∫ ∞

0
θβr t−(

r
α )e−t �1+λ− 2λe−t �

∞
∑

j=0

(−1) j
�

θ− 1
j

�

�

e−t �1+λ(1− e−t )
�� j d t

=
∫ ∞

0
θβr t−(

r
α )e−t �1+λ

�

∞
∑

j=0

(−1) j
�

θ− 1
j

�

�

e−t �1+λ(1− e−t )
�� j d t

−
∫ ∞

0
2θλβr t−(

r
α )e−2t

∞
∑

j=0

(−1) j
�

θ− 1
j

�

�

e−t �1+λ(1− e−t )
�� j d t

= I1− I2, (23)

where

I1 =
∫ ∞

0
θβr t−(

r
α )e−t (1+λ)

∞
∑

j=0

(−1) j
�

θ− 1
j

�

�

e−t �1+λ(1− e−t )
�

� j

d t

=
∫ ∞

0
θ(1+λ)βr t−(

r
α )

∞
∑

j=0

(−1) j
�

θ− 1
j

�

e−(1+ j )t
∞
∑

k=0

�

j
k

�

�

λ(1− e−t )
�k d t

=
∞
∑

j=0

∞
∑

k=0

∞
∑

l=0

θ(1+λ)λkβr (−1) j+l
�

θ− 1
j

��

j
k

��

k
l

�

∫ ∞

0
t (

r
α )e−(1+ j+l )t d t

=
∞
∑

j=0

∞
∑

k=0

∞
∑

l=0

(−1) j+lθ(1+λ)βr
�

θ− 1
j

��

j
k

��

k
l

�

Γ (1− r
α )

(1+ j + l )1−
r
α

. (24)
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Similarly

I2 =
∫ ∞

0
2θλβr t−(

r
α )e−2t

∞
∑

j=0

(−1) j
�

θ− 1
j

�

�

e−t �1+λ(1− e−t )
�

� j

d t

=
∞
∑

j=0

∞
∑

k=0

∞
∑

l=0

2(−1) j+lθβrλk+1
�

θ− 1
j

��

j
k

��

k
l

�

Γ (1− r
α )

(2+ j + l )1−
r
α

. (25)

Substituting (24) and (25) in (23) we get the result (20).
This completes the proof. 2

3.3. Moment generating function

The moment generating function (mgf) of the ETF distribution is given in the following
theorem.

THEOREM 4. If X has the ETF distribution with |λ| ≤ 1, then the mgf is given by

MX (t ) =
∞
∑

r=0

t r

r !
µ
′

r (x), (26)

where

µ
′

r (x) =
∞
∑

j=0

∞
∑

k=0

∞
∑

l=0

(−1) j+lθβr (1+λ)
�

θ− 1
j

��

j
k

��

k
l

�

Γ (1− r
α )

(1+ j + l )1−
r
α

−
∞
∑

j=0

∞
∑

k=0

∞
∑

l=0

2(−1) j+lθβrλk+1
�

θ− 1
j

��

j
k

��

k
l

�

Γ (1− r
α )

(2+ j + l )1−
r
α

.

Proof follows easily.

3.4. Order statistics

Let X1,X2, ...,Xn be a random sample of size n taken from the ETF(α,β,θ,λ) distribu-
tion and let X(1),X(2), ...,X(n) denotes the corresponding order statistics. Then for the
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k th order statistic, say Z =X(k), the pdf and cdf are respectively given by

fZ (z) =
n!

(k − 1)!(n− k)!
F k−1(z)[1− F (z)]n−k f (z)

=
n!

(k − 1)!(n− k)!

�

θαβαz−(α+1)e−(
β
z )
α
(1+λ− 2λe−(

β
z )
α
)
�

�

1−
�

1− e−(
β
z )
α�

1+λ(1− e−(
β
z )
α
)
��θ
�k−1

�

1− e−(
β
z )
α�

1+λ(1− e−(
β
z )
α
)
�

�θ(n−k+1)−1

, (27)

and

FZ (z) =
n
∑

j=k

�

n
j

�

F j (z)[1− F (z)]n− j

=
n
∑

j=k

�

n
j

�

�

1−
�

1− e−(
β
z )
α
[1+λ(1− e−(

β
z )
α
)]
�θ
� j

�

1− e−(
β
z )
α
[1+λ(1− e−(

β
z )
α
)]
�θ(n− j )

. (28)

The pdf of minimum is

fX(1)
(z) = nθαβαz−(α+1)e−(

β
z )
α
(1+λ− 2λe−(

β
z )
α
)

�

1− e−(
β
z )
α�

1+λ(1− e−(
β
z )
α
)
�

�nθ−1

, (29)

and the pdf of the maximum is

fX(n)
(z) = n

�

θαβαz−(α+1)e−(
β
z )
α
(1+λ− 2λe−(

β
z )
α
)
�

�

1−
�

1− e−(
β
z )
α�

1+λ(1− e−(
β
z )
α
)
��θ
�n−1

�

1− e−(
β
z )
α�

1+λ(1− e−(
β
z )
α
)
�

�θ−1

. (30)

4. MAXIMUM LIKELIHOOD ESTIMATES OF THE PARAMETERS

In this section, we obtain the maximum likelihood estimates (MLEs) of the parame-
ters of ETF(α,β,θ,λ) distribution. Let x1, x2, ..., xn be a random sample of size n from
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ETF(α,β,θ,λ) distribution. The likelihood function L is given by

L= θnαnβnα e−
∑n

i=1(
β
xi
)α∏n

i=1 x−(α+1)
i

∏n
i=1(1+λ− 2λe−(

β
xi
)α )

∏n
i=1

�

1− e−(
β
xi
)α�1+λ(1− e−(

β
xi
)α )
�

�1−θ
. (31)

The log-likelihood function can be written as

log(L) = n log(θ)+ n log(α)+ nα log(β)−βα
n
∑

i=1

x−αi

−(α+ 1)
n
∑

i=1

log(xi )+
n
∑

i=1

log(1+λ− 2λe−(
β
xi
)α )

+(θ− 1)
n
∑

i=1

log
�

1− e−(
β
xi
)α�1+λ(1− e−(

β
xi
)α )
�

�

. (32)

The MLE, ê = (α̂, β̂, θ̂, λ̂)T of e = (α,β,θ,λ)T is obtained by maximizing the log-
likelihood function. We have

∂ log(L)
∂ α

=
n
α
+ n log(β)−βα log(β)

n
∑

i=1

x−αi +β
α

n
∑

i=1

x−αi log(xi )

−
n
∑

i=1

log(xi )+ 2λ
n
∑

i=1

(βxi
)α log(βxi

)e−(
β
x )
α

1+λ− 2λe−(
β
x )α

+(θ− 1)
n
∑

i=1

(βxi
)α log(βxi

)e−(
β
x )
α[1+λ− 2λe−(

β
x )
α]

1− e−(
β
xi
)α�1+λ(1− e−(

β
xi
)α )
�

= 0, (33)

∂ log(L)
∂ β

=
nα
β
− α
β

n
∑

i=1

(
β

xi
)α+

2λα
β

n
∑

i=1

(βxi
)αe−(

β
xi
)α

1+λ− 2λe−(
β
x )α

+(θ− 1)
n
∑

i=1

α
β (

β
xi
)αe−(

β
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)α�1+λ− 2λe−(

β
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α�
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β
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)α�1+λ(1− e−(

β
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= 0, (34)

∂ log(L)
∂ θ

=
n
θ
+

n
∑

i=1

log
�

1− e−(
β
xi
)α�1+λ(1− e−(

β
xi
)α )
�

�

= 0, (35)
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and

∂ log(L)
∂ λ

=
n
∑

i=1

1− 2e−(
β
xi
)α

1+λ− 2λe−(
β
xi
)α

−
n
∑

i=1

(θ− 1)e−(
β
xi
)α (1− e−(

β
xi
)α )

1− e−(
β
xi
)α�1+λ(1− e−(

β
xi
)α )
�

= 0. (36)

These equations cannot be solved analytically and the R software can be used to solve
them numerically. The normal approximation of the MLE of e can be used for con-
structing the approximate confidence limits and for testing hypothesis on the parame-
ters α,β,θ and λ. Under the conditions that are fulfilled for parameters in the interior
of the parameter space, we have

p
n(ê− e)∼N(0,K−1

e ), where ∼means approximately
distributed and Ke is the unit expected information matrix. The asymptotic behavior
is valid if Ke = limn→∞ n−1In(e), where In(e) is the observed information matrix. The
Fisher’s information matrix is given by

IX (e) =






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. (37)

Here, the ETF(α,β,θ,λ) distribution satisfies the regularity conditions which are
full filled for the parameters in the interior of the parameter space, but not on the bound-
ary. Hence, the vector ê is consistent and asymptotically normal. That is,

p

IX (e)[ê−e]
converges in distribution to multivariate normal with zero mean vector and identity co-
variance matrix. The Fisher’s information matrix can be computed using the approxi-
mation,

IX (ê)≈
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We compute the maximized unrestricted and restricted log-likelihood ratio (LR) test
statistic for testing on some ETF sub models. We can use the LR test statistic to check
whether the ETF distribution for a given data set is statistically superior to the sub mod-
els. For example, H0 : θ= 1 versus H1 : θ 6= 1 is equivalent to compare the ETF distribu-
tion and transmuted exponentiated Fréchet (TGF) distribution and the LR test statistic
reduce to ω = 2(l (α̂, β̂, θ̂, λ̂)− l (α̂′ , β̂′ , 1, λ̂

′)), where (α̂, β̂, θ̂, λ̂) and (α̂′ , β̂′ , λ̂′) are the
MLEs under H1 and H0, respectively. The test statisticω is asymptotically (as n→∞)
distributed as χ 2

(k), where k is the length of the parameter vector of interest. The LR test

rejects H0 if ω > χ 2
(k ,α) where χ 2

(k ,α) denotes the upper 100(1−α)% quantile of the χ 2
(k)

distribution.

4.1. Simulation study

This section explains the performance of the MLEs of the model parameters of the ETF
distribution using Monte Carlo simulation for various sample sizes and for selected pa-
rameter values. The algorithm for the simulation study is given below.

Step 1. Input the value of replication (N).

Step 2. Specify the sample size n and the values of the parameters α,β,θ and λ.

Step 3. Generate ui ∼Uniform (0,1), i = 1,2, ..., n.

Step 4. Obtain the random observations from the ETF distribution using (15).

Step 5. Compute the MLEs of the four parameters.

Step 6. Repeat steps 3 to 5, N times.

Step 7. Compute the parameter estimate, standard error of estimate, average bias, mean
square error (MSE) and coverage probability (CP) for each parameter.
Here the expected value of the estimator is E(ê) = 1

N
∑N

i=1 êi , with

E(SE(ê)) =

√

√

√ 1
N
∑N

i=1

�

− ∂ 2 log(L)
∂ e2

i

�

,

Average Bias = 1
N
∑N

i=1(êi − e), MSE(ê) = 1
N
∑N

i=1(êi − e)2 and

Coverage Probability = Probability of ei ∈
�

êi ± 1.96
r

− ∂ 2 log(L)
∂ e2

i

�

.

We take random samples of size n=50, 100, 200 and 500 respectively. The MLEs of
the parameter vector e = (α,β,θ,λ) are determined by maximizing the log-likelihood
function in (32) by using the o pt i m package of R software based on each generated
samples. This simulation is repeated 1000 times and the average estimate and its standard
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error, average bias, MSE and CP are computed and presented in Table 2. From Table 2,
it can be seen that, as sample size increases the estimates of bias and MSE are decreasing.
Also note that the CP values are quite close to the 95% nominal level.

TABLE 2
The parameter estimate, standard error, average bias, MSE and CP for given parameter values.

Parameter(e) Samples(n) E(ê)(E(SE(ê))) Average bias MSE CP

α= 0.5

50
100
200
500

0.538(0.010)
0.490(0.008)
0.499(0.005)
0.505(0.003)

0.027
-0.018
-0.003
0.005

0.002
0.002
0.001
0.001

85.2
89.4
90.8
94.3

β= 1.5

50
100
200
500

1.715(0.060)
1.638(0.051)
1.476(0.044)
1.494(0.035)

0.204
0.146
-0.034
-0.006

0.051
0.020
0.002
0.001

82.3
85.3
89.1
93.1

θ= 3

50
100
200
500

3.161(0.054)
3.136(0.067)
3.083(0.036)
3.053(0.077)

0.146
0.125
0.068
0.043

0.036
0.017
0.007
0.003

87.5
90.9
92.2
94.4

λ=−0.9

50
100
200
500

-0.602(0.011)
-0.650(0.010)
-0.707(0.009)
-0.761(0.008)

0.318
0.280
0.179
0.122

0.079
0.063
0.037
0.019

83.8
87.3
89.8
91.2

α= 1.5

50
100
200
500

1.942(0.072)
1.781(0.059)
1.713(0.052)
1.668(0.033)

0.442
0.137
0.112
0.109

0.037
0.029
0.011
0.007

86.7
88.9
90.2
92.8

β= 0.5

50
100
200
500

0.327(0.011)
0.399(0.008)
0.429(0.008)
0.473(0.007)

-0.162
-0.148
-0.093
-0.041

0.017
0.011
0.009
0.004

89.3
90.1
91.7
93.4

θ= 1

50
100
200
500

1.319(0.218)
1.212(0.173)
1.114(0.109)
1.105(0.098)

0.297
0.201
0.183
0.105

0.091
0.062
0.044
0.039

91.6
92.5
93.6
93.9

λ= 0.5

50
100
200
500

0.869(0.028)
0.814(0.022)
0.722(0.019)
0.631(0.017)

0.342
0.299
0.241
0.183

0.018
0.017
0.014
0.011

84.8
86.1
86.9
88.7

5. DATA APPLICATION

In this section, in order to show the flexibility of the ETF distribution to model real-life
data, we use the data set represents the remission times (in months) of 128 bladder cancer
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patients (Lee and Wang, 2003). The data are as follows:

0.080 0.200 0.400 0.500 0.510 0.810 0.900 1.050 1.190 1.260 1.350 1.400 1.460 1.760 2.020
2.020 2.070 2.090 2.230 2.260 2.460 2.540 2.620 2.640 2.690 2.690 2.750 2.830 2.870 3.020
3.250 3.310 3.360 3.360 3.480 3.520 3.570 3.640 3.700 3.820 3.880 4.180 4.230 4.260 4.330
4.340 4.400 4.500 4.510 4.870 4.980 5.060 5.090 5.170 5.320 5.320 5.340 5.410 5.410 5.490
5.620 5.710 5.850 6.250 6.540 6.760 6.930 6.940 6.970 7.090 7.260 7.280 7.320 7.390 7.590
7.620 7.630 7.660 7.870 7.930 8.260 8.370 8.530 8.650 8.660 9.020 9.220 9.470 9.740 10.06
10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07 12.63 13.11 13.29 13.80 14.24
14.76 14.77 14.83 15.96 16.62 17.12 17.14 17.36 18.10 19.13 20.28 21.73 22.69 23.63 25.74
25.82 26.31 32.15 34.26 36.66 43.01 46.12 79.05.

The fit of the data set is compared with the sub models of the ETF distribution and
the competitive models namely, Kumaraswamy Fréchet(KF) distribution, transmuted
Marshall-Olkin Fréchet(TMOF) distribution and Weibull Fréchet(WF) distribution. The
pdfs of these distributions are, respectively:

KF: f (x) = abβθβx−β−a e−a( θx )
β(1− e−a( θx )

β)b−1, x > 0;

TMOF: f (x) = αβσβx−β−1e−(
σ
x )
β

(α+(1−α)e−a( θx )
β
)2

�

1+λ− 2λe−a( θx )
β

α+(1−α)e−a( θx )
β

�

, x > 0;

WF: f (x) = abβαβx−β−1e−b ( αx )
β(1− e−b ( αx )

β)−b−1e−a(e−b ( αx )
β−1)−b

, x > 0.

Descriptive statistics of the data set are given in Table 3.

TABLE 3
Descriptive statistics of the remission times (in months) of 128 bladder cancer patients.

Descriptive Statistics
Sample size(n) 128.000
Mean 9.366
SD 10.508
Minimum 0.080
Maximum 79.050
Skewness 3.326
Kurtosis 16.154

The total time on test (TTT) curve of the given data set is plotted to obtain the em-
pirical behavior of the hazard rate function. Figure 3, show that the hazard rate function
of the data set is an upside-down bathtub shape. Also, the data set is highly positively
skewed and leptokurtic and hence we choose to fit the ETF distribution for the given
data set.
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Figure 3 – Empirical TTT plot of the data set.

The estimates of the unknown parameters are obtained by the maximum-likelihood
estimation method. To compare the distributions we consider the criteria like, Kol-
mogorov -Smirnov (K-S) statistic (the distance between the empirical cdf’s and the fit-
ted cdf’s), Akaike information criterion (AIC), Bayesian information criterion (BIC),
corrected Akaike information criterion (CAIC), Cramér - von Mises criterion (W*)
and Anderson - Darling criterion (A*). The best distribution corresponds to lower
-logL, AIC, BIC, CAIC, K-S distance, A*, W* statistics and higher p value. Here,
AIC=−2 log L+ 2k, CAIC=−2 log L+ ( 2kn

n−k−1 ) and BIC=−2 log L+ k log n where L
is the likelihood function evaluated at the maximum likelihood estimates, k is the num-
ber of parameters and n is the sample size. The K-S distance, Dn = supx |F (x)− Fn(x)|,
where, Fn(x) is the empirical distribution function. Let F (x;e) be the cdf and the form
of F is known but e is unknown. Then the statistics W* and A* are computed as follows:
(i) compute ξi = F (xi ; ê)where the xi ’s are in ascending order; (ii) compute xi =φ

−1(ξi ),
where φ(.) is the normal cdf and φ−1(.) is its inverse; (iii) compute yi =φ((xi − x̄)/sx ),
where x̄ = 1

n
∑n

i=1 xi and s2
x =

1
n−1

∑n
i=1(xi − x̄)2; (iv) calculate

W 2 =
n
∑

i=1

�

yi −
2i − 1

2n

�2

+
1

12n

and

A=−n− 1
n

n
∑

1=1

�

(2i − 1) log(yi )+ (2n+ 1− 2i) log(1− yi )
�

;
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(v) W ∗ =W 2(1+ 0.5
n ) and A∗ =A2(1+ 0.75

n +
2.25
n2 ), see Chen and Balakrishnan (1995).

TABLE 4
The parameter estimates with standard error (SE) and -log(likelihood).

Model ML estimates(SE) -log L
F α̂= 0.752(0.040), β̂= 3.256(0.410) 444.001

TMOF α̂= 2.711(0.630), β̂= 0.795(0.090),
σ̂ = 0.445(0.150), λ̂=−0.999(0.030)

438.799

TGF α̂= 0.836(0.050), β̂= 1.707(0.220),
λ̂=−0.856(0.090)

436.678

KF â = 1.969(0.210), b̂ = 54.159(19.650),
β̂= 0.241(0.030), θ̂= 168.832(16.430)

412.473

WF α̂= 118.595(34.540), β̂= 0.209(0.010),
â = 36.738(7.850), b̂ = 2.377(0.100)

411.511

ETF α̂= 0.323(0.040), β̂= 53.030(37.330),
θ̂= 31.519(17.930), λ̂=−0.966(0.030)

410.833

TABLE 5
Goodness of fit statistics.

Model AIC CAIC BIC A* W* K-S p-value
F 892.002 892.098 897.706 6.121 0.980 0.427 2.2x10−16

TMOF 885.599 885.924 897.007 6.859 1.146 0.155 0.004
TGF 879.356 879.549 887.912 4.588 0.698 0.124 0.039
KF 832.946 833.271 844.354 0.591 0.085 0.053 0.865
WF 831.023 831.348 842.431 0.411 0.063 0.055 0.839
ETF 829.666 829.991 841.074 0.236 0.030 0.039 0.989

The values in Table 4 and Table 5 show that the ETF distribution leads to better fit
compared to the other five models. Figure 4, show the fitted cdfs with the empirical
distribution of the data set.

The LR test statistic to test the hypothesis H0 : θ= 1 versus H1 : θ 6= 1 for the given
data set isω = 51.69> 3.841= χ 2

(1,0.05) with p value 6.499X 10−13. So we reject the null
hypothesis.
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Figure 4 – Fitted cdf plots and the empirical distribution of the data set.

6. CONCLUSION

In this paper, we propose a new four-parameter model named as the exponential trans-
muted Fréchet (ETF) distribution, which extends the Fréchet distribution. We study
some of its mathematical and statistical properties. The expressions for the quantile
function, moments, moment generating function and order statistics are derived. The
model parameters are estimated using maximum likelihood estimation method and a
simulation study to illustrate the performance of the method is presented. The new
distribution was applied to a real data set to show its flexibility for data modelling.
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SUMMARY

A new generalization of the Fréchet distribution is introduced and studied. Its structural proper-
ties including the quantile function, random number generation, moments, moment generating
function and order statistics are investigated. The unknown parameters of the model are estimated
using maximum likelihood estimation method and a simulation study is carried out to check the
performance of the method. The new model is applied to a real data set to prove empirically its
flexibility.

Keywords: Fréchet distribution; Hazard rate function; Maximum likelihood estimation; Mo-
ments; T-X family of distributions.


