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GROWTH BEHAVIOUR IN ITALY 
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1. INTRODUCTION

One of the most striking features of empirical economic data is that some 
countries and regions within a country grow faster than others. Economic theory 
has long been aware of this problem and various explanations have been pro-
vided in the past (Barro and Sala-i-Martin, 1995; and Magrini, 2003 for a review 
on regional convergence). A certain school of thought reached an optimistic view 
of reality by predicting that a set of economies (countries or regions) will tend to 
assume a common level of per capita output (that is they will “converge”) in the 
presence of constant returns to scale and decreasing productivity of capital. How-
ever, many empirical studies show contrasting, less optimistic, results. 

Apart from the evident interest in the subject at a World scale, regional con-
vergence studies have recently experienced an acceleration of interest due to the 
issues raised in Europe by the unification process. Since large differentials in per 
capita GDP across regions are regarded as an impediment to the completion of 
the economic and monetary union, the narrowing of regional disparities is indeed 
regarded as a fundamental objective for the European Union policy. Hence, the 
problem of testing convergence among the member States of the Union and 
measuring its speed emerges as a fundamental one in the view of policy evalua-
tion. 

Surprisingly enough, the literature on the empirical measurement of spatial 
convergence has not moved at the same speed with the increased demand. In-
deed, most of the empirical work is still based on the computation of some basic 
statistical measures in which the geographical characteristics of data play no role. 
For instance, in their celebrated paper Barro and Sala-i-Martin (1992) base their 
models on parameters like the variance of logarithm (to identify a -convergence) 
and the simple regression coefficients (to identify a -convergence) estimated us-
ing standard OLS procedures. In general most empirical studies in this field base 
their conclusions on cross-sectional data referred to geographical units almost 
systematically neglecting two remarkable features of spatial data. First of all, spa-
tial data represent aggregation of individuals within arbitrary geographical borders 
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that reflect political and historical situations. The choice of the spatial aggregation 
level is therefore crucial because different partitions can lead to different results 
in the modelling estimation phase (Arbia, 1989). Secondly, it is well known that 
regional data cannot be regarded as independently generated because of the pres-
ence of spatial similarities among neighbouring regions (Anselin, 1988; Anselin 
and Bera, 1998). As a consequence, the standard estimation procedures employed 
in many empirical studies can be invalid and lead to serious biases and inefficien-
cies in the estimates of the convergence rate. 

Moreover, most of the empirical studies on regional convergence have implic-
itly assumed that all regions obey a common linear specification, disregarding the 
possibility of non-linearities (or multiple regimes) in growth behaviour. The issue 
of multiple regimes has instead been raised in some cross-country growth studies 
(Durlauf and Johnson, 1995; Liu and Stengos, 1999) that make use of non-
parametric or semi-parametric approaches to model the regression function. 

In this paper, we present an empirical study of the long-run -convergence of 
per capita income in Italy (1951-2000) based on a level of aggregation (the NUTS 
3 EU regions corresponding to the 92 Italian provinces) which is fine enough to 
allow for spatial dependence to be properly modelled. A non-parametric local re-
gression model is firstly applied to identify non-linearities (i.e. multiple regimes) 
in the relationship between growth rates and initial conditions. Then, by using in-
formation on the presence of spatial regimes, we apply cross section regressions 
accounting for spatial dependence. 

The layout of the paper is the following. In Section 2, we present a review of 
econometric techniques that incorporate spatial dependence and multiple regimes 
within the contest of a -convergence modelling. In Section 3, we report the re-
sults of an empirical analysis based on the 92 Italian provinces (European NUTS-
3 level) and the per capita income recorded in the period ranging from 1951 to 
2000 and we show the different estimates of the convergence speed obtained by 
using different modelling specifications for spatial effects. Finally, in Section 4 we 
discuss the results obtained and outline possible extensions of the present work. 

2. SPATIAL DEPENDENCE AND MULTIPLE REGIMES IN CROSS-SECTION GROWTH BEHAV-

IOUR

The most popular approaches in the quantitative measurement of convergence 
are those based on the concepts of - and -convergence (Durlauf and Quah, 
1999 for a review). Alternative methods are the intra-distribution dynamics ap-
proach (Quah, 1997; Rey, 2000), the “stochastic convergence” approach in time 
series (Carlino and Mills, 1993, Bernard and Durlauf, 1995) and, more recently, 
the Lotka-Volterra predator-prey specification (Arbia and Paelinck, 2004). Also 
within the regression approach, many innovations have been introduced. In par-
ticular, some authors introduced a panel fixed-effects specification to control for 
the effects of omitted variables (Islam, 1995), while others focused on the role of 
spatial dependence and of non-linearities in growth behaviour. 
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In this section, we start by reviewing the classical approaches to test conver-
gence. Then, we propose a new specification of the empirical growth equation 
which simultaneously takes into account the problems of spatial dependence and 
multiple regimes (or non-linearities). 

2.1. -convergence

The -convergence approach consists on computing the standard deviation of 
regional per capita incomes and on analysing its long-term trend. If there is a de-
creasing trend, then regions appear to converge to a common income level. Such 
an approach suffers from the fact that the standard deviation is a measure insen-
sible to spatial permutations and, thus, it does not allow to discriminate between 
very different geographical situations (Arbia, 2001).1 Furthermore, as argued by 
Rey and Montoury (1999), -convergence analysis may “mask nontrivial geographical 
patterns that may also fluctuate over time”. Therefore, it is useful to analyse the geo-
graphical dimensions of income distribution in addition to the dynamic behaviour 
of income dispersion. This can be done, for instance, by looking at the pattern of 
spatial autocorrelation based on the Moran’s I statistics (Cliff and Ord, 1973), 
that measures the spatial correlation between value at location i and at location l. 
Formally, Moran’s I is: 
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where N is the number of observations, ilw  is the element in the symmetric bi-

nary contiguity matrix described in appendix 1, and xi and xj are observations for 
locations i and j (with mean ). For the calculation of the I-Moran index, the ele-
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Positive (and significant) I-Moran values indicate spatial clustering, while nega-
tive I-Moran values are associated with spatial dispersion. 

1 Consider two regions each dominating the extreme ends of an income scale. Now let there be 
mobility along the income scale. For the sake of argument, say each ended up at the exact position 
formerly occupied by its counterpart. According to the concept of  convergence, nothing has 
changed. In reality the poor has caught up with the rich while the rich has slide down to the posi-
tion of the poor.  
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2.2. -convergence

So far, the -convergence approach has been considered as one of the most 
convincing under the economic theory point of view. It also appears very appeal-
ing under the policy making point of view, since it quantifies the important con-
cept of the speed of convergence. It moves from the neoclassical Solow-Swan 
exogenous growth model (Solow, 1956; Swan, 1956), assuming a closed economic 
system, exogenous saving rates and a production function based on decreasing 
productivity of capital and constant returns to scale. This model predicts that the 
growth rate of one region is positively related to the distance that separates it 
from its steady-state. On this basis authors like Mankiw et al. (1992) and Barro 
and Sala-i-Martin (1992) suggested the following cross-sectional statistical model, 
in matrix form 

0
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where Tg  is a ( 1)n  vector of average growth rates of per capita incomes be-

tween date 0 and T, as Ty  is the value of per capita income in the last time pe-

riod considered, and 0y is the value in the first period; and  is an identically and 

independently normally distributed error term. Moreover, the formal expression 
for the systematic component µ  is as follows 
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where  is the speed of convergence, which measures how fast economies will 
converge towards the steady state, and S is the ( 1)n  sum vector. The constant 

term  is equal to *(1 )
ln

ke

T
y , where *y  is the steady-state level of per capita 

income. In this specification all economies are assumed to be structurally identical 
and to have access to the same technology, so that they are characterised by the 
same steady-state, and differ only by their initial conditions. 

Model (2) is usually directly estimated through non-linear least-squares (Barro 
and Sala-i-Martin, 1995) or by re-parametrizing the statistical model setting 

(1 )ke

T
 and estimating by ordinary least squares. Absolute conver-

gence is said to be present if the estimate of  is negative and statistically signifi-
cant. If the null hypothesis (  = 0) is rejected, we would conclude that not only 
do poor regions grow faster than rich ones, but also that they all converge to the 
same level of per capita income. 

The concept of conditional -convergence is used when the assumption of 
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similar steady-states is relaxed. Note that if economies have very different steady-
states, this concept is compatible with a persistent high degree of inequality 
among economies. The hypothesis of conditional -convergence is usually tested 
by including in the systematic component a matrix of X variables, maintaining 
constant the steady-state of each region. There is conditional -convergence if the 
estimate of  is significantly negative once X is held constant. 

2.3. Spatial dependence in the cross section growth equation 

The neoclassical growth model discussed above has been developed starting 
from the hypothesis that the economies are fundamentally closed. However, this 
hypothesis is too strong for regions within a country, where barriers to trade and 
to factor flows are considerably low (Magrini, 2003). To understand the implica-
tions for convergence of the introduction of the openness hypothesis into the 
theoretical framework, we must consider the role of factor mobility, trade rela-
tions and technological diffusion (or knowledge spill-over). Factor mobility 
means that labour and capital can move freely in response to differentials in re-
muneration rates, which in turn depends on the relative factor abundance. Thus, 
capital will tend to flow from the regions with a higher capital-labour ratio to the 
regions with a lower capital-labour ratio, while labour will tend to flow in the op-
posite direction. Moreover, the regions with lower capital-labour ratios will show 
higher per capita growth rates (Borts and Stein, 1964). Actually, if the adjustment 
process in either capital or labour is instantaneous, the speed of convergence 
would be infinite. By introducing credit market imperfections, finite lifetimes and 
adjustment costs for migration and investments in the model, the speed of con-
vergence to the steady-state remains higher than in the closed economy case, but 
with a finite value (Barro and Sala-i-Martin, 1995). The same result can be ob-
tained by introducing into the neoclassical growth model the hypothesis of free 
trade relations rather than factor mobility: convergence in interregional per-capita 
income will be higher than in the closed-economy version. 

Another possibility for poor economies to converge with richer ones is 
through technological diffusion or knowledge spill-over: in the presence of dis-
parities in regional technological attainment, interregional trade can promote 
technological diffusion when technological progress is incorporated in traded 
goods (Grossman and Helpman, 1991; Segerstrom, 1991; Barro and Sala-i-
Martin, 1997). A broader interpretation of knowledge spill-over effects refers to 
positive knowledge external effects produced by firms at a particular location and 
affecting the production processes of firms located elsewhere. However, when we 
investigate the regional convergence problem and study the effect of geographical 
spill-over on growth, we must also distinguish between local and global geo-
graphic spill-over. With local spill-over, production processes of firms located in 
one region only benefit from the knowledge accumulation in that region. In this 
case, regional divergence is likely to be the outcome. By global geographical spill-
over, we mean that knowledge accumulation in one region improves productivity 
of all firms wherever they are located. Thus, a global geographical spill-over effect 
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contributes to regional convergence (Martin and Ottaviano, 1999, 2001; Kubo, 
1995).

In a nutshell, the speed of convergence to the steady-state predicted in the 
open-economy version of the neoclassical growth model as well as in the techno-
logical diffusion models is faster than in the closed-economy version of the neo-
classical growth model. 

A direct way to empirically test the prediction of a higher speed of conver-
gence once openness is allowed would consist in including interregional flows of 
labour, capital and technology in the growth regression model. It is quite clear, 
however, that such a direct approach is limited by data availability, especially with 
regards to capital and technology flows. Some attempts have been made to test 
the role of migration flows on convergence, but the results of these studies sug-
gest that migration plays a small part in the explanation of convergence (Barro 
and Sala-i-Martin, 1995). 

An alternative and indirect way to control for the effects of interregional flows 
(or spatial interaction effects) on growth and convergence is through spatial de-
pendence models. A first way to take spatial dependence into account is the so-
called spatial autoregressive model or SAR (Anselin and Bera, 1998; Arbia, 2006), 
where a spatial lag of the dependent variable is included on the right hand side of 
the statistical model. If W  is a row-standardized matrix of spatial weights describ-
ing the structure and intensity of spatial effects (see appendix 1), equation 1 is re-
specified as: 

0lnT TSg y Wg  (4) 

where  is the parameter of the spatially lagged dependent variable TgW  that cap-

tures the spatial interaction effect indicating the degree to which the growth rate 
of per capita GDP in one region is determined by the growth rates of its 

neighbouring regions, after conditioning on the effect of 0ln y . The error term 

{ } is assumed to be identically and independently normally distributed in the 

hypothesis that all spatial dependence effects are captured by the lagged term. 
The parameters of model (4) can be estimated via maximum likelihood (ML), in-
strumental variables or generalized method of moments (GMM) procedures. 

An alternative way to incorporate the spatial effects is via the spatial error 
model or SEM (Anselin and Bera, 1998; Arbia, 2006). This leaves unchanged the 
systematic component and models the error term in equation (2) as an autore-
gressive random field, for instance assuming that 

W u . (5) 

The error term u is assumed to be normally distributed, with mean zero and 
constant variance, independently of lny0 and randomly drawn. 

Some empirical studies have previously used the spatial econometric frame-
work for testing regional convergence. The most comprehensive studies are those 
of Rey and Montouri (1999), Niebuhr (2001), and Le Gallo et al. (2003). All these 
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studies, however, do not consider the possibility of multiple regimes in regional 
growth behaviour. In other words, it is implicitly assumed that all regions obey a 
common linear specification, disregarding the possibility of non-linearities. 

2.4. Multiple regimes and non-linearities in the cross section growth equation 

The concept of multiple regimes is based on endogenous growth models char-
acterized by the possibility of multiple, locally stable, steady-state equilibria as in 
Azariadis and Drazen (1990). The basic idea underlying these models is that the 
level of per-capita GDP on which each economy converges depends on some ini-
tial conditions, so that, for example, regions with an initial per capita GDP lower 
than a certain threshold level converge to one steady state level while regions 
above the threshold converge to a different level.2

A common specification that is used to test this hypothesis considers a modifi-
cation of the systematic component in model (2) that takes the form: 

1 1 0 1lnT Sg y  if 0ln xy  (6) 

2 2 0 2lnT Sg y  if 0ln xy

where x is a threshold that determines whether region i belongs to the first or 
second regime. The same adjustment can be applied to the systematic component 
in the (parametric) spatial auto-covariance models. 

The hypothesis of linearity has been abandoned in some cross-region studies in 
Europe by assuming the presence of “threshold effects” automatically produced 
by the membership of each region to one group or another, according to “exoge-
nous” criteria, such as geographical criteria (e.g. Centre versus Periphery) (Basile 
et al., 2003; and Baumont et al., 2003). However, a problem with multiple regime 
analysis is that the threshold level cannot be (and must not be) exogenously im-
posed. In order to identify economies whose growth behaviour obeys a common 
statistical model, we must allow the data to determine the location of the different 
regimes. Following Liu and Stengos (1999), we argue that a non-parametric speci-
fication of the cross-region growth regression function goes a long away in ad-
dressing the issue of multiple regimes. Let us specify the empirical growth model 
as follows: 

2 The issue of multiple regimes in growth behaviour has been widely analysed in cross-country 
studies. Durlauf and Johnson (1995) propose a tree-regression approach to identify multiple regimes 
and find evidence that is consistent with a multiple-regime data-generating process as opposed to 
the traditional one-regime model. Hansen (1996) uses a Threshold Regression model to formally test 
for the presence of a regime shift. Liu and Stengos (1999) employ a semi-parametric approach to 
model the regression function and, as in Durlauf and Johnson and Hansen, emphasize the role of 
initial output and schooling as variables with a potential to affect growth in a non-linear way through 
possible thresholds or otherwise. Durlauf, Kourtellos and Minkin (2001) use a local polynomial 
growth regression to explicitly allow for cross-country parameter heterogeneity. 
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0(ln )T mg y  (7) 

where 0 0(ln ) [ ln ]Tm Ey g y  is a generic function of the conditional expected 

value. In order to estimate 0ˆ (ln )m y , we use the lowess (locally weighted scatter-

plot smoothing) regression method, that is a local polynomial regression with 
tricube weight function and nearest-neighbour bandwidth selection (see Cleve-
land, 1979; Cleveland and Devlin, 1988) (see the appendix 2). 

With this specification we solve the problem of non-linearities, but we still face 
with that of spatial dependence. Thus, our task consists of combining non-
parametric estimators with the usual parametric estimators of the spatial parame-
ters. In our empirical analysis, we adopt the graphical output of non-parametric 
local regression techniques as a data sorting method which allows the data to se-
lect regimes endogenously. Then, we use this information to split the sample in 
two regimes and run both OLS and spatial dependent regression models with dif-
ferent intercepts and slopes. A different, and more systematic, way to combine 
non-parametrics and spatial econometrics is described in Basile and Gress (2005). 

3. EMPIRICAL EVIDENCE FROM ITALIAN PROVINCES

The empirical study focuses on the case of Italian provinces, which correspond 
to the European NUTS-3 level in the official UE classification.3 The analysis is 
based on a newly compiled database on per capita GDP for the 92 provinces 
over the period 1951-2000.4

We start with a -convergence analysis of per capita income in the 92 provinces 
and the related spatial patterns over the period 1951-2000 (Section 3.1). In Sec-
tions 3.2-3.4 we will move to the -convergence analysis by taking explicitly into 
consideration the multiple regime hypothesis and the spatial dependence patterns 
displayed by data. 

3.1. -convergence and spatial autocorrelation  

Figure 1 shows the dynamics of the provinces’ real per capita GDP (measured 
in log terms) dispersion over the period 1951-2000, synthetically measured by its 
coefficient of variation (the ratio between the standard deviation and the national 
average). Regional inequalities diminished by more than one half over the entire 
period, but the sharp trend towards convergence was confined to the period be-

3 The compilation of provincial data on value added has been based on estimates elaborated by 
the Istituto Guglielmo Tagliacarne. These estimates have been transformed at constant prices by 
using sectoral/regional value added deflators. The source of population data is ISTAT (National 
Institute of Statistics). 

4 Italy is currently divided into 103 provinces, grouped into 20 regions. Over the period consid-
ered (1951-2000), however, the boundaries of some administrative provinces changed. Only the 
provinces that already existed in 1951 (92 units) have been considered for the empirical analysis. 
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tween 1951 and 1970. This is due partly to the significant effort to ‘exogenously’ 
implement economic development in the South (through the Cassa del Mezzog-
iorno) and partly to the ‘endogenous’ development of the North-Eastern regions 
(through the emergence of industrial districts). The following period was, instead, 
characterized by a substantial invariance of the income inequalities.  

Figure 1 also displays the pattern of spatial autocorrelation for the provincial 
incomes over the same period of time, based on the Moran’s I statistics. There is 
strong evidence of spatial dependence as the I-Moran statistics are significant (at 
the probability level 0.01) for each year. Differently from Rey and Montoury 
(1999) that examined the case of the United States, however, convergence and 
spatial dependence tend to move in the same direction (the simple correlation be-
tween Moran’s I statistics and the coefficient of variation is –0.9). The minimum 
level of spatial dependence was observed for the first year of the sample (1951), 
when the income dispersion was at its maximum level. Then, I-Moran increased 
very strongly till the ’70s, that is the period of strong convergence. Finally, it re-
mained stable and high over the ’90s.  
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Figura 1 – Italian Provinces Convergence of Per-capita Income and Related Spatial Autocorrelation 
in the Period 1951-2000. 

Thus, after reaching a stable level of a-spatial inequality (measured by the coef-
ficient of variation) in 1970, it follows a period of strong polarization at constant 
levels of inequality (for a distinction between a-spatial inequality and polarization, 
see Arbia, 2000, 2001).  

3.2. -convergence: basic results 

We start from the OLS estimates of the unconditional model of -convergence 
and test for the presence of different possible sources of model misspecification 
(non-linearities and spatial autocorrelation). The general objective of this analysis 
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is to assess whether the results of previous studies at provincial level (e.g. Fabiani 
and Pellegrini, 1997; Cosci and Mattesini, 1995), carried out using the OLS 
method, were actually biased for the presence of spatial dependence and multiple 
regimes.

Table 1 displays the cross-sectional OLS estimates of absolute convergence for 
the 92 Italian provinces. The dependent variable of the model is the growth rate 
of province’s per capita income (in percentages), while the predictor introduced 
in each model is the initial level of per-capita income (expressed in natural loga-
rithms). Both variables are scaled to the national average. In order to consider the 
trend break identified in the  convergence analysis, we estimate models for the en-
tire period and for the two sub-periods 1951-1970 and 1971-2000. 

TABLE 1 

Per Capita Income Growth of Italian Provinces 
OLS Estimates (numbers into brackets refer to the p-values) 

 1951-2000 1951-1970 1971-2000 
0.018 

(0.697) 
0.067 

(0.484) 
0.008 

(0.864) 
-1.033 
(0.000) 

-2.026 
(0.000) 

-0.262 
(0.142) 

Adjusted R2 0.435 0.418 0.013 
Log Likelihood -47.777 -112.998 -51.853 
Schwartz Criterion 104.589 235.040 112.751 

Jarque-Bera 
1.419 

(0.491) 
2.505 

(0.285) 
1.458 

(0.482) 

Breusch-Pagan 
0.920 

(0.337) 
0.562 

(0.453) 
0.000 

(0.982) 

Moran’s I 
8.806 

(0.000) 
6.950 

(0.000) 
3.722 

(0.000) 

LM-error 
68.819 
(0.000) 

42.247 
(0.000) 

11.123 
(0.001) 

LM-lag
17.680 
(0.000) 

7.230 
(0.007) 

7.861 
(0.005) 

Notes: 
Schwartz Criterion:-2L+pln(N), with L=log-likelihood, p=number of regressors, N=number of observations.  

Jarque-Bera = 2 2 21
( 3) (2)

6 4

N
S K , where S is the sample skewness and K is the sample kurtosis. Under 

the null hypotheis of normality the Jarque-Bera test is distributed as  2(2) .

Breusch-Pagan. Suppose that V(e)= 2, where e is a vector of OLS residuals. If there are some variables z1, z2,..., zr

that influence the error variance and if 2 = f(a0+a1z1+a2z2+...+arzr), then the Breusch and Pagan test is a test of the 
hypothesis H0: a1=a2=...=ar=0. The function f(.) can be any function. In this paper the squares of the explanatory 
variables were used in the specification of the error variance to test for additive heteroscedasticity. Under the null 

hypothesis of homoskedasticity, 4
0 ˆ/2S  (with the 0S  the residual sum of squares from a regression of 2ê  on z1,

z2, zr) has a 2( )r .

Moran’s I = 2( , )N I
' 'e We/e e 0 , where e is a vector of OLS residuals and W is the row standardised spatial 

weights matrix. Under the null hypothesis of no spatial dependence Moran’s I is distributed as 2( , )N I0 .

LM-error = 2 2 2( ) / ( ) (1)tr' ' 'e We/e e W W + W , where tr stands for the matrix trace operator. Under the null hy-

pothesis of no spatial dependence (H0: = 0) LM-error is distributed as  2(1) .

LM-lag = 2 2 2
0 0( ) /{( ln ) ( ln )/ ( )} (1)b b tr/' ' ' 'e Wg e e W y M W y e e W W + W , where TWg  is the spatial lag of 

the dependent variable, b is the OLS estimator for the parameter , M is a projection matrix, M=I-X(X’X)X’. Un-

der the null hypothesis of no spatial dependence (H0: = 0) LM-error is distributed as 2(1) .
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Our results are consistent with the previous findings on the development of 
Italian regions. The coefficient of initial per capita GDP is –1.03 and significant 
at a level of probability p<0.01 for the entire period, it is –2.03 and significantly 
different from zero for the first period (confirming the presence of absolute con-
vergence over that period), while it is –0.26 and non-significant for the second 
period (suggesting lack of absolute convergence). Similarly, the convergence rate 
was fairly high (2.5%) during the first period and declined substantially (to 0.3%) 
during the period 1970-2000; for the entire period the estimated convergence rate 
is 1.4% (Table 2). The lack of absolute -convergence starting from the beginning of 
the ’70s was also found by Paci and Pigliaru (1995), Cellini and Scorcu (1995) and 
Fabiani and Pellegrini (1997). 

Table 1 also reports some diagnostics to identify misspecifications in the OLS 
cross-sectional model. Firstly, the Jarque-Bera normality test is always far from 
significant (Figure 2 displays the distribution of residuals). Consequently, we can 
safely interpret the results of the various misspecification tests (heteroskedasticity 
and spatial dependence tests) that depend on the normality assumption, such as 
the various Lagrange Multiplier tests.5 The Breusch-Pagan test indicates that there 
are no heteroskedasticity problems.  

The other specification diagnostics refers to spatial dependence. Three differ-
ent tests for spatial dependence are included: a Moran’s I test and two Lagrange 
multiplier (LM) tests. As reported in Anselin and Rey (1991), the first one is very 
powerful against both forms of spatial dependence: the spatial lag and spatial er-
ror autocorrelation. Unfortunately, it does not allow discriminating between these 
two forms of misspecification. Both LM-error and LM-lag have high values and 
are strongly significant, indicating significant spatial dependence, with an edge 
towards the spatial error.  

TABLE 2 

Comparison of the Convergence Rates Estimated with the Different Models 

 1951-2000 1951-1970 1971-2000 
Unconditional model (OLS estimates)  0.014 0.025 0.003 
Spatial error model (ML estimates) 0.035 0.053 0.022 
Spatial lag  model (ML estimates) 0.013 0.024 0.004 
Multiple regimes (OLS estimates) I regime 0.000 -0.007 0.003 
 II regime 0.030 0.059 0.001 
Spatial error and multiple regimes: different 
intercepts and slopes (ML estimates) 

I regime 0.038 0.051 0.018 

 II regime 0.037 0.052 0.117 
Spatial lag and multiple regimes: different inter-
cepts and slopes (ML estimates) 

I regime 0.002 -0.005 0.004 

 II regime 0.023 0.054 -0.009 

Notes: Convergence Rate =
ln(1 )T

T
.

5 Heteroscedasticity tests have been carried out for the case of random coefficient variation (the 
squares of the explanatory variables were used in the specification of the error variance to test for 
additive heteroscedasticity).
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Period 1951-2000 

Period 1951-1970 

Period 1970-2000 

Figura 2 – Histograms and density functions of residuals from the OLS estimation. 

The results described so far suggest that the original unconditional model, 
which has been the workhorse of much previous research, suffers from a mis-
specification due to omitted spatial dependence. Thus, we attempt alternative 
specifications. An approach, adopted for the case of the United States by Rey and 
Montoury (1999), consists of the application of spatial econometric tools directly 
to the unconditional model.  

An alternative approach, proposed in this paper, consists of firstly detect and 
identifying the presence of spatial regimes, and then using maximum likelihood 
spatial dependence models to control for the presence of spatial autocorrelation. 
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This approach is based on the assumption that the observed spatial autocorrela-
tion might depend (at least in part) on heterogeneity (multiple regimes), in the 
form of different intercepts and/or slopes in the regression equation for subsets 
of the data.  

3.3. Non-linearities in cross section growth behaviour 

The main concern of this section is the identification of non-linearities in the 
growth behaviour of Italian provinces. In Figure 3 we plot the growth rate against 
initial per capita GDP for the entire period (1951-2000) and the two sub-periods 
(1951-1970 and 1970-2000), and a non-parametric estimation of the relationship 
between these two variables.6

The non-parametric regressions in Figure 3 identify non-linear relationships 
between the level of GDP and the growth rate. In particular, for the entire period 
and for the period 1951-70 (Panel A and B), at low income levels (that is initial 
levels of relative log incomes lower than –0.26, which corresponds to 77% of the 
national per capita GDP) growth rates are high and slightly increasing (denoting a 
diverging process), while regions with relative initial incomes higher than –0.26 
follow a converging path. For the period 1971-2000, at low income levels, growth 
rates are initially high and then decreasing up to a minimum (corresponding to a 
relative log of GDP per capita of –0.34, which corresponds to 71% of the na-
tional per capita GDP). After that level, we cannot observe any relationship be-
tween the two variables. These results suggest that the initial income coefficient 
in the miss-specified linear model inherits the convergence exhibited among re-
gions associated with a common steady state in the correctly specified multiple 
regime process.  

By using this information, we split the sample in to two groups for both peri-
ods (see Table 3) and run OLS regression models with different intercepts and 
slopes (see Table 4).7 The results clearly show that the two-regime specification is 
much more reliable than the one-regime used in Table 1: the two groups of prov-
inces tend to converge to different steady states. For the entire and the first peri-
ods (characterised by strong convergence), we estimate a negative slope only for 
the second regime (the convergence speed is 3% for the entire period and 5.9% 
for the period 1951-1970); for the second period, again the coefficient on the ini-
tial income is never significant. The Chow test also confirms the presence of in-
stability in the parameters for the entire period and the period 1951-1970, while 
the hypothesis of stability is not rejected for the second period. 

6 For the first period the lowess has been specified as a local linear model with span = 0.5; for the 
second period a local quadratic model with span = 0.5 has been applied. A brief description of the 
lowess regression technique is given in Appendix 2. 

7 Table 3 shows that the group of low-income provinces includes mainly Southern provinces 
(given in bold letters), i.e. the least developed provinces in Italy. However, within the low-income 
group, we find over the period 1951-1970 even some central and North-Eastern provinces. On the 
other hand, some large southern provinces such as Napoli, Sassari, Palermo and Cagliari are in-
cluded in the second group. 
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             Panel A (Period 1951-2000) Panel B (Period 1951-1970) 

Panel C (Period 1971-2000) 

Figura 3 – Per capita GDP Levels vs Growth Rates (Nonparametric Regression). 

TABLE 3 

Multiple Regimes (Southern provinces are given in bold letters) 

Periods 1951-1970 and 1951-2000 

Group 1 
(41 provinces) 
(yt < -0.26) 

Avellino, Potenza, Agrigento, Enna, Campobasso, Caltanissetta, Beneven-
to, Caserta, Frosinone, Catanzaro, Lecce, Cosenza, Reggio Calabria, Rovi-
go, Salerno, Ragusa, Matera, Teramo, Trapani, Chieti, L'Aquila, Foggia, 
Treviso, Nuoro, Brindisi, Rieti, Latina, Siracusa, Pesaro, Padova, Perugia, 
Ascoli P., Bari, Catania, Udine, Forlì, Arezzo, Viterbo, Belluno, Messina, 
Modena 

Group 2 
(51 provinces) 
(yt > -0.26) 

Reggio E., Sassari, Taranto, Macerata, Mantova, Verona, Cuneo, Ferrara, Pa-
lermo, Brescia, Asti, Pescara, Cremona, Vicenza, Parma, Sondrio, Piacenza, 
Bergamo, Pistoia, Trento, Ravenna, Siena, Lucca, Cagliari, Venezia, Massa, 
Terni, Alessandria, Pisa, Napoli, Ancona, Grosseto, La Spezia, Pavia, Bologna, 
Bolzano, Como, Gorizia, Novara, Aosta, Imperia, Vercelli, Livorno, Varese, 
Firenze, Torino, Savona, Trieste, Milano, Roma, Genova 

Period 1971-2000 

Group 1 
(21 provinces) 
(yt < -0.34) 

Avellino, Agrigento, Potenza, Catanzaro, Lecce, Benevento, Cosenza, 
Campobasso, Enna, Reggio Calabria, Caserta, Bari, Catania, Salerno, 
Brindisi, Foggia, Nuoro, Caltanissetta, Ragusa, Palermo, Trapani 

Group 2 
(71 provinces) 
(yt > -0.34) 

Teramo, Matera, Napoli, Messina, Chieti, Rieti, L'Aquila, Perugina, Pesca-
ra, Rovigo, Frosinone, Macerata, Ascoli P., Sassari, Cagliari, Udine, Pesaro, 
Taranto, Padova, Asti, Viterbo, Forlì, Terni, Cuneo, Imperia, Lucca, Belluno, 
Treviso, Pistoia, Siracusa, La Spezia, Ferrara, Alessandria, Grosseto, Ancona, 
Vicenza, Sondrio, Latina, Arezzo, Verona, Venezia, Savona, Vercelli, Massa, 
Gorizia, Novara, Bergamo, Pavia, Bolzano, Siena, Mantova, Livorno, Cremona, 
Genova, Ravenna, Piacenza, Brescia, Pisa, Firenze, Trento, Reggio E., Como, 
Modena, Parma, Trieste, Roma, Bologna, Torino, Varese, Aosta, Milano 
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TABLE 4 

Per Capita Income Growth of Italian Provinces Multiple Regime Models – OLS Estimates 
(Number into brackets refer to the p-values) 

1951-2000 1951-1970 1971-2000 

1
0.478 

(0.013) 
1.257 

(0.001) 
0.011 

(0.827) 

1
0.013 

(0.972) 
0.719 

(0.323) 
-0.283 
(0.124) 

2
0.092 

(0.109) 
0.287 

(0.009) 
0.282 

(0.481) 

2
-1.586 
(0.000) 

-3.604 
(0.000) 

1.314 
(0.517) 

Adjusted R2 0.505 0.560 0.001 
Log-likelihood -40.720 -99.113 -51.505 
Schwartz Criterion 99.528 216.314 121.099 

Test of Structural instability (Chow test) 
7.295 

(0.001) 
15.503 
(0.000) 

0.333 
(0.716) 

Stability test of coefficient 1
3.779 

(0.055) 
6.702 

(0.011) 
0.453 

(0.502) 

Stability test of coefficient 1
13.230 
(0.000) 

27.147 
(0.000) 

0.617 
(0.434) 

Regression Diagnostics    

Jarque-Bera 
2.683 

(0.261) 
4.367 

(0.112) 
1.454 

(0.483) 

Moran’s I 
6.988 

(0.000) 
5.522 

(0.000) 
3.834 

(0.000) 

LM-error 
41.401 
(0.000) 

25.250 
(0.000) 

11.417 
(0.000) 

LM-lag
12.061 
(0.000) 

3.224 
(0.072) 

7.997 
(0.000) 

Notes: Chow test= ' ' ' 2{ }/ ( )R R U U R R ke e e e e e , where eR (eU) are the residuals for a restricted (unrestricted) regres-

sion. Under the null hypothesis of no parameter instability ( 1= 2), the Chow test is distributed as 2( )k .

Even controlling for non-linearities or multiple regime effects (when they are 
present), there is significant spatial dependence remaining in the cross-sectional 
OLS models. However, the values of I-Moran, LM-error and LM-lag tests re-
ported in Table 4 are much lower than those reported in Table 1, especially for 
the period 1951-1970. This means that spatial dependence partially absorbs the 
non-linearity of the true function. 

3.4. -convergence and spatial dependence 

Since the problem of spatial autocorrelation is not removed with the spatial re-
gime specification, in the remainder of the paper we will focus on the spatial de-
pendence modelling. Tables 5 and 6 display the results of maximum likelihood 
estimates of spatial error and spatial lag models for the entire and two sub-
periods, respectively under the hypothesis of unique and double regimes.8 The 
parameters associated with the spatial error and the spatial lag terms are always 
highly significant. This confirms the pronounced pattern of spatial clustering for 
growth rates found in Section 3.1 by looking at the Moran’s I statistics.  

8 An OLS cross-regressive model, which includes a spatial lag of the initial per capita income 
level, has been also tested for each period and for different specifications. The coefficient of this 
variable, however, was never found to be significant. In fact the diagnostics indicate that there is 
significant spatial dependence remaining in the cross-regressive model. 
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Looking at these two tables, we can firstly observe that the two-regime models 
exhibit smaller estimates of the spatial correlation parameters than their one-
regime counterparts. For example, for the first period, the estimate of the spatial 
autoregressive parameter in the two-regime model is 0.178, while it is 0.281 in the 
one-regime model. Again, we hypothesize that this is due to a ‘spill-over’ between 
the non-linearity of the underlying functions and the estimation of the spatial pa-
rameters. By forcing the data to conform to the linear parametric form, the resid-
ual non-linearities are assumed into the spatial parameter.  

Again, the results of Chow tests indicate that the hypothesis of stability in the 
parameters can be rejected (only in the case of the spatial lag model) for the entire 
and the first period. This finding has two implications. First, it confirms the pres-
ence of one-common regime for the period 1970-2000; thus, for that period we 
will discuss only the estimates reported in Table 5. Second, it seems quite evident 
that the spatial error model absorbs the non-linearities in the parameters and al-
ways leads to reject the hypothesis of multiple regimes. Moreover, the fit of the 
one-regime spatial error model (based on the values of Schwartz Criterion) is al-
ways higher than those of OLS and maximum likelihood spatial lag one- and two-
regime models.  

TABLE 5 

Per Capita Income Growth of Italian Provinces Spatial Dependence Models – ML Estimates 
(Number into brackets refer to the p-values) 

1951-2000 1951-1970 1971-2000 

Spatial error 
model 

Spatial lag 
model 

Spatial error 
model 

Spatial lag 
model 

Spatial error 
model 

Spatial lag 
model 

-0.110 
(0.380) 

-0.047 
(0.264) 

-0.092 
(0.705) 

-0.027 
(0.766) 

-0.135 
(0.294) 

-0.015 
(0.740) 

-1.687 
(0.000) 

-0.961 
(0.000) 

-3.386 
(0.000) 

-1.940 
(0.000) 

-1.652 
(0.000) 

-0.352 
(0.042) 

0.819 
(0.000) 

 0.767 
(0.000) 

0.719 
(0.000) 

 0.394 
(0.000) 

0.281 
(0.005) 

0.330 
(0.006) 

Log Likelihood -1.687 -39.978 -83.317 -109.656 -40.519 -48.429 
Schwartz 
Criterion 

12.419 93.522 
175.677 232.877 90.083 110.422 

LR test (OLS vs. 
Spatial error model) 

92.178 
(0.000) 

 59.362 
(0.000) 

22.669 
(0.000) 

LM-lag
7.088 

(0.007) 
 9.854 

(0.002) 
25.382 
(0.000) 

LR test (OLS vs. 
Spatial lag model) 

 15.597 
(0.000) 

6.684 
(0.009) 

6.850 
(0.008) 

LM-error 
 45.769 

(0.000) 
42.649 
(0.000) 

2.498 
(0.113) 

Notes: 
LR (Likelihood Ratio) tests are tests on difference in fit:  

1) LR test (Spatial lag model vs. OLS) = 
2 2 2(ln ln ) 2 ln(1 ) (1)OLS SAL i

i

N

2) LR test (Spatial error model vs. OLS) = 
2 2 2(ln ln ) 2 ln(1 ) (1)OLS SEM i

i

N

where i  are the eigenvalues of W. The null hypothesis is that the two models are equivalent. In the LR test (OLS vs. 

Spatial lag model), when the null hypothesis is rejected, the OLS estimator is inconsistent. In the LR test (OLS vs. Spa-
tial error model), when the null hypothesis is rejected, the OLS estimator is unbiased but inefficient. 



Spatial dependence and non-linearities in regional growth behaviour in Italy 161

For the entire and the first period, the coefficient of the initial level of per-
capita income (and thus the implied convergence rate) decreases in the spatial lag 
model (both in the case of one and two regimes), while it increases in the spatial 
error model (which exhibits only one regime). As it is known, a decrease in the 
parameter of the initial condition, due to the inclusion of the spatial lag term in 
the model, indirectly confirms the positive effect of factor mobility, trade rela-
tions and knowledge spill-over on regional convergence. This result is in line with 
the dominant opinion that the strong convergence occurred in Italy during the 
second world war until the early 1970s was partly due to technological transfer 
process (a strong regional convergence in terms of labour productivity occurred 
indeed over this period) and to a massive labour migration process. 

TABLE 6 

Per Capita Income Growth of Italian Provinces 
Spatial Dependence Models with Mutiple Regimes – ML Estimates 

(Number into brackets refer to the p-values) 

 1951-2000 1951-1970 1971-2000 
Spatial error 

model 
Spatial lag 

model 
Spatial error 

model 
Spatial lag 

model 
Spatial error 

model 
Spatial lag 

model 

1
-0.238 
(0.438) 

0.328 
(0.059) 

0.200 
(0.709) 

1.103 
(0.001) 

-0.072 
(0.541) 

-0.007 
(0.882) 

1
-1.730 
(0.000) 

-0.151 
(0.668) 

-3.328 
(0.000) 

0.557 
(0.423) 

-1.439 
(0.000) 

-0.383 
(0.029) 

2
-0.017 
(0.919) 

0.019 
(0.713) 

0.483 
(0.051) 

0.211 
(0.045) 

-0.618 
(0.052) 

0.199 
(0.590) 

2
-1.726 
(0.000) 

-1.394 
(0.000) 

-3.348 
(0.000) 

-3.433 
(0.000) 

-3.354 
(0.001) 

1.075 
(0.567) 

0.806 
(0.000) 

0.681 
(0.000) 

0.671 
(0.000) 

0.327 
(0.000) 

0.178 
(0.070) 

0.336 
(0.004) 

Log Lik. -1.445 -35.248 -81.936 -97.582 -38.782 -47.969 
Sch. Crit. 20.979 93.106 178.960 217.773 95.651 118.547 

Chow test 
0.581 

(0.747) 
10.534 
(0.005) 

0.695 
(0.691) 

28.713 
(0.000) 

3.897 
(0.142) 

0.926 
(0.629) 

Stability test 

of 1

0.397 
(0.528) 

2.921 
(0.087) 

0.227 
(0.633) 

6.122 
(0.013) 

2.573 
(0.108) 

0.304 
(0.581) 

Stability test 

of 1

0.000 
(0.988) 

9.675 
(0.001) 

0.026 
(0.871) 

25.020 
(0.000) 

3.079 
(0.080) 

0.598 
(0.439) 

LR-test 
(OLS vs. 
SEM)

78.549 
(0.000) 

42.354 
(0.000) 

25.447 
(0.000) 

LM-lag
79.070 
(0.000) 

41.119 
(0.000) 

28.364 
(0.000) 

LR-test 
(OLS vs. 
SAR)

10.943 
(0.000) 

13.062 
(0.000) 

7.074 
(0.007) 

LM-error  
28.483 
(0.000) 

26.933 
(0.000) 

2.721 
(0.099) 

Notes: Chow test when the error term follows a spatial autoregressive progress: 
' ' ' ' ' 2{ ( ) ( ) ( ) ( ) }/ ( )

UR R U R R ke I W I W e e I W I W e e e  where eR (eU) are the residuals for a restricted 

(unrestricted) regression. 

The increase in the coefficient on initial per-capita income observed in the spa-
tial error model for the entire and the first periods has of course a different inter-
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pretation. In this case, indeed, the correction for spatial dependence in the error 
term tends to capture the effect of omitted variables (different from factor migra-
tion, trade and spill-over), which have a negative effect on growth (such as the 
crime rate). We could say that the results of the spatial error model “obscure” the 
interpretation of the spatial dependence correction as a way to capture the effect 
of the regional openness degree on convergence. This point would suggest the 
necessity of using econometric tools, such as the fixed-effects model, which allow 
to properly capture the effects of omitted variables and thus to isolate the effect 
of spatial dependence.  

Finally, Table 5 shows that, if compared to the OLS estimates, the coefficient 
of the initial per capita income (and thus the implied convergence rate) of the sec-
ond period increases both in the spatial error and in the spatial lag models, sug-
gesting that in this period regional spill-over and labour migration did not give 
any contribution to the regional convergence process, and thus spatial depend-
ence parameters tend only to capture the effect of other omitted variables (which 
have negative effect on growth, such as the crime rate). This interpretation is in 
line with the common opinion according to which in the period 1970-2000 the 
lack of regional convergence (in particular the lack of convergence between 
Northern and Southern regions) has been – at least in part – due to the reduction 
in the opportunity for technological catching-up and to the reduction in the eco-
nomic convenience for labour migration. Thus, for the second period, additional 
regressors should be included in the model and/or fixed effect models should be 
used to capture at least the effect of time invariant (unobserved) effects. 

4. CONCLUDING REMARKS

Analysing regional growth behaviour and testing regional convergence within a 
cross-sectional regression ( -convergence) approach involve important economic 
and econometric issues, which can be grouped in three main categories: i) spa- 
tial dependence or spatial interaction, ii) omitted variables and iii) non- 
linearities (Magrini, 2003; Durlauf and Quah, 1999; Islam, 2003; and Temple, 
1999). This paper represents a first step of a research program aimed at develop-
ing a proper econometric approach which simultaneously takes into account 
these three issues. 

In particular, in the present paper we have examined the importance of spatial 
dependence and non-linearities in estimating the convergence process among 
Italian provinces (European NUTS-3 Regions) in the period 1951-2000 and in 
two sub-periods (1951-1970 and 1970-2000). Generally speaking, our results con-
firm that neglecting the spatial nature of data leads both to a misspecification of 
the growth model and to severe biases in the estimation of convergence rates. 

Moreover, the evidence of two regimes for the entire and the second periods 
suggests that absolute convergence occurred only within a sub-group of regions. 
Precisely, only “relatively high income” regions followed a convergence path. As-
suming a common regime (or linear) approach is therefore misleading: non-
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linearities are important in regional growth even when the spatial dependence, in 
the form of spatial lag of the growth rate, is controlled for. Moreover, one can be 
quite confident that the parameter of the spatial lag term of the spatial lag model 
tends to capture the positive effects of spatial interaction or openness (in the 
form of factor mobility, trade relations and knowledge spill-over) on regional 
convergence. 

On the other hand, our findings show that controlling for spatial dependence 
through the spatial error model leads to obscure the effects of non-linearities in 
the parameters and to absorb the effects on growth of omitted variables different 
from factor mobility, trade relations and knowledge spill-over. This result con-
firms the necessity, even in the context of non-linear spatial dependent regression 
models, to control for the effect of heterogeneity and/or omitted variables by us-
ing panel data models. 
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APPENDIX 

A1. The choice of the weight matrix

A central issue in the specification of spatial auto-covariance models is the 
choice of the ‘W’ spatial weights matrix. As the matrix is specified a priori, and as 
alternate specifications can have implications both for the theoretical interpreta-
tions of the model as well as the estimation of the spatial autocorrelation parame-
ters, one of the primary criticisms of spatial auto-covariance models is the man-
ner in which this matrix is specified.  

A wide variety of methods are used in the literature to determine this matrix, 
including inverse functions of distances between observations, functions of the 
length of relative showed borders, measures based on semi-variograms, or meas-
ures based on non-spatial factors such as ‘economic distance’ - e.g. weighted trade 
ratios, or social distance as determined by social network theory. More com-
monly, spatial auto-covariance models deal with the relations between contiguous 
economic entities such as cities, regions, or nations, and the matrix is then deter-
mined based on binary relations between these entities, defining a network of in-
teractions. In this case, functions of the contiguity of the observations or other 
such measures are used to create the W matrix.  

We have chosen to use a spatial weights matrix based on the binary contiguity of 
the spatial regions. We believe that this should be sufficient to capture the major 
economic spatial interactions under consideration in our model: technological spill-
over, trade relations and factor mobility. By this specification, regions that are de-
termined to be ‘next to one another’ by virtue of sharing a significant border have a 
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‘1’ entered in the corresponding cell of the matrix, where those that are not 
neighbours have a ‘0’. The resulting W matrix in this case is symmetric, with ‘0’s 
along the diagonal. This matrix is then normalized to be row-stochastic, so that 
each row sums to unity. Normalization ensures that the estimated auto-covariance 
parameters are bounded between {-1,1}, allowing them to take the interpretation, 
in our case, of elasticities. Normalizing the W matrix also imposes the interpretation 
of ‘competition between neighbours’ (Anselin, 1988, pg. 24), in that the effects on 
growth rates between neighbouring regions is equal to 1/M, where M is the num-
ber of neighbours to that region. Thus the more neighbours any region has, the less 
any one of its neighbours contributes to its own growth rate. 

A2. The scatterplot smoother and the lowess regression

A scatterplot smoother helps addressing one of the simplest yet most funda-
ment questions in data analysis: “what is our best guess of y, given x?” To define 
scatterplot smoothing, let x=(x1,...xn)’ be the observations on an independent 
variable and let y=(y1,...yn)’ be the observations on a dependent variable. Assume 
that the data are sorted by x. A scatterplot smoother takes x and y and returns a 
function ˆ ĝ( )y x . Ordinary least squares (OLS) regression is a special case of a 

smoother, providing an infinite amount of smoothing. This is because in OLS re-
gression the relationship between x and y is taken to be global, not local, and 
hence the smoothing neighbourhood is the entire dataset. On the contrary, in low-
ess regression the relationship between x and y is taken to be local and, thus, lowess 
is one of the most flexible nonparametric smoothing methods (Cleveland, 1979; 
Cleveland and Devlin, 1988). 

Given a target point 0x , lowess yields 0 0ˆ ˆ| ( )x g xy  as follows: 

1. Identify the k nearest neighbours of 0x , i.e., the k elements of x closest to 

0x . This set is denoted 0( )N x . The analyst controls k via a “span” argument, 

which defines the size of the neighbourhood in terms of a proportion of the 
sample size: i.e. k span n .

2. Calculate 
00 0( ) max iN xx x x , the distance of the near-neighbour most 

distant from 0x .

3. Calculate weights iw  for each point in 0( )N x , using the following tricube weight 

function:

0

0( )

ix x
W

x

where 

3 3(1 ) 0 1
( )

0

z for z
W z

otherwise
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Note that 0( ) 1W x , and that the weights decline smoothly to zero over the 

set of nearest-neighbours, such that ( ) 0iW x  for all non near-neighbours. 

The use of the tri-cube weight function here is somewhat arbitrary; any weight 
function that has smooth contact with 0 on the boundary of 0( )N x  will pro-

duce a smooth fitted function.  
4. Regress y on x and a constant (for local linear fitting), using weighted least 

squares (WLS) with weights iw  as defined in the previous step. Quadratic or 

cubic polynomial regressions can also be used in these local regressions or 
even mixtures of low-order polynomials.  

5. The smoothed value 0ˆ( )g x  is the predicted value from the WLS fit at 0x .
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RIASSUNTO

Dipendenza spaziale e non-linearità nella crescita in Italia 

In questo lavoro, presentiamo un’analisi empirica della convergenza regionale del red-
dito pro capite in Italia nel periodo 1951-2000, basata su un livello di aggregazione molto 
fine (le regioni NUTS-3 rappresentate dalle province italiane). Per quanto concerne la me-
todologia, usiamo sia approcci non parametrici che di econometria spaziale per catturare 
l’effetto sia della dipendenza spaziale che della non linearità nella relazione tra tassi di cre-
scita e livelli iniziali di reddito pro capite. I risultati confermano l’ipotesi di club convergence e 
suggeriscono che gli spillover e i club di convergenza sono spazialmente concentrati. 

SUMMARY

Spatial dependence and non-linearities in regional growth behaviour in Italy 

In this paper, we present an empirical study of per capita income convergence in Italy 
over the period 1951-2000 based on a fine level of aggregation (the NUTS-3 EU regions 
represented by the Italian provinces). Concerning the statistical methodology, we use both 
nonparametric and spatial econometrics approaches to measure the effects of spatial de-
pendence and non-linearities. Our results confirm the convergence club hypothesis and 
suggest that spillover and convergence clubs are spatially concentrated. 


