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1. INTRODUCTION AND PRELIMINARIES

The reliability function R(t) is defined as the probability of failure-free operation until
time ¢. Thus, if the random variable (rv) X denotes the lifetime of an item or system,
then R(t) = P(X > t). Another measure of reliability under stress-strength set-up is the
probability 2 = P(X > Y), which represents the reliability of an item or system of
random strength X subject to random stress Y. Estimation of 2 = P(X > Y'), when
the random variables (rvs) X and Y follow a specified distribution has been extensively
discussed by many authors in the literature. Some recent contributions on the topic, to
name but a few, can be found in the papers by Chaturvedi and Pathak (2012), Chaturvedi
et al. (2016), Chaturvedi and Kumari (2015), Chaturvedi and Kumari (2017), Chaturvedi
and Kumari (2019).

A number of lifetime models have been proposed for the analysis of life time data
in literature by various authors, see Mann et al. (1974), Lawless, 1982, Martz and Waller
(1982), Sinha (1986), Johnson et al. (1994), Kotz et al. (2003) etc. We know exponen-
tial and Weibull models cover either constant or monotone (increasing or decreasing)
type of the hazard rates. But non-increasing or non-decreasing (non-monotone) haz-
ard functions such as unimodal and bathtub shaped functions also arise in practice be-
cause at present scenario non-monotone hazard rate is useful in field of science, engi-
neering, medical, ecology and space explorations. Therefore, handling lifetime data for
non-monotonic hazard rates seems to be a growing interest. Also, in survival analysis
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applications, the hazard rate function may frequently present a unimodal shape. It is
well known that the log-normal distribution is a popular model for the survival time
when the hazard rate function is unimodal, see Nelson (1982). There are some other
models that have unimodal shape hazard rate function, like the log-logistic, Burr type
XTI, Burr type III distribution and the inverse Weibull distributions.

Here it is pertinent to the current study to briefly discuss Abd-Elrahman (2017).
The Bilal(f) distribution was introduced by Abd-Elrahman (2013), as a member of the
families of distributions for the median of a random sample drawn from an arbitrary life-
time distributions. Unfortunately, the failure rate function related to this distribution is
monotonically increasing with finite limit. Therefore, Abd-Elrahman (2017) proposed a
generalization of Bilal(f) distribution. The author generalized the Bilal(#) distribution

A
by using the transformation: X = <YTT$> , (Y > &), the parameter & is a threshold pa-

rameter, while @ and A are the scale and the shape parameters, respectively. Without loss
of generality, the parameter &' is set to zero. So obtained proposed model they referred
to as the generalized Bilal i.e., GB(, A) distribution. The probability density function
(pdf), cumulative distribution function (cdf), hazard rate function and the reliability
function of GB(#, A) are given by

o= (5) el 2(3) ) 1=oo(-G)')

x>0, 6,A>0, M
F(x;0,1) = 1—exp<—2<§)i> <3—2€Xp<—<g>i>>,
x>0, 6,A>0, @
b(x;0,) = % <2>H <31__;:p(<__(<§;;2>> , x>0, 6,A>0, 3)
d
an . N
R(t;@,i):exp<—2<§> ><3—Zexp<—<§) >)9, A>0, 4
respectively.

Also, in order to study the estimation of the stress-strength parameter # = P(X >
Y), where X and Y are independent rvs from (1), with common shape parameter A, =
A, = A and scale parameters, ¢, > 0 and 6, > 0, respectively. The pdf of X and Y are
given by

psson=5 () or(2(3) )0-eol) )

x>0, 0,,A>0,
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and

o= (5) or(2(3) )5

y >0, 0,,A>0.

Then, the stress-strength reliability is given by
P :P(X>Y):f (x50, A) f5(95 65, Ddxdy
y=0J x=y
1 5, \2 1 5, \A
= 18[ z(l—z)2<ﬂ> iz — 12f z(l—z)3<Z> Tz
0

O
(T aCe) )6 2

Since we know that the selection of loss function is an important part of Bayesian
estimation procedures and SELF is frequently used, see Gep and Tiao (1973) and Berger
(1985), due to its mathematical simplicity and relevance with classical procedures. But
SELF is not suitable where the losses are not symmetric. LLF is frequently used when
losses are asymmetric. It was originally introduced by Varian (1975) and got a lot of pop-
ularity due to Zellner (1986). The mathematical form of LLF for estimating o through
its estimator @ may simply be expressed as

®)

L(A)=b[exp(aA)—aA—1], a#0,b>0, 6)

where A = a—a, a and b are respectively shape and scale parameters of the loss function
given in (6), its asymmetric nature depends on shape parameter a. When value of 4 is
less than zero, LLF gives more weight to under estimation against over estimation and
the situation is reverse when value assigned to 4 is greater than zero. If 4 tends to zero
LLF tends to SELF., viz,

L(A) o< A%,

Also, without loss of generality scale parameter 4 of LLF can be taken to 1.0. Under
the LLF (6), the Bayes estimator (BE) of « is given by

a= —;l In E(exp(—aa)). @)

Maximum likelihood estimation, Bayes estimation and Lindley’s approximation of
the parameters under different loss functions has been discussed by several authors like
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Ragab et al. (2008), Singh et al. (2008), Singh et al. (2013) and the references therein, to
cite a few.

The paper is organized as follows. In Section 2, we provide the MLEs, BEs and Lind-
ley’s approximation of the parameters A and 6. In Section 3, we proposed the MLE,
BEs and Lindley’s approximation for the Bayes estimators of R(t). Next, in Section 4,
we give the MLE and BEs of &2. Furthermore in Section 5, simulation is performed.
Finally, in Section 6, discussions are made and conclusions are presented.

2. ESTIMATORS OF THE PARAMETERS A AND &

Suppose 7 items are put on a test and the test is terminated after the first » ordered
observations are recorded. Let X = (x,%,,%3,...,%,), where x; < x, <--- < x,,0<
r < n, the lifetimes of first r failures. Obviously, (7 — r) items survived until x,. We
assume that the lifetimes of these components follow the distribution expressed in (1).
Hence the likelihood function of this setup can be written as

ror 7

253 T1G) e (E ) T (-=e(-G))

=1 =1

ool )o-2on(-G5Y)]

2.1.  Maximum likelihood estimators

The log likelihood function of the distribution given in (1) under the above said set-up
is given by

!
lnL:ln<( i )'>+rln6+ rlnA—rln@
n—r)

_zg(%)uiﬁln(l_exp<_<%)*>)

=1

+(n—r)ln<3—2€xp<—<%)i>>. )

To find the likelihood equations, we differentiate (9) with respect to the parameters
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Aand 0, respectively and equate them to zero. The resulting equations are as follows:

-G (G

7

, (10)
(3—2exp —(%’)A)
O—alnL——l—i—Zii(ﬁ)/{—%iexp( (%)A)(%)A_ (A=1)
Ta0 6T\ TS (1—ep(—(3)) "o
Axy An=ndesp(=(5))(3)"
+2n—r)=(—=) — (11)
0 ( 0 > 5(3—2exp<—<%>'1>>

Equations (10) and (11) are nonlinear and analytical solutions are not possible. Hence
to obtain the solutions from these equations, we have used the 7/m function available
in R Software.

2.2, Bayes estimators

To obtain the BEs of A and 8, we have considered independent non-informative type of
priors, 7,(A) and 7,(8), given as

(A==, 0<A<k, (12)

cb|~a~|~

m,(0)==, 0<6. (13)

Joint posterior density of A and 8, obtained with the help of Bayes theorem which
combines (8), (12) and (13), is given by

r

b= () e <—2§<%>A>§<1—“?(‘<%>A>>
[l oG o
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where

N, = f Jw@flf () exp< l:(%)a)H(l_e@(_(%)*))
[o(=2(5)) (s-2esp(~(%))] " a2a0. 09

Marginal posterior densities of A and & obtained by integrating (14), with respect to
the rest parameters, are given by

b =222 0 a<k, (16)
1
N.
b(5|>_<):m, 0<0, (17)
1

where N, is given by (15) and; N, and Nj are given by

1) o () 1(-en(-))
-[exp<—z<gf>*><a—zexp<—<%>*>>r’da

n=| k*’;j{(" exp< '3 (%) m(l_exp(_(%)*)
.[exp <—2<%) ><3—Zexp <—(%>A>>]_ . (19)

In order to obtain the BEs of the parameters under SELF, we utilize the fact that
the BEs of the parameters under SELF are nothing but the posterior mean of the corre-

and

sponding parameters. Hence, the BE, IBS of A, under SELF, is given by

~ 1 *
ABs:E(/UX):ﬁl . Ah(Alx)d A
- %‘ 20)
where N, is given in (15) and N is given by
N= [T e (R G) T (-er(-(5))
.[exp(—Z(é) ><3—Zexp< ’;)A»] dAdo. 1)
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In a similar way, we have obtained the BE, 6, s of 0, under SELF, which is given by

where, N; is given in (15) and

w= [ [ TIG) (350G (oo (-(5))
.|:exp<—2<gr>A> <3—2€Xp <—(%)A>>]n " ddb. (23)
Using (7), the BE, A, y of the parameter A, under LLF, is given by
A === InE(exp(—a ), 4

sioni-o =[2G 23 10~ o0l (5))
1:[<§> [exp< (%)A><3—2exp<—(%>l>>i|n_rd/ld@. (25)

1

Thus using (24) and (25), the BE of A is given by

1=t (e
Ax = aln<N1>’ (26)

N,= Jk O“eXpe—r‘ﬁ exp< zz( >>H<1—exp<—<%)l>>
F15) [on())omron )] a0

Proceeding on the similar lines the BE 6, ;x of 0, under LLF, is given by

~ 1. /N
QLX:—;ln<ﬁ7>, (28)
1
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where

N, = fk ”eXpe—r‘f exp< >1_[< exp< )A>>

P

FI oYl (3 ) .

1

2.3.  Lindley’s approximation

In this subsection, we consider the Lindley’s approximation technique for the estimation
of Aand 6. Consider the posterior expectation I(x) expressible in the form of ratio of
integral as given below

f (/1,6) L(A,0)+p(A,0) d(/l 19)
I(x) = E[U(A,6)}x] = =22

, (30)
J (LAD D4 ) )
(A6)

where

U(A,0) = afunction of Aand & only,
L(A,0) = Log likelihood,
o(4,0) = Log of joint prior of A and 6.

If sample size 7 is sufficiently large, according to Lindley (1980), it can now be approxi-
mately evaluated as

~ 1r, ~ PO N L
1= URO)+ 5[ (T +20,52) 5+ (02 + 20573
+<l749+2[7%/3€>3M+(ﬁ€9+2ﬁ€/39)595]
M~ o~ e
+ 5[ <UA‘7M + Ue"w) (Lypa@ia+ L9200+ Loai0oa+ Logi0ap)

+ (U091 + UpGg)(Lang0 aa+ L g0 20+ Log0as +L999399)] €2
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where

A=MLEof 4,  O=MLEof §, p,=

A P6=""254
~ 3U(),6) ~ 2U(A6) ~ UG ~ U0
=21 Y=g Un="Zg51 Y="3520
5 _UAE) 5 _UXE 1 .1
T 75006 0 TMT T 0 90T T,y INn= I,

- UWNG) ~ UML) ;o 33U(A,0) ;o 33U(A,0)
MAT909231° TMT 9200300 T 500601 T 5680696
etc.
More elaborately, here U, denotes the second derivative of the function U(4,0)

with respect to Aand Uy, represents the same expression evaluated at A = Aand 6=46.
All other quantities can be defined in similar manner.

Thus, using Lindley’s approximation the Bayes estimate of A, under SELF is ob-
tained as: N N Y

U(/l,@): /1, UX: 1, UQZO, U/u: U/w: Ug/{: Ugg:O, 39/1:(/7\9/120,

) :O,A = ——.
P Lo 9
So,

~ 1.
A=A+ 5% <Lm% + L&eﬂe&) (32)

Also, the Bayes estimate of &, under SELF is obtained as:
U(A0)=0,0;=0,Uy=1,Uy;=Upy=Up; = Upy =0, 39 =39, =0,

=0 = ——
10/1 ’109 (9
So,

NN 1
O5=0— 5‘769"‘20€9<LM€‘7M+L€€€‘79€> (33)

Next, using Lindley’s approximation the Bayes estimate of A, under LLF is obtained
as:

U(A,0) = exp(—a A), U, = —aexp(—a ;1\), Uy, =a*exp(—a ;1\),
~ =~ —~ -~ ~ ~ ~ ~ 1
Up=Uip=Up=Up =0, 091=091=0, 0, =0, py=—7,
~ 1 ~
E (exp(—a A)) = exp(—a A) + Eaz exp(—a A)a),
1 0 _~ T -~ = -~
—zaexp(—ad)y, <LAM‘7M + L&ex”e@) :
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Therefore,
A 1 A1 Sa r A
ALL:—;ln[exp(—al)—Eaexp(—aA)JAA(LAMUM—FL%AUQQ—a)]. (34)

Also, the Bayes estimate of &, under LLF is obtained as

>

U(A,0)=exp(—a0), fj =—aexp(—a 5) U% =a’ exp(—a

| = Cb)

Uy=Up=Us =0y =0, 55,=55,=0, 5, =0, pp=—

E (exp(—a 0)) = exp(—a 5) + % exp(—a 1)6\9@ <a2 + 2%)

1 N~ T ~ T ~
—5aexp(—a )3y (L3683 + LogsBss ) -

Therefore,

~ 1 ~ 1 A [~ o~ =~ 2
9LL = —; 11’1|:€Xp(—d 6)— Eﬂ CXP(—d 9)0'9(9<L/1/1(90'/1/1+L§6@0'99 —a— 5\>:| (35)

3. ESTIMATORS OF THE RELIABILITY FUNCTION R(t)

3.1.  Maximum likelihood estimator

If A and & denotes the MLE of A and 6 based on type II censoring scheme then by using
the standard likelihood theory the MLE of the reliability function R(t) is given by

o-eel() ool G)) o

3.2, Bayes estimators
The BE of R(t), under SELF, is given by
s _J f b0l = 2, (7)

1

where, N, is given in (15) and N is given by

=, e (2 ) -2 (-(5))

P

emg(—‘)‘ 1exp<—22% >1‘[ 1_exp (g)*»

=1

.[exp( (%) ><3 Zexp< §>A>>} dAd6. (38)
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Proceeding on the similar lines as in Section 2, the BE of R(¢), under LLF, is given by

R(0)x =~ InE(expl(—aR(1))

(%
= aln<Nl>’ (39)

where, N, is given in (15) and N, is given by

= J | omtoeenl(2(G))(-2e0(-(5) )
Fal 1) e (22 () )10 (-(3))

1=1

[oro(-2(5)) (-2~ (5 )] aras. w0

3.3, Lindley’s approximation

In this subsection, we consider the Lindley’s approximation technique for the estimation
of reliability function R(z). Proceeding in a similar manner as in Section 2, we have
obtained the Lindley’s approximation for the Bayes estimate of R(¢), under SELF, which
is obtained as

1

£ \A VY A~ . N N
U(A,@):exp(—Z(E) ><3—2CXP<—<§> >>, 0'(9/{:0'(9/1:0, /O/{:o, p@:—g
So,
R(t),s=U(4,0)+ <me+ <U9@ 5U9> 599)
Ir~_. /~ ~ ~ gy~ ~
+ E[UAUM(LMAUM + L&@Aa&?)"‘ Up0pg (Mm”ﬂ*‘%ae%a)]- (41)

The Lindley’s approximation for the Bayes estimate of R(¢), under SELF, is given as

sr=enf-sen(2(5))o-2en((2) )}

JUR . . 1
9, =091 =0, 2 =0, pp=—7-
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So,
~ 1 ~ A -
R(t); Z—ZIH[U(A )+ <UMUM+<U6(9_5U€>U§6>

+ % [@@A(@M@A"‘Zaeﬁee)‘i‘ ﬁe‘%e@w@a +Z€96399)]:|- (42)

4. ESTIMATORS OF THE RELIABILITY FUNCTION &

Let us suppose that 7 items on X and m items on Y are put on a test. Also, suppose

X ={x,%5...,x,}and Y ={y,,%,,...,7,} be two independent type Il censored samples
from GB(0,,A) and GB(6,, A). Then the joint likelihood function is given by

i) 1) 56 (e{-(7))

] . (43)

4.1.  Maximum likelthood estimator

To obtain the MLE of & based on type II censored data for both variables, we first
evaluate the MLE of A, &, and 0,. Using (43), the log likelihood function given by

lnL:ln<(nfr)>+rln6+rln/1—rln<9 —2Z< >
R
_z(n_r)<2_:>1+(n_,)1n<3—26Xp< <2—1> >>



S
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m! y; A
+In - +sln6+slnA—slnf,—2 =L
(=) 2

+§1n<1—exp <—<g—’2>i>> +(A— 1)§ln<g—;>
—2(m—$)<;—;>i+(m—s)ln<3—ZeXp<—<;—;>A>>. (44)

To find the normal equations, we differentiate (44) with respect to the parameters A,
0, and 0,, respectively and equate them to zero. The resulting equations are as follows:

) z(m_s)eXP(_ %)AX%)AI“()@?)
) o el 1)) v
O_alnL
a0,
T A X; A< eXp<_(§_i)A (%)A (A—1)
__91+26—1 1<9_1> 91;(1—@(;)(_(;_1)*)) r 0,
A /x, 2 2(n—r)lexp(—(;—:>/l> 2—:)/1
ran=nz(5) + 0,200 (—(3)) 0
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2
el (YA (=) )(2) -
R e
C exn [ (V) (2
+2(m—5)i<&>/1+2(m S) ¢ P( <92) >A<92> ‘ (47)
0, \0, 92(3—2exp<—<g—;>>

Thus, if A, (9~1 and 52 denotes the MLE of A, 6, and 8, based on type II censoring
then by using the standard likelihood theory the MLE of the stress-strength function &2

is given by

"
<19(6wj) +6> s

4.2.  Bayes estimators
To obtain the BEs of 2, we consider independent non-informative type of priors, (1),

7,(0,) and 7,(6,), given as:

71:1(/1):%, 0< A<k, (49)
1
7'E2((91>:§—, O<(91, (50)
1
1
m3(0,) = 7 0<0,. (51)

2

Joint posterior density of A, &, and 6,, obtained with the help of Bayes theorem

which combines (49), (50), (51) and (43), is given by
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h(/\,@l,92|§,}_7)
/17+5 r X A—1 r X A r X A
o 15) o (23 - (-(3))
x, P n—r
| )

) ) | R

where, T is given by

[ ra1G) = (2G))
(o (-(3)) %
ool )02eol -G )]
TG = (26 1(-=(-(2))
[l )ororl ()] ersn o

The BE of &2, under SELF, is given by

e k oo oo T.
Py = f J f P h(4,0 0ylx.y)dAd0,d6, = =, (54)
0 Jo 0

1

where, T is given in (53) and 7, is given by
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)
1) (26 )(-(-G))
[0
T1(3) o

R T | A

Proceeding on the similar lines as in Section 2 and 3, the BE of &2, under LLF, is
given by

_ 1
P =——InE(exp(—a P?))
a

_ (L
a ﬂl <T1>’ ©

where, T is given in (53) and Tj is given by
f [7[ —a(19(%) +9)
<(ﬁ A+1><2(92)A+3 <3
s r X, A—1 " . A 7 X A
676 H<9_ eXP<_2 () >H<1_p<_<@_> >>

[eolo(a) Yomsenl- )]
10 e EG) -
> g_) m dAd6,db,. (57)

=1

[ ol
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Clearly, the BEs of the parameters A and &; and of reliability functions R(¢) and
2, do not result in nice closed forms due to involvement of multidimensional integrals.
These expressions can not be simplified that is why, we obtain the estimates of the pa-
rameters A and &; and reliability functions R(¢) and 22, by using the integrate and
sapply functions. Also, the expressions obtained to get the Bayes estimates of the pa-
rameters and reliability function using Lindley’s approximation involves higher order
derivatives. These derivatives are also not coming in nice closed form therefore, we eval-
uate these estimates using the Deriv function available in the R software.

5. SIMULATION STUDY

Throughout this section comparisons are made on the basis of MSE. Also, for the ran-
dom number generation from (1), we have used the algorithm given in Abd-Elrahman
(2017).

To compare the performance of different estimators of the parameters A and 6 based
on type II censoring scheme, we have conducted simulation experiments using Monte
Carlo simulation technique. We have generated 1000 random samples from (1) each of
size n = 30 for (4,0) = (1.4,2.2),(2.0,2.9) and k = 3,4. For each sample we arranged
the data in ascending order and considered a sample of first » (» < 7) observations.
For different values of » = 10, 15 and 20, using (9), (20), (22), (26), (28), (32), (33), (34)
and (35), we have computed average maximum likelihood estimates, Bayes estimates and
Lindley’s estimates of A and 8, their corresponding MSE, results are reported in Table 1.

Under the same set-up as discussed above, to compare the performances of the esti-
mators of R(z) for different values of ¢, using (9) (36), (37), (39), (41) and (42), we have
computed average maximum likelihood estimates, Bayes estimates and Lindley’s esti-
mates of R(¢), their corresponding MSE. For t= 1.0, 2.0, results are reported in Table 2.

Furthermore, to investigate performance of estimators of & based on type II cen-
soring scheme, we have generated 1000 random samples from each of the populations
X and Y with sizes (n,m) = (30, 30) from (1) with A, = A, =A= 1.5, 2.0, 2.5, k=4.0,
0,=1.6 and for different values of ¢,. Sample corresponding to both the populations
are arranged in ascending order and first (7,s) observations are considered. For differ-
ent pair of values (7,s), using (48), (54) and (56), we have computed average estimates
with their corresponding MSEs are presented in Table 3.

From Table 1, we conclude that the best estimates of the parameters A and 0 are
given by the estimators obtained under LLF as these estimates have the lowest MSE.
Also from Table 2, we conclude that the best estimates of R(t) are given by estimators
obtained under SELF. Also, Table 1 and 2, depicts that the MSE of the estimators reduces
as the sample size increases.

From Table 3, we conclude that for a moderate system estimates obtained under
SELF are better then other. Also, for a system, which is not in good condition estimates
obtained under LLF are better.
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6. DATA ANALYSIS

In this section, we present different data sets which demonstrate the suitability of the
GB distribution as a reliability model. We analyze two simulated data sets in Example 1
and two real data sets in Example 2.

EXAMPLE 1. Here, we analyze two simulated data sets. The first data set of size
m=>50 is generated from GB(#, = 2.0, A, = 1.5) and the second data set of size » = 50
is generated from GB(, = 3.0, A, = 1.5). These two data sets are as follows:

Simulated data set 1 (Y):

0.328, 0.356, 0.675, 0.686, 0.695, 0.710, 0.712, 0.757, 0.910, 0.961, 0.984, 1.019, 1.087,
1.157, 1.259, 1.316, 1.405, 1.429, 1.449, 1.4450, 1.467, 1.500, 1.525, 1.538, 1.546, 1.574,
1.580, 1.638, 1.664, 1.667, 1.723, 1.726, 1.794, 1.815, 1.834, 1.839, 1.839, 1.855, 1.889,
1.894, 1.935, 1.937, 1.976, 2.019, 2.292, 2.312, 2.321, 2.532, 2.661, 2.836

Simulated data set 2 (X):
0.667, 0.766, 0.773, 0.898, 0.906, 1.026, 1.030, 1.114, 1.215, 1.497, 1.531, 1.585, 1.592,
1.763, 1.782, 1.946, 1.961, 1.991, 1.996, 2.077, 2.133, 2.144, 2.147, 2.160, 2.182, 2.220,
2376, 2.402, 2.441, 2.470, 2.635, 2.712, 2.757, 2.837, 3.093, 3.184, 3.215, 3.297, 3.299,
3.351, 3.408, 3.555, 3.977, 3.993, 4.067, 4.185, 4.441, 4.594, 4.968, 5.740

By using the simulated data set 1 and set 2; and the expressions obtained in Section 1
and 2, respectively, we have calculated the maximum likelihood and Bayes estimates of
the parameters (6,, 4,), (6, A,) and R(¢). Also, by considering simulated data set 1 as
the stress population (Y') and simulated data set 2 as the strength population (X ), we have
calculated the maximum likelihood and Bayes estimates of 22 by using the expressions
obtained in Section 3. For different values of » and (7, s) results are reported in Table 4.

EXAMPLE 2. In this example, we consider two real data sets and illustrate the infer-
ential procedures discussed in the previous sections. The first data set of size 7 =69 is a
strength dataset originally reported by Bader and Priest (1982). This data represents the
strength measured in Giga Pascal (GPA) for single carbon fibers and impregnated 1000
carbon fiber tows. The data set is as follows:

Real data set 1 (Y):
0.562, 0.564, 0.729, 0.802, 0.950, 1.053, 1.111, 1.115, 1.194, 1.208, 1.216, 1.247, 1.256,
1.271, 1.277, 1.305, 1.313, 1.348, 1.390, 1.429, 1.474, 1.490, 1.503, 1.520, 1.522, 1.524,
1.551, 1.551, 1.609, 1.632, 1.632, 1.676, 1.684, 1.685, 1.728, 1.740, 1.761, 1.764, 1.785,
1.804, 1.816, 1.824, 1.836, 1.879, 1.883, 1.892, 1.898, 1.934, 1.947, 1.976, 2.020, 2.023,
2.050, 2.059, 2.068, 2.071, 2.098, 2.130, 2.204, 2.262, 2.317, 2.334, 2.340, 2.346, 2.378,
2.483,2.683, 2.835, 2.835

We fit the GB distribution to the above real data set 1 and compare its fitting with

some well known reliability distributions, namely, exponential distribution with pdf
X

given by f(x) = %exp(%) x >0, A > 0, Rayleigh distribution with pdf given by
f(x) = %exp(%ﬁ) x >0, 0 > 0, Weibull distribution with pdf given by f(x) =
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a (x

T (Z)ﬂ_l exp (—(%)ﬂ) x >0,a>0, b >0, the generalized exponential distribution with
pdf given by f(x) = %exp(?) (1 —exp(%))ail y>0,a2>0,0>0.

Maximum likelihood estimation method is used to estimate the parameters of the
above distributions. These estimates, along with the data, are used to calculate esti-
mated negative log likelihood function —In L, the Akaike information criterion (AIC),
proposed by Akaike (1974), defined by AIC =2k’ —21In L, Bayesian information crite-
rion (BIC) proposed by Schwarz (1978), defined by BIC = k’Inn —2In L, where &’ is
the number of parameters in the reliability model, 7 is the number of observations in
the given data set, and L is the maximized value of the likelihood function for the esti-
mated model and Kolmogorov-Smirnov (K-S) test. The best distribution corresponds to
lowest —InZ, AIC, BIC and K-S statistic values with corresponding highest 22 value.
Also, we draw quantile-quantile (Q-Q) plots of the above five reliability models which
are given in Figure 1. A Q-Q plot depicts the points {F_l (#; é) , x(l.)}, i=1,2,...,n.

We have also plotted the empirical and theoretical cdf and fitted pdf for the real data
set 1 to confirm the best fit of the above said data to the GB distribution in Figure 2.

Also, in order to show the accuracy of the obtained maximum likelihood estimates
given in Table 5, for the fitted GB distribution, we have plotted the contour plot and log
likelihood plots, given in Figure 3 and 4, respectively. Clearly, Figure 3 and 4, supports
accuracy of the obtained estimates.

Table 5 gives the values of maximum likelihood estimates of the parameters of the
considered reliability models, —In L, AIC, BIC, K-S statistic values and associated &
values. This table also shows that the GB distribution is the best choice among the other
commonly used reliability models in the literature for fitting lifetime data, since it has
the smallest —InL, AIC, BIC (AIC and BIC are very close to the smallest values)
and K-S statistic values and the corresponding highest & value. Also, Figure 1 and 2
supports the above findings.

TABLE 5
Summary fit to the real data set 1.

Distributions Maximum likelihood —InL AIC BIC K-S statistics

estimates D p value
Generalized Bilal A=2.594, 6=1.941 49.261 102.522 106.990 0.044 0.999
Exponential A=1.701 105.670 213.338 215.572 0.393 4.3e-10
Rayleigh 0=1.252 66.749 135.497 137.731 0.249 3e-04
Weibull 4=3.844, b=1.880 48.872 101.741 106.209 0.046 0.997

Generalized exponential 2=16.685, 0=0.506 55.514 115.032  119.500  0.103 0.428

The second real data set given below has been taken from Lawless (2003). Kumar
et al. (2017) used this data for fitting the Nakagami distribution and shown that this data
given the best fit to Nakagami distribution. Therefore, study of fitting this data to several
distribution has been skipped. This data set originally reported by Schafft et al. (1987),
represents hours to failure of 59 conductors of 400-micrometer length. All specimens
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ran to failure at a certain high temperature and current density. The 59 specimens were
all tested under the same temperature and current density. The data is as follows:

Real data set 2 (X):

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 11.038,
5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 5.807, 6.725,
8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009,
7.489, 7.398, 6.033, 10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640,
5.434,7.937, 6.515, 6.476, 6.071, 10.491, 5.923

We have plotted the empirical and theoretical cdf, fitted pdf and the Q-Q plot for the
second real data set to confirm the fitting of the above said data to the GB distribution.
Plots are presented in Figure 5.

Table 6 gives the values of maximum likelihood estimates of the parameters of the
GB distribution, —InL, AIC, BIC, K-S statistic values and associated & values. This
table shows that the GB distribution gives the good fit to the second real data set, since
it has the very small K-S statistic values and the corresponding p > 0.05. Also, Figure 5
supports the above findings.

Also, in order to show the accuracy of the obtained MLEs given in Table 6, for the
fitted generalized Bilal distribution, we have plotted the contour plot and log-likelihood
plots, given in Figure 6 and 7, respectively. Clearly, Figure 6 and 7, supports accuracy
of the obtained estimates.

TABLE 6
Summary fit to the real data set 2.
Distribution Maximum likelihood —InL AIC BIC K-S statistics
estimates D p value

Generalized Bilal A=3.266, =7.801 111.470 226940  231.095  0.076 0.863

By using the real data set 1 and 2; and the expressions obtained in Section 1 and 2,
respectively, we have calculated the maximum likelihood, Bayes estimates and Lindley’s
approximation of the parameters (0,, ), (6, 4,) and R(¢). Also, by considering real
data set 1 as the stress population (Y') and real data set 2 as the strength population
(X), we have calculated the maximum likelihood and Bayes estimates of & by using the
expressions obtained in Section 3. For different values of  and (7, s) results are reported

in Table 7.
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Contour plot

Figure 6 - Contour plot for the real data set 2.

Log likelihood function

Figure 7 - Log likelihood plot for the real data set 2.
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7. CONCLUSION

The purpose of the paper is manifold. In this paper, we propose the complex expressions
for the MLEs and BEs of the parameters A and & and reliability functions R(z) and 2.
The Lindley’s approximation’s to obtain the Bayes estimators of the parameters and
reliability function R(t) are also proposed. These expressions can not be simplified that
is why, we obtain the estimates of the parameters A and ¢; and reliability functions R(t)
and 2, by using the integrate function available in the R software. The solution by
using integrate is a sub-optimal one and the use of dedicated solutions such as those of
the cubature package would be preferred. Accuracy of the procedure and expression
obtained are verified by using simulated data. We use MSE to compare the purposed
estimators. Also, we present the fitting of the two real data sets. Furthermore, by using
the simulated data sets, real data sets and graphical method such as Q-Q plot, contour
plot, log-likelihood plot, fitted cdf and pdf plots, accuracy of the estimates and algorithm
are proved.
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SUMMARY

We consider here the generalization of the Bilal distribution proposed by Abd-Elrahman (2017)
by zeroing in on two measures of reliability, R(¢) and &, based on type II censoring. We ob-
tain point estimators namely, A and 8, of the above said distribution, when both parameters of
the distribution are unknown. Maximum likelihood estimators (MLEs), Bayes estimators (BEs)
and Lindley’s approximation for the Bayes estimators are proposed. By using independent non-
informative type of priors for the unknown parameters Bayes estimators are derived. Although
the proposed estimators cannot be expressed in closed forms, these can be easily obtained through
the use of numerical procedures. The performance of these estimators is studied on the basis
of their mean squared error (MSE), computed separately under LINEX loss function (LLF) and
squared error loss function (SELF) through Monte-Carlo simulation technique.

Keywords: Maximum likelihood estimators; Bayes estimators; Non-informative prior; Lindley’s
approximation; Type II censoring scheme; Squared error loss function; LINEX loss function.
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