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BERNSTEIN-TYPE APPROXIMATION OF SMOOTH FUNCTIONS 

Andrea Pallini 

1. INTRODUCTION

The Bernstein polynomials are generally used for the approximation of con-
tinuous functions, uniformly, on a closed interval of interest. The Bernstein poly-
nomials were introduced to provide a simple proof of the Weierstrass approxima-
tion theorem. See Lorentz (1986), chapter 1, and Pinkus (2000). The Bernstein 
polynomials are worth of being applied to practical contexts, if they are able to 
agree with a reasonable number of derivatives of the function to approximate. In 
any case, the Bernstein polynomials can be regarded as a relevant unifying con-
cept in approximation theory. See also Korovkin (1960), chapter 1, Davis (1963), 
chapter 6, Feller (1971), chapter 7, Rivlin (1981), chapter 1, Cheney (1982), chap-
ters 1 to 4, and Timan (1994), chapter 1. Here, following the Bernstein polynomi-
als, we propose new Bernstein-type approximations based on the binomial distri-
bution and the multivariate binomial distribution. The Bernstein-type approxima-
tions can be viewed as the generalizations of the Bernstein polynomials obtained 
by considering a convenient approximation coefficient in linear kernels. The 
Bernstein-type approximations are shown to be uniformly convergent in the 
sense of Weierstrass. The Bernstein-type approximations are shown to yield a de-
gree of approximation that is better than the degree of approximation of the 
Bernstein polynomials. 

In section 2, we overview the main theoretical features of the Bernstein poly-
nomials, focussing on the binomial distribution. We propose the Bernstein-type 
approximations. In section 3, we study the multivariate Bernstein polynomials 
that are defined by the multivariate binomial distribution. We propose the multi-
variate Bernstein-type approximations. In section 4, we study the degrees of ap-
proximation by the Bernstein polynomials and the Bernstein-type approxima-
tions. In section 5, we study the Bernstein-type estimates for smooth functions of 
population means. In section 6, we discuss the results of a simulation study on 
examples of smooth functions of means. Finally, in section 7, we conclude the 
contribution with some remarks. 

We refer to Serfling (1980), Barndorff-Nielsen and Cox (1989), and Sen and 
Singer (1993), chapter 3, for asymptotics and results in classical theory of statisti-
cal inference. We also refer to Aigner (1997), for results on combinatorial theory. 
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2. BINOMIAL DISTRIBUTION

2.1. Bernstein polynomials

Let m  be the space of polynomials ( )P x  of degree at most m , for all real 

numbers x . Let g  be a bounded, real-valued function defined on the closed in-

terval [0,1] . The Bernstein polynomial ( ; )mB g x  of order m  for the function g

is defined as 
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where m  is a positive integer, and [0,1]x . See Lorentz (1986), chapter 1. Point 

x  in (1) works as a probability, in the binomial distribution, where [0,1]x . It is 

seen that ( ; )m mB g x , for every [0,1]x .

The Bernstein polynomial ( ; )mB g x , where [0,1]x , is a well known linear 

positive operator. The general approximation theory for the Bernstein polynomial 

( ; )mB g x  as a linear positive operator, where [0,1]x , is provided by Korovkin 

(1960), chapters 1 to 4. See also Appendix (8.1).  

The Bernstein polynomial ( ; )mB g x , where [0,1]x , was introduced to prove 

the Weierstrass approximation theorem. See Pinkus (2000). In particular, if ( )g x

is continuous on [0,1]x , then we have that 

lim ( ; ) ( )m
m

B g x g x , (2) 

uniformly at any point [0,1]x . The basic proofs of the uniform convergence 

(2) are detailed in Rivlin (1981), chapter 1, and Lorentz (1986), chapter 1. See also 
Korovkin (1960), chapters 1 to 4, Davis (1963), chapter 6, Feller (1971), chapter 
7, and Cheney (1982), chapters 1 to 4. 

2.2. Bernstein-type approximations

The Bernstein polynomial ( ; )mB g x  is given by (1), where [0,1]x . The Bern-

stein-type approximation ( )( ; )s
mB g x  of order m  for the function ( )g x  is defined as 
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where 1/2s  is a convenient approximation coefficient, m  is a positive inte-

ger, and [0,1]x . It is seen that ( )( ; )s
m mB g x , where 1/2s , for every 

[0,1]x .
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The Bernstein polynomial ( ; )mB g x  can be obtained as ( 0 )( ; )mB g x , by setting 

0s  in the definition (3) of ( )( ; )s
mB g x , for every [0,1]x .

The Bernstein-type approximation ( )( ; )s
mB g x , where 1/2s , and [0,1]x ,

is a linear positive operator, with the properties outlined in Appendix (8.1). 

If ( )g x  is continuous on [0,1]x , then we have that ( )( ; ) ( )s
mB g x g x ,

where 1/2s  is fixed, as m , uniformly at any point [0,1]x . In Ap-

pendix (8.2), under the condition 1/2s , we provide a proof of this uniform 

convergence. 

The uniform convergence (2) of the Bernstein polynomial ( ; )mB g x , for every 

[0,1]x , can also be proved by setting 0s  in ( )( ; )s
mB g x , given by (3), for 

every [0,1]x , in the proof in Appendix (8.2). 

3. MULTIVARIATE BINOMIAL DISTRIBUTION

3.1. Multivariate Bernstein polynomials

Let g  be a bounded, real-valued function defined on the closed k-dimensional 

cube [0,1]k . We let 1x ( , , )T
kx x , where x [0,1]k . The multivariate Bern-

stein polynomial m ( ; x)B g  for the function g  is defined as 
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where 1m ( , , )T
km m  are positive integers, and x [0,1]k . See Lorentz (1986), 

chapter 2. Points 1 , , kx x  in (4) work as probabilities, in a multivariate binomial 

distribution characterized by the product of k  mutually independent binomial 

distributions, where x [0,1]k . It is seen that the multivariate Bernstein polyno-

mial m ( ; x) mB g , where 
1

k

i

i

m m  is the total degree in m ( ; x)B g , for every 

x [0,1]k .

The multivariate Bernstein polynomial m ( ; x)B g , is a linear positive operator, 

where x [0,1] k . See Appendix (8.1). 

The definition of the multivariate Bernstein polynomial m ( ; x)B g , where 

x [0,1]k , is suggested in Lorentz (1986), chapter 2, without proving its uniform 
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convergence. It can be shown that the multivariate Bernstein polynomial 

m ( ; x)B g  converges to (x)g  uniformly, at any k -dimensional point of continuity 

x [0,1]k , as im , where 1, ,i k .

3.2. Multivariate Bernstein-type approximations

The multivariate Bernstein polynomial m ( ; x)B g  is given by (4), where 

x [0,1]k . The multivariate Bernstein-type approximation ( )
m ( ; x)sB g  for the func-

tion (x)g  is defined as 

1

1

1
1 1 1 1 1

( )
m

0 0 1

( )

( ; x)

( )

k

k

s

mm
s

v v s
k k k k k

m m v x x

B g g

m m v x x

1 1 11

1 1
1

(1 ) (1 )k k k
k v m v v m v

k k

k

m m
x x x x

v v
, (5) 

where 1/2s  is a convenient approximation coefficient, 1m ( , , )T
km m  are 

positive integers, and x [0,1]k . It is seen that the multivariate Bernstein-type 

approximation ( )
m ( ; x)s

mB g , where 
1

k

i

i

m m  is the total degree in ( )
m ( ; x)sB g ,

where 1/2s , for every x [0,1]k .

The multivariate Bernstein polynomial m ( ; x)B g  can be obtained as ( 0 )
m ( ; x)B g ,

by setting 0s  in the definition (5) of ( )
m ( ; x)sB g , for every x [0,1]k .

The multivariate Bernstein-type approximation ( )
m ( ; x)sB g  , where 1/2s ,

and x [0,1]k , is a linear positive operator, with the properties outlined in Ap-

pendix (8.1). 

The multivariate Bernstein-type approximation ( )
m ( ; x)sB g  converges to (x)g

uniformly, where 1/2s  is fixed, at any k -dimensional point of continuity 

x [0,1]k , as im , where 1, ,i k . In Appendix (8.2), under the condition 

1/2s , we provide a proof of this uniform convergence. 

The uniform convergence of the multivariate Bernstein polynomial m ( ; x)B g ,

for every x [0,1]k , can be proved by setting 0s  in ( )
m ( ; x)sB g , given by (5), for 

every x [0,1]k , in the proof in Appendix (8.2). 
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4. DEGREE OF APPROXIMATION

4.1. Bernstein polynomials

Let ( )  be the modulus of continuity of the real-valued function g , for 

every 0 . The modulus of continuity ( )  of the function ( )g x , where 

[0,1]x , is defined as the maximum of 0( ) ( )g x g x , for 0x x , where 

0 , [0,1]x x . If the function g  is continuous, then ( ) 0 , as 0 .

Setting 1/2m , for every [0,1]x , it can be shown that the Bernstein 

polynomial ( ; )mB g x , given by (1), has degree of approximation 

2 1/21
( ; ) ( ) 1 ( )

4
mB g x g x m m . (6) 

We let 

1/2

2

1

x
k

i

i

x , where x [0,1]k . The modulus of continuity ( )

of the real-valued function (x)g , x [0,1]k , is defined as the maximum of 

0(x ) (x)g g , for 0x -x , where 0x , x [0,1]k . If the function g  is continu-

ous, then ( ) 0 , as 0 .

Setting 1/2m , for every x [0,1]k , it can be shown that the multivariate 

Bernstein polynomial m (g;x)B  , given by (4), has degree of approximation 
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where 
1

k

i

i

m m .

We can observe that the coefficient 21 /4m  in the upper bound (6) corre-

sponds to the coefficient 1 1

1

1 /4
k

i

i

m m  in the upper bound (7), by consider-

ing the dimension 1k  in the upper bound (7). 

4.2. Bernstein-type approximations

In Appendix (8.3), for every [0,1]x , it is shown that the Bernstein-type ap-

proximation ( )( ; )s
mB g x , given by (3), where 1/2s , has degree of approxima-

tion 
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( ) 1 2 1 1/2
( )

1
( ; x) (x) 1
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mB g g m m m . (8) 

The upper bound (6) can be obtained from the upper bound (8), by setting 
0s .

In Appendix (8.3), for every x [0,1]k , it is also shown that the multivariate 

Bernstein-type approximation ( )
m ( ; x)sB g , given by (5), where 1/2s , has de-

gree of approximation 

( ) 1 2 1 1/2
m
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where 
1

k

i

i

m m .

The upper bound (7) can be obtained from the upper bound (9), by setting 
0s . We can observe that the coefficient in the upper bound (8) corresponds to 

the dimension 1k  for the coefficient in the upper bound (9). 

4.3. A comparison

Given a convenient value for the approximation coefficient s , the Bernstein-

type approximations ( )( ; )s
mB g x  and ( )

m ( ; x)sB g , given by (3) and (5), where 

1/2s , can typically outperform the corresponding Bernstein polynomials 

( ; )mB g x  and m ( ; x)B g , given by (1) and (4), for any function g  to approximate, 

for every [0,1]x  and x [0,1]k , respectively. 

The value for s , where 1/2s , can only modify the coefficients in the de-

grees of approximation (8) and (9), without affecting their modulus of continuity 
1/2( )m , for any fixed m  and any fixed 1m ( , , )T

km m , respectively. 

Very large values of s  do not bring any advantage, with typical examples of 

application of the Bernstein-type approximations ( )( ; )s
mB g x  and ( )

m ( ; x)sB g , de-

fined by (3) and (5), where 1/2s , [0,1]x  and x [0,1]k . Convergence to 

unity of the coefficients that determine the degrees of approximation (8) and (9) 
is rather fast, as s  increases. 

In Figure 1 we compare the Bernstein polynomial ( ; )mB g x , given by (1), with 

the Bernstein-type approximation ( )( ; )s
mB g x , given by (3), where 2m , the 

function g  is defined as 4( )g x x , 3( )g x x , and 2( )g x x , for values of x

in the interval [0.01,0.99] , and s 0.5,0.6,0.8,1.1,1.5, 2 . The value 2s  gives 

the best performance; the value 0.5s  gives the worst performance. The per-
formance of the Bernstein-type approximation (3) can be even more substantial 
for values of m  larger than the chosen value 2m .
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Figure 1 – The difference between ( ; ) ( )mB g x g x  (dotted line), and the differences 
( )( ; ) ( )s
mB g x g x , (solid lines), for the Bernstein polynomial ( ; )mB g x , given by (1), and the Bern-

stein-type approximations ( )( ; )s
mB g x , given by (3), for 500  equidistant values of x  that range 

in the interval [0.01,0.99] , where s 0.5,0.6,0.8,1.1,1.5, 2 , and 2m ; 4( )g x x , panel (a), 
3( )g x x , panel (b), 2( )g x x , panel (c). 
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Figure 2 – The difference between ( ; ) ( )mB g x g x , (dotted line), and the differences 
( )( ; ) ( )s
mB g x g x , (solid lines), for the Bernstein polynomial ( ; )mB g x , given by (1), and the 

Bernstein-type approximations ( )( ; )s
mB g x , given by (3), where s 0.5,0.6,0.8,1.1,1.5, 2 , and 

2( )g x x x , for 500  equidistant values of x  that range in the interval [0.01,0.99] ; 2m ,

panel (a), 3m , panel (b), 5m , panel (c). 
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In Figure 2, we show the performance of the Bernstein-type approximation 
( )( ; )s
mB g x  given by (3), where the function g  is defined as 2( )g x x x , for 

values of x  in the interval [0.01,0.99] , and s 0.5,0.6,0.8,1.1,1.5, 2 . The Bern-

stein-type approximation ( )( ; )s
mB g x , given by (3), clearly performs better than the 

Bernstein polynomial ( ; )mB g x , given by (1), as m  increases, from 2m  to 

5m , for values of x  in the interval [0.01,0.99] , and s 0.5,0.6,0.8,1.1,1.5, 2 .

5. ESTIMATION OF SMOOTH FUNCTIONS OF MEANS

5.1. Bernstein-type estimators

The Bernstein-type approximations ( )( ; )s
mB g x  and ( )

m ( ; x)sB g , given by (3) and 

(5), respectively, where [0,1]x  and x [0,1]k , can be used for estimating 

smooth functions of population means in the statistical inference from a random 
sample of n  independent and identically distributed (i.i.d.) random observations. 

Let X  be a univariate random variable with values [0,1]x , with distribution 

function F , and finite mean [ ]E X . We want to estimate a population char-

acteristic  of the form ( )g , where g is a smooth function 1: [0,1]g R .

The natural estimator of  is ˆ ( )g x , where x  is the sample mean, calculated 

on a random sample of n  i.i.d. observations jX , 1, ,j n , of X. That is, 

1

1

n

j

j

x n X . An alternative estimator of ( )g  can be obtained as the 

Bernstein-type estimator ( )( ; )s
mB g x  defined as 

( ) 1

0

( ; ) ( ( ) ) (1 )
m

v m vs s
m

v

m
B g x g m m v x x x x

v
, (10) 

where 1/2s . The Bernstein-type estimator (10) follows from the definition 

(3) of ( )( ; )s
mB g x , by substituting the argument [0,1]x  with the sample mean 

x , where x  ranges in [0,1] .

Let X  be a k -variate random variable with values x [0,1]k , where 

1X ( , , )T
kX X , with distribution function F , and finite k -variate mean 

[X]E , 1( , , )T
k . We want to estimate ( )g , where 

1: [0,1]k
g R . The natural estimator of  is ˆ ( x )g , where 1x ( , , )T

kx x

is the k -variate sample mean on a random sample of n  i.i.d. observations iX ,
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1, ,i n , of X , 1

1

n

i ij

j

x n X , 1, ,i k . An alternative estimator of 

( )g  can be obtained as the multivariate Bernstein-type estimator ( )
m ( ; x )sB g

defined as 
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where 1/2s . The multivariate Bernstein-type estimator (11) follows the defi-

nition (5) of ( )
m ( ; x)sB g , by substituting the argument x [0,1]k  with the sample 

x , where x  ranges in [0,1]k .

5.2. Orders of error of Bernstein-type estimators

In Appendix (8.4), it is shown that the Bernstein-type estimator ( )( ; )s
mB g x ,

given by (10), where 1/2s , can be an accurate substitute for the natural esti-

mator ( )g x . In particular, if we consider the sample size n as fixed, then we have 

that 

( ) 2 1( ; ) ( ) ( )s s
mB g x g x O m , (12) 

where 1/2s , as m .

In Appendix (8.4), it is also shown that the Bernstein-type estimator ( )
m ( ; x )sB g ,

given by (11), where 1/2s , and 1m ( , , )T
km m , can be an accurate substi-

tute for the natural estimator ( x )g . In particular, if we consider the sample size n

as fixed, then we have that 

( ) 2 1
m

1

( ; x ) ( x ) ( )
k

s s
i

i

B g g O m , (13) 

where 1/2s , as im , 1, ,i k .

We know that 1/2( )px O n , as n . We also know that 

1/2( ) ( ) ( )pg x g O n , as n .
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In Appendix (8.4), it is shown that the Bernstein-type estimator ( )( ; )s
mB g x ,

given by (10), where 1/2s , is a consistent estimator of ( )g , as m ,

and n . In particular, it is shown that 

( ) 2 1 1/2( ; ) ( ) ( ) ( )s s
m pB g x g O m O n , (14) 

where 1/2s , as m , and n .

We know that 1/2
px O ( )n , where 1/2( )i i px O n , for every 

1, ,i k , as n . We also know that 1/2( x ) ( ) ( )pg g O n , as n .

In Appendix (8.4), it is also shown that the multivariate Bernstein-type estima-

tor ( )
m ( ; x )sB g , given by (11), where 1/2s , and 1m ( , , )T

km m , is a consis-

tent estimator of ( )g , as im , where 1, ,i k , and n . In particular, 

it is shown that 

( ) 2 1 1/2
m

1

( ; x ) ( ) ( ) ( )
k

s s
i p

i

B g g O m O n , (15) 

where 1/2s , as im , 1, ,i k , and n .

5.3. Asymptotic normality of Bernstein-type estimators

The Bernstein-type estimator ( )( ; )s
mB g x  is defined by (10), where 1/2s ,

and m  is a positive integer. We denote by 2  the asymptotic variance of 
1/2 ( )n g x , as n . That is, 

2 2 2{ '( )} [( ) ]g E X ,

where 1'( ) ( ) ( )g x dx dg x , [0,1]x . We suppose that 2 1 1/2sm n . Then, the 

distribution of the Bernstein-type estimator ( )( ; )s
mB g x  is asymptotically normal, 

1/2 ( ) 2{ ( ; ) ( )} (0, )ds
mn B g x g N , (16) 

where 1/2s , as m , and n . See Appendix (8.5). 

The Bernstein-type estimator ( )
m ( ; x )sB g  is defined by (11), where 1/2s ,

and 1m ( , , )T
km m  are positive integers. We denote by 2  the asymptotic 

variance of 1/2 ( x )n g , as n . That is, 

1 12
1 1x x

1 1

( ) ( , , , , ) ( ) ( , , , , )

[( )( )] .

k k

i i k j j k

i j

i j

x g x x x x g x x x

E X X
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We suppose that 2 1 1/2s
im n , for every 1, ,i k . Then, the distribution of 

the Bernstein-type estimator ( )
m ( ; x )sB g  is asymptotically normal, 

1/2 ( ) 2
m{ ( ; x ) ( )} (0, )dsn B g g N , (17) 

where 1/2s , as im , 1, ,i k , and n . See Appendix (8.5). 

6. A SIMULATION STUDY

In Figure 3, we report on a small Monte Carlo experiment concerning with the 

effectiveness of the Bernstein-type estimator ( )( ; )s
mB g x , given by (10), where 

3,4,4,5m , and 0.5,0.5,0.6, 2s , for approximating the smooth function of 

means 2( )g x x x . Independent samples of size 4,6,10,16n , from the uni-

form distribution on the interval (0,1) , were simulated. The values of the Bern-

stein-type estimator ( )( ; )s
mB g x  were practically indistinguishable from the values 

of the natural estimator ( )g x . We denote by 2ˆ
n  the Monte Carlo variance of 

(a)

5 10 15 20

-0.01

0.0

0.01

0.02

0.03

0.04

(b)

5 10 15 20

-0.01

0.0

0.01

0.02

0.03

0.04

(c)

5 10 15 20

-0.01

0.0

0.01

0.02

0.03

0.04

(d)

5 10 15 20

-0.01

0.0

0.01

0.02

0.03

0.04

Figure 3 – The difference ( )( ; ) ( )s
mB g x g x , (symbol ), where the Bernstein-type estimates ( )( ; )s

mB g x

are obtained as (10), and 2( )g x x x , for 20  samples of size n , from the uniform distribution on 

the interval (0,1) ; 0.5s , 3m , and 4n , in panel (a), 0.5s , 4m , and 6n , in panel (b), 

0.6s , 4m , and 10n , in panel (c), and 2s , 5m , and 16n , in panel (d). 
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the Bernstein-type estimator ( )( ; )s
mB g x , given by (10). The variance of 

( 0.5) 2
3 ( ; )B x x x  was 2

4
ˆ 0.070565 , the variance of ( 0.5) 2

4 ( ; )B x x x  was 
2
6

ˆ 0.056010 , the variance of ( 0.6) 2
4 ( ; )B x x x  was 2

10
ˆ 0.038841, and the 

variance of ( 2 ) 2
5 ( ; )B x x x  was 2

16
ˆ 0.018470 .

In Figure 4, we also report on an equivalent Monte Carlo experiment concern-

ing with the effectiveness of the multivariate Bernstein-type estimator ( )
m ( ; x )sB g ,

given by (11), where 1 2 3m m , 1 2 4m m , 1 2 4m m , and 1 2 5m m ,

and 0.5,0.5,0.6, 2s , for approximating the ratio of means 1
2 1( x ) ( )g x x . In-

dependent samples, of size 4,6,10,16n , from a bivariate distribution with in-

dependent uniform marginals on the interval (0,1) , were simulated. The multi-

variate Bernstein-type estimator ( )
m ( ; x )sB g  practically took the same values as 

its natural counterpart ( x )g . We denote by 2ˆ
n  the Monte Carlo variance 

of the multivariate Bernstein-type estimator ( )
m ( ; x )sB g , given by (11). The 

variance of (0.5) 1
2 1(3,3)

(( ) ; x )TB x x  was 2
4

ˆ 0.629584 , the variance of 
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Figure 4 – The difference ( )
m ( ; x ) ( x )sB g g , (symbol ), where the Bernstein-type estimates 

( )
m ( ; x )sB g  are obtained as (11), and 1

2 1( x ) ( )g x x , for 20  samples of size n , from independent 

uniform distributions on the interval (0,1) ; 0.5s , 1 2 3m m , and 4n , in panel (a), 0.5s ,

1 2 4m m , and 6n , in panel (b), 0.6s , 1 2 4m m , and 10n , in panel (c), and 2s ,

1 2 5m m , and 6n , and 16n , in panel (d). 
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( 0.5) 1
2 1(4 ,4 )

(( ) ; x )TB x x  was 2
6

ˆ 0.106994 , the variance of ( 0.6) 1
2 1(4 ,4 )

(( ) ; x )TB x x  was 

2
10

ˆ 0.101995 , and the variance of ( 2 ) 1
2 1(5,5)

(( ) ; x )TB x x  was 2
16

ˆ 0.064750 .

7. CONCLUDING REMARKS

1) Alternative definitions for the multivariate Bernstein polynomial m ( ; x)B g ,

given by (4), where x [0,1]k , and the multivariate Bernstein-type approximation 
( )
m ( ; x)sB g , given by (5), where 1/2s , and x [0,1]k , can be obtained by  

replacing the multivariate binomial distribution by other multivariate discrete dis-
tributions. The multinomial distribution, the multinomial-related distributions, 
and the other multivariate discrete distributions are reviewed in Johnson, Kotz 
and Balakrishnan (1997), chapters 35 to 42. See also Feller (1968), chapter 6, 
Johnson and Kotz (1977), chapter 1 and 2, and Sveshnikov (1978), chapters 1  
and 2. 

2) In the multivariate Bernstein-type approximation ( )
m ( ; x)sB g , given by (5), 

where 1/2s , and x [0,1]k , we can use a different approximation coefficient 

for each component. More precisely, we can use 1s ( , , )T
ks s  in a straight-

forward generalization (s)
m ( ; x)B g  of the multivariate Bernstein polynomial 

m ( ; x)B g  given by (4), where x [0,1] k , following the definition (5) of ( )
m ( ; x)sB g ,

where 1/2s , and x [0,1]k .

3) The Bernstein-type approximations ( )( ; )s
mB g x  and ( )

m ( ; x)sB g , given by (3) 

and (5), respectively, where 1/2s , [0,1]x , and x [0,1] k , can be studied in 

order to approximate derivatives of functions, monotone functions, convex func-
tions, functions of bounded variation, discontinuous functions, and integrable 
functions. See Lorentz (1986), chapters 1 and 2. 

4) The Bernstein polynomials ( ; )mB g x  and m ( ; x)B g  and the Bernstein-type 

approximations ( )( ; )s
mB g x  and ( )

m ( ; x)sB g , where 1/2s , given by (1) and (4), 

and (3) and (5), admit extensions on bounded intervals [ , ]x , and bounded 

regions 1 1x [ , ] [ , ]k k , and extensions on unbounded intervals 

[ , )x , and unbounded regions 1x [ , ) [ , )k . See Lorentz 

(1986), chapter 2. 

5) In the Bernstein-type approximations ( )( ; )s
mB g x  and ( )

m ( ; x)sB g , given by (3) 

and (5), where 1/2s , and x [0,1]k , the linear kernels 1( )sm m v x x

and 1( )s
i i i i im m v x x  can be substituted by nonlinear kernels ( )( , ; )sh m v x



A. Pallini 182

and ( )( , ; )s
i i ih m v x , where 1/2s , [0,1]x , and 0,1, ,i iv m , 1, ,i k ,

1x ( , , ) [0,1]T k
kx x .

6) Following Babu, Canty and Chaubey (2002), the Bernstein-type approxima-

tion ( )( ; )s
mB g x , given by (3), where 1/2s , and [0,1]x , can be used for dis-

tribution and density estimation. Let nF  be the empirical distribution function on 

a random sample of n  i.i.d. observations iX , 1, ,i n , from a distribution 

function F , 1

1

( ) ( )
n

n i

i

F x n I X x , [0,1]x , where ( )I A  denotes the indi-

cator function of the set A . The Bernstein-type estimator of F  can be defined 

as ( )( ; )s
m nB F x , 1/2s , [0,1]x . Let f  be the density of F . The Bernstein-

type estimator of f  can be defined as ( )
1( ; )s

m nm B f x , 1/2s , [0,1]x , where 
1 1 1( ) ( ( 1)) ( )n n nf m v F m v F m v , 0,1, ,v m , and (0) 0nf .

7) The Bernstein-type approximations ( )( ; )s
mB g x  and ( )

m ( ; x )sB g , given by (10) 

and (11), where 1/2s , respectively, can be regarded as examples of random 

functions. See Sveshnikov (1978), chapter 7, and Gikhman and Skorokhod 
(1996), chapter 4. 

8. APPENDIX

8.1. Basic properties of the Bernstein-type approximations (3) and (5)

The Bernstein-type approximations ( )( ; )s
mB g x  and ( )

m ( ; x)sB g , given by (3) and 

(5), where 1/2s , and [0,1]x  and x [0,1]k , are linear positive operators. 

Let  be a finite constant. Let g , 1g , and 2g  be functions, ( )g x , 1( )g x , and 

2( )g x , [0,1]x . We have 

( ) ( )( ; ) ( ; )s s
m mB g x B g x ,
( ) ( ) ( )

1 2 1 2( ; ) ( ; ) ( ; )s s s
m m mB g g x B g x B g x ,

[0,1]x . If 1 2( ) ( )g x g x , for all [0,1]x , we have 

( ) ( )
1 2( ; ) ( ; )s s

m mB g x B g x ,

[0,1]x . Multivariate versions of these properties hold for ( )
m ( ; x)sB g , where 

1/2s , g(x) , and x [0,1]k . The corresponding properties for the Bernstein 

polynomials ( ; )mB g x  and m ( ; x)B g , given by (1) and (4), where [0,1]x  and 

x [0,1] k , can also be obtained by setting 0s  above. 
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8.2. Uniform convergence of the Bernstein-type approximations (3) and (5)

The uniform norm g  of the function ( )g x , where [0,1]x , is defined as 

0,1
max ( )

x
g g x .

The Bernstein-type approximation ( )( ; )s
mB g x , where 1/2s , and [0,1]x , is 

given by (3). We want to show that, given any constant 0 , there exists a posi-

tive integer 0m , such that 

0

( )( ; ) ( )s
mB g x g x , (18) 

for every [0,1]x .

For every [0,1]x , the Bernstein-type approximation ( )(1; )s
mB x  is 

( )(1; ) 1s
mB x . (19) 

We define the function 1( )x  as 1( )x x , and the function 2( )x x  as 
2

2( )x x . The Bernstein-type approximation ( )
1( ( ) ; )s

mB x x  is 

( )
1( ( ) ; )s

mB x x x . (20) 

The Bernstein-type approximation ( )
2( ( ); )s

mB x x  is 

2( ) 1
2

0

( ( ); ) { ( ) } (1 )
m

m vs s v
m

v

m
B x x m m v x x x x

v

2 1 2(1 )sm x x x . (21) 

Suppose that g M . We take 0 [0,1]x . We have 

02 ( ) ( ) 2M g x g x M , (22) 

where 0 , [0,1]x x . The function g  is continuous; given 1 0 , there exists a 

constant 0 , such that 

1 0 1( ) ( )g x g x , (23) 

for 0x x , and 0 , [0,1]x x . From (22) and (23), it follows that 

2 2
1 0 0 1 02 2

2 2
( ) ( ) ( ) ( )

M M
x x g x g x x x , (24) 
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for 0 , [0,1]x x . If 0x x , (23) implies (24), 0 , [0,1]x x . If 

0x x , then 2 2
0( ) 1x x , and (22) implies (24), 0 , [0,1]x x . Fol-

lowing Appendix (8.1), (24) becomes 

2( ) ( )
1 0 12

2( )
02

2
( ( ) ; ) ( ; ) ( )

2
( ( ) ; )

s s
m m

s
m

M
B x x x B g x g x

M
B x x x

, (25) 

for 0 , [0,1]x x . We observe that 2 2 2
0 0 0( ) 2x x x x x x , 0 , [0,1]x x .

The Bernstein-type approximations ( )(1; )s
mB x , ( )

1( ( ); )s
mB x x , and 

( )
2( ( ); )s

mB x x , given by (19), (20) and (21), imply in (25) that 

2( ) 2 1
0( ( ) ; ) (1 )s s

mB x x x m x x ,

0 , [0,1]x x . That is, 

2( ) 2 1
0(( ) ; ) ( )s s

mB x x x O m ,

as m , [0,1]x . The condition 1/2s  is required for the uniform con-

vergence. In fact, we can observe that 0 (1 ) 1/4x x , [0,1]x . Then, (25) 

becomes 

( ) 2 1
1 2

( ; ) ( )
2

s s
m

M
B g x g x m , (26) 

[0,1]x . Setting 1 /2 , for any 2 1
0 ( )m M , the uniform convergence 

(18) is proved. 

The convergence ( )( ; ) ( )s
mB g x g x , where 1/2s , is uniform, at any point 

of continuity [0,1]x , as m , in the sense that the upper bound (26) for the 

uniform norm does not depend on x , [0,1]x .

The multivariate Bernstein-type approximation ( )
m ( ; x)sB g , where 1/2s , and 

x [0,1]k , is given by (5). We observe that k  is fixed and does not depend on m .

Considering the uniform norm g  of the function (x)g , x [0,1]k , defined as 

x 0,1
max (x)

k
g g .

we want to show that, given any constant 0 , there exist positive integers 

0 01 0m ( , , )T
km m , such that 
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0

( )
m ( ; x) (x)s

B g g , (27) 

for every x [0,1]k .

For every x [0,1]k , the multivariate Bernstein-type approximation ( )
m (1; x)sB

is

( )
m (1; x) 1sB , (28) 

where 1/2s . We define the functions 1
1

(x)
k

i

i

x  and 2
2

1

(x)
k

i

i

x .

The multivariate Bernstein-type approximation ( )
m 1( (x);x)sB  is 

( )
m 1

1

( (x); x)
k

s
i

i

B x , (29) 

and the multivariate Bernstein-type approximation ( )
m 2( (x); x)sB  is 

1

1

2( ) 1
m 2

1 1 1

( (x); x) { ( ) }
k

k

mm k
s s

i i i i i

v v i

B m m v x x

1 1 1
1

1 1
1

(1 ) (1 )k k k
k v m v v m v

k k

k

m m
x x x x

v v

2 1 2

1

(1 )
k

s
i i i i

i

m x x x .  (30) 

Suppose that g M . We take 0 01 0x ( , , ) [0,1]T k
kx x . We observe that 

2 2 2
0 0 0

1

( x x ) ( 2 )
k

i i i i

i

x x x x ,

0x ,x [0,1]k . The uniform convergence (27) follows from the result 

2( ) 2 1
m 0

1

(( x -x ) ; x) (1 )
k

s s
i i i

i

B m x x ,

0x ,x [0,1]k . That is, 
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( ) 2 2 1
m 0

1

(( x -x ) ; x) ( )
k

s s
i

i

B O m ,

as im , where 1, ,i k , 0x ,x [0,1]k . Under the condition 1/2s , the 

convergence ( )
m (g;x) (x)sB g  is uniform at any point of continuity x [0,1]k , as 

im , where 1, ,i k .

The uniform convergence of the Bernstein polynomials ( ; )mB g x  and 

m ( ; x)B g , given by (1) and (4), where [0,1]x  and 0x ,x [0,1]k , can also be ob-

tained by setting 0s  above. 

8.3. Degrees (8) and (9) of approximation by the Bernstein-type approximations (3) and (5)

For every 0 , we denote by 0( , ; )x x  the maximum integer less than or 

equal to 1
0x x , where 0 , [0,1]x x . We recall the definition of modulus of 

continuity ( ) , where 0 . We have 

0 0( ) ( ) ( ){1 ( , ; )}g x g x x x , (31) 

0 , [0,1]x x .

The Bernstein-type approximation ( )( ; )s
mB g x  is given by (3), where 1/2s ,

and [0,1]x . Then, we have 

( ) 1

0

( ; ) ( ) ( ( ) ) ( ) (1 )
m

v m vs s
m

v

m
B g x g x g m m v x x g x x x

v

0
0

( ) {1 ( , ; )} (1 )
m

m vv

v

m
x x x x

v

1 1

0

( ) {1 ( ) } (1 )
m

v m vs

v

m
m m v x x x

v

22 2 2

0

( ) {1 ( ) } (1 )
m

m vs v

v

m
m v mx x x

v

[0,1]x . It follows that 

( ) 2 2 1( ; ) ( ) ( ){1 (1 )}s s
mB g x g x m x x ,

[0,1]x . We observe that 0 (1 ) 1/4x x , [0,1]x . Setting 1/2m , we 

finally have the degree of approximation (8). 
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For every 0 , we denote by 0(x ,x ; )  the maximum integer less than or 

equal to 1
0x x , where 0x , x [0,1]k . We have 

0 0(x ) (x) ( ){1 (x ,x ; )}g g ,

where ( )  is the modulus of continuity, 0 , and 0x , x [0,1]k .

The multivariate Bernstein-type approximation ( )
m ( ; x)sB g  is given by (5), where 

1/2s , and x [0,1]k . We have 

1

1

1
1 1 1 1 1 1

( )
m

0 0 1

( )

( ; x) (x)

( )

k

k

s

mm
s

v v s
kk k k k k

m m v x x x

B g g g g

xm m v x x

1 1 11

1 1
1

(1 ) (1 )k k k
k v m v v m v

k k

k

m m
x x x x

v v

1

1

22 2 2

0 0 1

( ) 1 ( )
k

k

mm k
s

i i i i

v v i

m v m x

1 1 1
1

1 1
1

(1 ) (1 )k k k
k v m v v m v

k k

k

m m
x x x x

v v
,

x [0,1]k . Thus, we have 

( ) 2 2 1
m

1

( ; x) (x) ( ) 1 (1 )
k

s s
i i i

i

B g g m x x ,

x [0,1]k . We can observe that 0 (1 ) 1/4i ix x , 1, ,i k , x [0,1]k . Set-

ting 1/2m , where 
1

k

i

i

m m , we finally have the degree of approximation (9). 

Degrees (6) and (7) of approximation by the Bernstein polynomials ( ; )mB g x

and m ( ; x)B g , given by (1) and (4), where [0,1]x  and x [0,1]k , can be proved 

by setting 0s  above. 

8.4. Orders of error in (12) and (13), and orders of error in probability in (14) and (15)

The Bernstein-type approximation ( )( ; )s
mB g x  is given by (10), where 

1/2s . We consider n  as fixed. Let 1( ) ( ) ( )g x dx dg x  and 
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2 2''( ) ( ) ( )g x dx d g x  be the first two derivatives of the function ( )g x ,

[0,1]x . By Taylor expanding the function 1( ( ) )sg m m v x x  around x , for 

every 0,1, ,v m , we have 

( )

1

0

22 1

0

2 1 3 2

( ; ) ( )

1
'( ) ( ) (1 )

2

1
''( ) ( ) (1 )

2

1
( ) ''( ) (1 ) ( ),

2

s
m

m
v m vs

v

m
v m vs

v

s s

B g x g x

m
g x m m v x x x

v

m
g x m m v x x x

v

g x g x m x x O m

where 1/2s , as m . Order 2 1( )sO m  of error in (12), 1/2s , as 

m , with n  fixed, is thus proved. 

The Bernstein-type approximation ( )
m ( ; x )sB g  is given by (11), where 1/2s .

We consider n  as fixed. By Taylor expanding the function 

1
1 1 1 1 1

1

( )

( )

s

s
k k k k k

m m v x x

g

m m v x x

around 1x ( , , )T
kx x , for every 1, ,i iv m , 1, ,i k , we can prove the 

order 2 1

1

( )
k

s
i

i

O m  of error in (13), 1/2s , as im , where 1, ,i k ,

with n  fixed. 

The Bernstein-type approximation ( )( , )s
mB g x  is given by (10), where 

1/2s . We observe that 1/2( )px O n , as n , and 

2 1( ) ( )px O n , as n . By Taylor expanding the function 

1( ( ) )sg m m v x x  around , for every 0,1, ,v m , we have 
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( )

1

0

22 1

0

2 1 1/2 2

1/2 2

( ; ) ( )

'( ) { ( ) ( )} (1 )

1
''( ) { ( ) ( )} (1 )

2

( )

'( ) ( )

1
''( ){ ( (1 ) ( )) ( ) }

2

( ) ( ) (

s
m

m
v m vs

v

m
v m vs

v

s
p

s
p

B g x g

m
g m m v x x x x

v

m
g m m v x x x x

v

g

g x

g m O n x

g O n O m 1 2 1 1/2 1

2 1 1/2

) ( ) ( )

( ) ( ) ( ),

s
p p

s
p

O m n O n

g O m O n

where 1/2s , as m , and n . Order 2 1 1/2( ) ( )s
pO m O n  of error 

in probability in (14), as m , and n , is thus proved. 

The Bernstein-type approximation ( )
m ( ; x )sB g  is given by (11), where 1/2s .

We consider n  as fixed. By Taylor expanding the function 

1
1 1 1 1 1

1

( )

( )

s

s
k k k k k

m m v x x

g

m m v x x

around 1( , , )T
k , for every 1, ,i iv m , 1, ,i k , we can prove the 

order 2 1 1/2

1

( ) ( )
k

s
i p

i

O m O n  of error in probability in (15), 1/2s , as 

im , where 1, ,i k , and n .

8.5. Asymptotic normality in (16) and (17)

Following (12) and (14), we have 

1/2 ( ) 1/2{ ( ; ) ( )} { ( ) ( )}s
mn B g x g n g x g ,

where 1/2s , as m , and n . We consider the Taylor expansion of 

( )g x  around . An application of the Central Limit Theorem then shows the 

asymptotic normality in (16), as m , and n .
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Following (13) and (15), we have 

1/2 ( ) 1/2
m{ ( ; x ) ( )} { ( x ) ( )}sn B g g n g g ,

where 1/2s , 1m ( , , )T
km m , as im , where 1, ,i k , and n .

We consider the Taylor expansion of ( x )g  around 1( , , )Tk . An applica-

tion of the Central Limit Theorem then shows the asymptotic normality in (17), 

as im , where 1, ,i k , and n .
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RIASSUNTO

Approssimazioni del tipo di Bernstein di funzioni regolari 

Viene proposta e studiata un’approssimazione del tipo di Bernstein per funzioni rego-
lari. Proponiamo un’approssimazione del tipo di Bernstein con definizioni che diretta-
mente applicano la distribuzione binomiale e la distribuzione binomiale multivariata. Le 
approssimazioni del tipo di Bernstein generalizzano i corrispondenti polinomi di Ber-
nstein, considerando definizioni che dipendono da un conveniente coefficiente di appros-
simazione in nuclei lineari. Nelle approssimazioni del tipo di Bernstein, studiamo la con-
vergenza uniforme ed il grado di approssimazione. Vengono anche proposti e studiati 
stimatori del tipo di Bernstein per funzioni regolari di medie nella popolazione.  

SUMMARY

Bernstein-type approximations of smooth functions 

The Bernstein-type approximation for smooth functions is proposed and studied. We 
propose the Bernstein-type approximation with definitions that directly apply the bino-
mial distribution and the multivariate binomial distribution. The Bernstein-type approxi-
mations generalize the corresponding Bernstein polynomials, by considering definitions 
that depend on a convenient approximation coefficient in linear kernels. In the Bernstein-
type approximations, we study the uniform convergence and the degree of approxima-
tion. The Bernstein-type estimators of smooth functions of population means are also 
proposed and studied. 


