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1. INTRODUCTION

The problem of estimating stress-strength reliability has many applications in a variety
of fields. In the stress-strength model with X as stress applied and Y as the strength
of the system, R = P (X > Y ) is called the stress-strength reliability and it measures
the chance that the system fails. We want to estimate the stress-strength reliability R=
P (X > Y ) using record data. This probability arises in life testing experiments when X
and Y represent the lifetimes of two devices and it gives the probability that the device
with lifetime Y fails before the other. If X and Y represent the life lengths of a product
with same guarantee period produced by two companies, then P (X > Y ) represents
the probability that one is better than the other. This probability can be considered
as a general measure of difference between populations. Thus the probability P (X >
Y ), even though it is called stress-strength reliability has applications (Kotz et al., 2003)
beyond evaluation of the actual stress-strength reliability.

Records were unexplored until Chandler (1952) introduced and studied some prop-
erties of record values. Since then abundant literature was devoted to the study of
records (Arnold et al., 1998). Record values and associated statistics have an important
role in many real life applications involving data relating to meteorology, hydrology,
sports and life tests. In industry and reliability many products may fail under stress.
For example, a wooden beam breaks when sufficient perpendicular force is applied to
it, a battery dies under stress of time, an electronic component ceases to function in an
environment of too high temperature. In such experiments for getting the precise failure
point, measurements may be made sequentially and only values larger (or smaller) than
all previous ones are recorded. Data of this type are called record data. Let X1,X2, . . . ,Xn
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be a sequence of i.i.d random variables with an absolutely continuous cumulative distri-
bution function (cdf) F(x) and probability density function (pdf) f(x). An observation
X j is called an upper record if its value exceeds all previous observations. That is X j is
an upper record if X j >Xi for every i < j .

Estimation of stress-strength reliability based on record data was considered by Bak-
lizi (2008) and Asgharzadeh et al. (2017) for the one and two parameter exponential dis-
tribution, and for the generalized exponential distribution respectively. Baklizi (2012)
also studied inference on stress-strength reliability in the two-parameter Weibull model
based on records. Estimation of stress-strength parameter using record values from pro-
portional hazard model was considered by Basirat et al. (2016) and for the two-parameter
bathtub shaped life time distribution based on upper record values was presented by
Tarvirdizade and Ahmadpour (2016). Rezaei et al. (2010) studied the estimation of
R = P (X < Y ) when X and Y are two independent generalized Pareto random vari-
ables with common scale parameters and different shape parameters. In this paper, we
consider the estimation of R= P (X > Y ) based on upper records when X and Y are in-
dependent random variables having Pareto distributions with the same scale parameters
and different shape parameters.

The organization of this paper is as follows. In Section 2, we discuss the likelihood
inference of the stress-strength parameter. Section 3 describes the Bayesian inference. In
Section 4, a simulation study is conducted to investigate and compare the performance
of point estimators presented in this paper. Section 5 presents a real data analysis for the
illustration of the proposed estimation methods . Finally some conclusions are given in
Section 6.

2. LIKELIHOOD INFERENCE

The Pareto distribution is quite popular in describing the distribution of wealth in
a given population. Recently, the generalized Pareto distribution was considered by
Rezaei et al. (2010) for estimation of stress-strength reliability. The pdf and the cdf of
the Pareto distribution with parameters α and β (both positive) are given by

f (x) =
βαβ

xβ+1
, x ≥ α,α > 0,β> 0, (1)

F (x) = 1− (α
x
)β.

Let X and Y be two independent random variables from the Pareto distribution with
parameters (α,β1) and (α,β2) respectively. Then using (1)

R= P (X > Y ) =
∫ ∞

α

∫ ∞

y

β1α
β1

xβ1+1

β2α
β2

yβ2+1
d xd y =

β2

β1+β2
.

We are interested in estimating R based on upper record values on both variables.
Let

˜
r = (r1, r2, ......, rn) be a set of upper records from distribution of X with pdf f and
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cdf F and let
˜
s = (s1, s2, ......, sm) be an independent set of upper records from distribution

of Y with pdf g and cdf G. The likelihood functions are given by

L(α,β1|˜
r ) = f (rn)

n−1
∏

i=1

�

f (ri )
1− F (ri )

�

, 0< r1 < r2 < .....< rn <∞, (2)

L(α,β2|˜
s) = g (sm)

m−1
∏

i=1

�

g (si )
1−G(si )

�

, 0< s1 < s2 < .....< sm <∞. (3)

Substituting f, F, g and G, the joint likelihood and the joint log-likelihood are respec-
tively given by

L(α,β1,β2,
˜
r,

˜
s) =

βn
1α

β1

rβ1+1
n

n−1
∏

i=1

r−1
i

βm
2 α

β2

sβ2+1
m

m−1
∏

i=1

s−1
i ,

l (α,β1,β2,
˜
r,

˜
s) = n logβ1+β1 logα−

n−1
∑

i=1

log ri − (β1+ 1) log rn

+ m logβ2+β2 logα−
m−1
∑

i=1

log si − (β2+ 1) log sm . (4)

δ l
δβ1

= 0 ⇒ n
β1
= log

� rn

α

�

. (5)

δ l
δβ2

= 0 ⇒ m
β2
= log

� sm

α

�

. (6)

When α is known,

β̂1 =
n

log (rn/α)
, β̂2 =

m
log (sm/α)

. (7)

Then the MLE of R is given by R̂= β̂2

β̂1+β̂2

.

REMARK 1. While estimating shape parameters using record values it is assumed that
the scale parameters are common and known. The procedure is same if we assume that the
scale parameters α1 and α2 are assumed to be different but known. On the other hand if α1
and α2 are assumed to be unknown we have to estimate them from the upper record data.
But due to the nature of the scale parameter (x ≥ α) in the model, α cannot be estimated
consistently from upper record values alone. Hence the assumption that the scale parameters
are known cannot be relaxed. In the data set analysed we are using a data with same scale pa-
rameter. Intuitively this is an appropriate situation when we are comparing the performance
of two products with same warranty period.
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Now we shall study the distribution of β̂1 and β̂2. Consider first β̂1 = z1 =
n

log(rn/α)
.

We know that the pdf of Rn is given by

fRn
(rn) =

1
(n− 1)!

f (rn)[− log(1− F (rn))]
n−1

=
1

(n− 1)!
βn

1α
β1

rβ1+1
n

[log(rn/α)]
n−1 rn >α. (8)

Therefore the pdf of z1 = β̂1 is given by

fZ1
(z1) =

(nβ1)
n

(n− 1)!
exp

−nβ1
z1

zn+1
1

, z1 > 0. (9)

Here
Z1 ∼ Inv-Gamma(n, nβ1).

Similarly
Z2 ∼ Inv-Gamma(m, mβ2).

Therefore we can find the pdf of

R̂ =
β̂2

β̂1+ β̂2

=
Z2

Z1+Z2
=

1
1+Z1/Z2

. (10)

Consider Z1
Z2

. By the properties of the inverse-gamma distribution and its relation with

the gamma distribution, we have nβ1
z1
∼Gamma(n, 1) and mβ2

z2
∼Gamma(m, 1). Hence

2nβ1
z1
∼ χ 2

2n and 2mβ2
z2
∼ χ 2

2m . Since the two random variables are independent we have
�

2mβ2
2mZ2

�

�

2nβ1
2nZ1

� =
β2Z1

β1Z2
=

R
1−R

β̂1

β̂2

∼ F (2m, 2n).

This can be used to construct the following 100(1−α)% confidence interval for R







1+
β̂1

β̂2F α
2 ,2m,2n





−1

,



1+
β̂1

β̂2F1− α
2 ,2m,2n





−1

 . (11)
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3. BAYESIAN INFERENCE

It is also interesting how supplementary information other than upper record values
available can be incorporated. A convenient vehicle is the method of Bayesian infer-
ence. We have considered both informative and non-informative priors. The sampling
distribution of β1 and β2 and hence R will instigate the use of an appropriate conju-
gate prior. We assume the conjugate family of prior distribution to be gamma family of
distributions. So,

π(β1) =
1
Γ (γ1)

θγ1
1 β

γ1−1
1 exp−θ1β1 β1 > 0;θ1,γ1 > 0, (12)

π(β2) =
1
Γ (γ2)

θγ2
2 β

γ2−1
2 exp−θ2β2 β2 > 0;θ2,γ2 > 0. (13)

Using the priors and the likelihood functions, the posterior distributions of β1 and β2
are obtained as

(β1|˜
r )∼Gamma

�

n+ γ1 , θ1+ log
� rn

α

��

,

(β2|˜
s)∼Gamma

�

m+ γ2 , θ2+ log
� sm

α

��

.
(14)

Since β1 and β2 are independent, using standard transformation techniques and after
some manipulations the posterior pdf of R is given by

fR(r ) =C
(1− r )n+γ1−1 r m+γ2−1

�

(1− r )
�

θ1+ log rn
α

�

+ r
�

θ2+ log sm
α

��n+m+γ1+γ2
, 0< r < 1

where

C =
Γ (n+m+ γ1+ γ2)
Γ (n+ γ1)Γ (m+ γ2)

�

θ1+ log
� rn

α

��n+γ1
�

θ2+ log
� sm

α

��m+γ2
.

Under squared error loss function, the Bayes estimator of R is the expected value of
R. This expected value contains an integral which is not obtainable in a simple closed
form. Therefore using the approximate method of Lindley (1980), we can find the ap-
proximate Bayes estimator R̄B relative to square error loss function. By the approximate
method of Lindley, the Bayes estimator for u(θ) for a prior v(θ) is given by

∫

θ
u(θ)v(θ)expL(θ) dθ
∫

θ
v(θ)expL(θ) dθ

= [u∗+
1
2
(u11σ11+ u22σ22)+ρ1u1σ11+ρ2u2σ22

+
1
2
[σ11σ22(u1L12+ u2L21)+ u1σ

2
11L30

+ u2σ
2
22L03]+O(

1
n2
)]

at θ̂
. (15)
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where u(θ) = β2
β1+β2

; ρ= logarithm of joint priors=logC + (γ1 − 1) logβ1 − θ1β1 +
(γ2 − 1) logβ2 − θ2β2; u∗ is the MLE of u(θ)and L(θ) is the logarithm of likelihood
function. C is independent of β1 and β2. Further

u1 =
δu
δβ1

=
−β2

(β1+β2)
2 ; u2 =

δu
δβ2

=
β1

(β1+β2)
2 .

u11 =
δ2u
δβ2

1

=
2β2

(β1+β2)
3 ; u22 =

δ2u
δβ2

2

=
−2β1

(β1+β2)
3 .

ρ1 =
γ1− 1
β1

−θ1; ρ2 =
γ2− 1
β2

−θ2.

σ =
�

−Li j

�−1
where Li j =

�

δ2L
δβiδβ j

�

.

σ =
�

β2
1

n 0

0 β2
2

m

�

; L30 =
δ3L
δβ3

1

=
2n
β3

1

; L03 =
δ3L
δβ3

2

=
2m
β3

2

.

Substituting in (15) we get the Bayes estimator as

R̄B = R̂+ R̂(1− R̂)







�

1− R̂− γ1+ β̂1θ1

�

n
+

�

γ2− R̂− β̂2θ2

�

m






. (16)

Furthermore, it follows from (14) that 2(θ1 + log rn
α ) (β1|˜

r ) ∼ χ 2
2(n+γ1)

and 2(θ2 +
log sm

α ) (β2|˜
s) ∼ χ 2

2(m+γ2)
. It follows that π(R|

˜
r,

˜
s), the posterior distribution of R is

equal to that of (1+AW )−1 where W ∼ F2(n+γ1),2(m+γ2)
and A= (n+γ1)(θ2+log sm

α )
(m+γ2)(θ1+log rn

α )
. There-

fore a Bayesian (1−α)% confidence interval for R is given by

�

�

AF1− α
2 ,2(n+γ1),2(m+γ2)

+ 1
�−1

,
�

AF α
2 ,2(n+γ1),2(m+γ2)

+ 1
�−1

�

. (17)

When we are ignorant about the parameter we use a non-informative prior. Here
we take Jeffreys’ non informative prior. We assume

π(β1) ∝
1
β1

β1 > 0, (18)

π(β2) ∝
1
β2

β2 > 0. (19)
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Using the priors and the likelihood functions, the posterior distributions of β1 and β2
are obtained as

(β1|˜
r )∼Gamma

�

n , log
� rn

α

��

.

(β2|˜
s)∼Gamma

�

m , log
� sm

α

��

.
(20)

Since β1 and β2 are independent, then, using standard transformation techniques and
after some manipulations the posterior pdf of R is given by

fR(r ) =C
(1− r )n−1 r m−1

�

(1− r ) log
� rn
α

�

+ r log
� sm
α

��n+m 0< r < 1

where

C =
Γ (n+m)
Γ (n)Γ (m)

�

log
� rn

α

��n �

log
� sm

α

��m
.

Under squared error loss function, the Bayes estimator of R is the expected value of
R. This expected value contains an integral which is not obtainable in a simple closed
form. Therefore using the approximate method of Lindley (1980), we can find the ap-
proximate Bayes estimator R̄B relative to square error loss function. By the approximate
method of Lindley, the Bayes estimator for u(θ) for a prior v(θ) and a likelihood func-
tion is given by

∫

θ
u(θ)v(θ)expL(θ) dθ
∫

θ
v(θ)expL(θ) dθ

= [u∗+
1
2
(u11σ11+ u22σ22)+ρ1u1σ11+ρ2u2σ22

+
1
2
[σ11σ22(u1L12+ u2L21)+ u1σ

2
11L30

+ u2σ
2
22L03]+O(

1
n2
)]

at θ̂
, (21)

where

u(θ) =
β2

β1+β2
; v(θ) =

1
β1β2

; ρ= log v(θ) = log
�

1
β1β2

�

.

The MLE of u(θ) is u∗ and the logarithm of the likelihood function is L(θ).
Further

u1 =
δu
δβ1

=
−β2

(β1+β2)
2 ; u2 =

δu
δβ2

=
β1

(β1+β2)
2 .

u11 =
δ2u
δβ2

1

=
2β2

(β1+β2)
3 ; u22 =

δ2u
δβ2

2

=
−2β1

(β1+β2)
3 .

ρ1 =
δρ

δβ1
=
−1
β1

; ρ2 =
δρ

δβ2
=
−1
β2

.
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σ =
�

−Li j

�−1
where Li j =

�

δ2L
δβiδβ j

�

.

σ =
�

β2
1

n 0

0 β2
2

m

�

; L30 =
δ3L
δβ3

1

=
2n
β3

1

; L03 =
δ3L
δβ3

2

=
2m
β3

2

.

Substituting in (21) we get the Bayes estimator as

R̄B = R̂+ R̂(1− R̂)





�

1− R̂
�

n
− R̂

m



 . (22)

Furthermore, it follows from (20) that 2 log( rn
α ) (β1|˜

r )∼ χ 2
2n and 2 log( sm

α ) (β2|˜
s)∼

χ 2
2m . It follows that π(R|

˜
r,

˜
s), the posterior distribution of R is equal to that of (1+

AW )−1 where W ∼ F2n,2m and A = n log( sm
α )

m log( rn
α )

. Therefore a Bayesian (1− α)% credible

interval for R is given by
�

�

AF1− α
2 ,2n,2m + 1

�−1
,
�

AF α
2 ,2n,2m + 1

�−1
�

, (23)

which happens to be the same as the confidence interval based on MLE.

4. A SIMULATION STUDY

In this section, a Monte Carlo simulation study is conducted to investigate and compare
the performance of point estimators and confidence intervals presented in this paper.
The performance of MLE and Bayes estimators is compared in terms of their biases and
mean squared errors (MSE). We consider only one case, when the scale parameter α
is known. We use the parameter values (β1,β2) = (4,1), (2,2), (1,3), (1,9). Therefore
Rexact = 0.2,0.5,0.75,0.9. To compute the Bayes estimators we consider two methods:
one with conjugate prior and the other with Jeffreys’ invariant prior. We report all the
results based on 2000 replications.

When the scale parameter is known we obtain the average estimates, biases and MSEs
of the MLE and the approximate Bayes estimator of R. We also compute the expected
length for the confidence intervals obtained by using the ML method, the Jeffreys’ prior
Bayes method and the conjugate prior Bayes method. The results are reported in Table
1 and Table 2.

From the simulation results, it is observed that as the sample size (n,m) increases
the biases and the MSEs decrease. Thus the consistency properties of all the methods
are verified. It is observed that the bias of the estimators become negative for values of
R larger than 0.5. It is also observed that the intervals based on all methods are maxi-
mized when R=0.5 and they becomes shorter and shorter as we move away to smaller
and larger values. Increasing the sample size on either variable also results in shorter
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TABLE 1
Average estimates (AVR), bias and MSE of the estimators of R.

(n,m) R MLE Bayes non-inform Bayes conjugate
AVR Bias MSE AVR Bias MSE AVR Bias MSE

(4,4) 0.2 0.225 0.025 0.016 0.244 0.044 0.017 0.303 0.103 0.021
(4,7) 0.212 0.012 0.011 0.236 0.036 0.013 0.299 0.099 0.019
(4,10) 0.208 0.008 0.009 0.233 0.033 0.011 0.297 0.097 0.017
(7,4) 0.229 0.029 0.013 0.236 0.036 0.013 0.264 0.064 0.013
(7,7) 0.216 0.016 0.008 0.228 0.028 0.009 0.262 0.062 0.011
(7,10) 0.210 0.010 0.007 0.224 0.024 0.007 0.259 0.059 0.009
(10,4) 0.232 0.032 0.013 0.234 0.034 0.012 0.249 0.049 0.009
(10,7) 0.218 0.018 0.008 0.225 0.025 0.008 0.247 0.047 0.008
(10,10) 0.213 0.013 0.006 0.221 0.021 0.006 0.245 0.045 0.007

(4,4) 0.5 0.502 0.002 0.028 0.502 0.002 0.023 0.502 0.002 0.011
(4,7) 0.491 -0.009 0.023 0.504 0.004 0.019 0.526 0.026 0.012
(4,10) 0.486 -0.014 0.021 0.504 0.004 0.018 0.534 0.034 0.011
(7,4) 0.515 0.015 0.023 0.501 0.001 0.019 0.478 -0.022 0.012
(7,7) 0.503 0.003 0.017 0.503 0.003 0.015 0.502 0.002 0.011
(7,10) 0.498 -0.002 0.014 0.503 0.003 0.013 0.510 0.010 0.009
(10,4) 0.521 0.021 0.021 0.502 0.002 0.018 0.472 -0.028 0.011
(10,7) 0.509 0.009 0.014 0.503 0.003 0.013 0.495 -0.005 0.009
(10,10) 0.505 0.005 0.012 0.504 0.004 0.011 0.504 0.004 0.009

(4,4) 0.75 0.729 -0.020 0.019 0.712 -0.038 0.018 0.668 -0.083 0.018
(4,7) 0.725 -0.026 0.016 0.720 -0.030 0.015 0.701 -0.049 0.012
(4,10) 0.723 -0.028 0.015 0.724 -0.026 0.013 0.714 -0.036 0.010
(7,4) 0.743 -0.007 0.014 0.719 -0.030 0.015 0.669 -0.082 0.017
(7,7) 0.739 -0.011 0.010 0.728 -0.023 0.011 0.701 -0.049 0.011
(7,10) 0.737 -0.013 0.009 0.731 -0.019 0.009 0.714 -0.036 0.009
(10,4) 0.751 0.001 0.012 0.724 -0.026 0.013 0.672 -0.078 0.015
(10,7) 0.746 -0.004 0.008 0.732 -0.018 0.009 0.704 -0.046 0.009
(10,10) 0.744 -0.006 0.007 0.736 -0.014 0.007 0.717 -0.033 0.007

(4,4) 0.9 0.882 -0.018 0.006 0.865 -0.035 0.008 0.766 -0.134 0.027
(4,7) 0.880 -0.020 0.005 0.872 -0.028 0.006 0.819 -0.080 0.012
(4,10) 0.879 -0.020 0.005 0.875 -0.024 0.005 0.841 -0.059 0.008
(7,4) 0.891 -0.001 0.004 0.873 -0.027 0.006 0.775 -0.125 0.022
(7,7) 0.889 -0.010 0.003 0.879 -0.020 0.004 0.826 -0.074 0.009
(7,10) 0.889 -0.010 0.003 0.883 -0.017 0.003 0.846 -0.054 0.006
(10,4) 0.895 -0.005 0.003 0.877 -0.023 0.005 0.781 -0.119 0.019
(10,7) 0.895 -0.005 0.002 0.884 -0.016 0.003 0.830 -0.070 0.008
(10,10) 0.894 -0.006 0.002 0.887 -0.013 0.002 0.849 -0.050 0.005
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TABLE 2
Expected length (EL) for the confidence intervals.

(n,m) R MLE Bayes non-inform Bayes conjugate
95% EL 90% EL 95% EL 90% EL 95% EL 90% EL

(4,4) 0.2 0.457 0.384 0.457 0.384 0.489 0.414
(4,7) 0.418 0.348 0.418 0.348 0.451 0.379
(4,10) 0.400 0.332 0.400 0.332 0.433 0.363
(7,4) 0.398 0.336 0.398 0.336 0.412 0.349
(7,7) 0.346 0.290 0.346 0.290 0.365 0.307
(7,10) 0.323 0.269 0.323 0.269 0.342 0.287
(10,4) 0.373 0.316 0.373 0.316 0.379 0.321
(10,7) 0.317 0.266 0.317 0.266 0.328 0.276
(10,10) 0.290 0.243 0.290 0.243 0.303 0.254

(4,4) 0.5 0.585 0.503 0.585 0.503 0.574 0.494
(4,7) 0.535 0.458 0.535 0.458 0.523 0.448
(4,10) 0.512 0.438 0.512 0.438 0.499 0.427
(7,4) 0.535 0.458 0.535 0.458 0.523 0.449
(7,7) 0.470 0.401 0.470 0.401 0.462 0.394
(7,10) 0.441 0.375 0.441 0.375 0.433 0.369
(10,4) 0.513 0.439 0.513 0.439 0.500 0.428
(10,7) 0.441 0.376 0.441 0.376 0.433 0.369
(10,10) 0.406 0.345 0.406 0.345 0.399 0.339

(4,4) 0.75 0.499 0.423 0.499 0.423 0.513 0.436
(4,7) 0.439 0.373 0.439 0.373 0.443 0.376
(4,10) 0.413 0.352 0.413 0.352 0.411 0.349
(7,4) 0.457 0.383 0.457 0.383 0.473 0.399
(7,7) 0.385 0.324 0.385 0.324 0.393 0.332
(7,10) 0.353 0.298 0.353 0.298 0.358 0.302
(10,4) 0.438 0.366 0.438 0.366 0.453 0.382
(10,7) 0.359 0.301 0.359 0.301 0.369 0.310
(10,10) 0.324 0.272 0.324 0.272 0.329 0.277

(4,4) 0.9 0.314 0.256 0.314 0.256 0.416 0.347
(4,7) 0.259 0.215 0.259 0.215 0.317 0.265
(4,10) 0.238 0.198 0.238 0.198 0.275 0.229
(7,4) 0.279 0.226 0.279 0.226 0.381 0.315
(7,7) 0.219 0.179 0.219 0.179 0.278 0.230
(7,10) 0.195 0.161 0.195 0.161 0.234 0.195
(10,4) 0.263 0.212 0.263 0.212 0.363 0.299
(10,7) 0.200 0.164 0.201 0.164 0.258 0.213
(10,10) 0.175 0.144 0.175 0.144 0.213 0.177
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intervals. Except for R= 0.5 expected length for non-informative prior is shorter than
that for conjugate prior.

5. REAL DATA ANALYSIS

In this section we analyze a real dataset to illustrate the use of our proposed estimation
methods. The data from Crowder (2000) give the lifetimes of the steel specimens tested
at two different stress levels.
Dataset 1. (38.5 stress level): 60,51,83,140,109,106,119,76,68,67.
Dataset 2. (38 stress level): 100,90,59,80,128,117,177,98,158,107.
We fit a Pareto distribution to the two datasets separately. The estimated parameters
(based on ML methods), Kolmogorov-Smirinov (K-S) distances between the fitted and
the empirical distribution functions and the corresponding p-values are presented in Ta-
ble 3.

TABLE 3
Results of the real data analysis.

Data set Scale parameter Shape parameter K-S distance P-value
1 51 2.0173 0.2233 0.6247
2 51 1.3592 0.3577 0.119

From the table it is clear that the Pareto distribution with common scale parameter
fits quite well to both data. For the above data we observe the upper record values as
follows

˜
r : 60,83,140

˜
s : 100,128,177.

Based on these record values, we take α= 51, We obtain the MLE ofβ1 andβ2 from
(7) as 3.9611 and 3.2146 respectively. Therefore the MLE of R becomes R̂= 0.4479. The
corresponding 95% confidence interval based on (11) is equal to (0.1224,0.8253). In the
Bayesian inference, for the first estimator we take the values of the hyperparameters as
γ1 = γ2 = θ1 = θ2 = 0.5. Then we obtain the Bayes estimator R̄1 = 0.4775. Also the 95%
credible interval from (17) is (0.1295, 0.8121). Using a non-informative prior, the Bayes
estimator R̄2 = 0.4544. The corresponding 95% credible interval from (23) becomes
(0.1224, 0.8253).

6. CONCLUSION

This paper considers the estimation of stress-strength reliability R= P (X > Y ) based on
upper record values where X and Y are independent random variables from the Pareto
distribution with same scale parameter but different shape parameters. The results for
estimation of R by maximum likelihood estimation and the Bayesian approach are re-
ported when the scale parameter is known. From the simulation results, it is observed
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that as the sample size (n,m) increases the biases and the MSEs decrease. Thus the consis-
tency properties of all the methods are verified. It is observed that the bias of the estima-
tors become negative for values of R larger than 0.5. It is also observed that the interval
based on MLE is maximized when R = 0.5 and it becomes shorter and shorter as we
move away to smaller and larger values.Increasing the sample size on either variable also
results in shorter intervals. Except for R= 0.5, the expected length for non-informative
prior is shorter than that for conjugate prior.
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SUMMARY

In this paper, the estimation of stress-strength reliability based on upper record values is considered
when X and Y are independent random variables having a Pareto distribution with the same scale
parameter and with different shape parameters. The maximum likelihood estimator (MLE), the
approximate Bayes estimators and the exact confidence interval of the stress-strength reliability are
obtained. A Monte Carlo simulation study is conducted to investigate the merits of the proposed
methods. A real data analysis is presented for illustrative purpose.
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