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1. INTRODUCTION

Relevation transforms, introduced by Krakowski (1973) have attracted considerable in-
terest of researchers in survival analysis and reliability theory. Let X and Y be two
absolutely continuous non-negative random variables, with survival functions F̄ (.) and
Ḡ(.) respectively. Consider a component from a population where lifetime has survival
function F̄ (x). This component is replaced at the time of its failure at age x, by another
component of the same age x from another population. The lifetime of the second
component has survival function Ḡ(x). Let X #Y denote the total lifetime of the ran-

dom variable Y given it exceeds a random time X , (i.e X #Y d= {Y |Y > X }). Then the
survival function of X #Y ,

T̄X #Y (x) = F̄ #Ḡ(x) = F̄ (x)− Ḡ(x)
∫ x

0

1

Ḡ(t )
d F̄ (t ), (1)

is called the relevation transform of X and Y . The probability density function (p.d.f.)
of X #Y is obtained as

tX #Y (x) = T ′X #Y (x) = g (x)
∫ x

0

f (t )

Ḡ(t )
d t . (2)

Grosswald et al. (1980) provided two characterizations of the exponential distribu-
tion based on relevation transform. The concept of dependent relevation transform and
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its importance in reliability analysis are given in Johnson and Kotz (1981). Baxter (1982)
discussed certain reliability applications of the relevation transform. Shanthikumar and
Baxter (1985) provided closure properties of certain ageing concepts in the context of rel-
evation transforms. Improved versions of the results in Grosswald et al. (1980) are given
by Lau and Rao (1990). Chukova et al. (1993) established characterizations of the class of
distributions with almost lack of memory property based on the relevation transform.

All these theoretical results and their applications are based on the distribution func-
tion. It is well known that any probability distribution can also be specified in terms of
its quantile function. For a non-negative random variable X with distribution function
F (x), the quantile function Q(u) is defined by

Q (u) = F −1 (x) = inf{x : F (x)≥ u}, 0≤ u ≤ 1. (3)

The derivative of Q(u) is the quantile density function denoted by q(u). When f (x)
is the probability density function (p.d.f.) of X , then we get

q(u) f (Q(u)) = 1. (4)

One of the basic concepts employed for modelling and analysis of lifetime data is the
hazard rate. In quantile set up, Nair and Sankaran (2009) defined hazard quantile func-
tion, which is equivalent to the hazard rate, h(x) = f (X )

F̄ (X )
. The hazard quantile function

H (u) is defined as
H (u) = h(Q(u)) = [(1− u)q(u)]−1. (5)

Thus H (u) can be interpreted as the conditional probability of failure of a unit in
the next small interval of time given the survival of the unit until 100(1− u) % point
of the distribution. Note that H (u) uniquely determines the distribution through the
identity

Q(u) =

u
∫

0

d p
(1− p)H (p)

. (6)

Another important concept useful in the context of lifetime studies is the mean resid-
ual life. For a non-negative random variable X , the mean residual life m(x) is defined
as

m(x) = E (X − x|X > x) =
1

F̄ (x)

∫ ∞

x
F̄ (t )d t . (7)

Nair and Sankaran (2009) defined the mean residual quantile function, which is the
quantile version of the mean residual life m(x) as

M (u) = m(Q(u)) =
1

1− u

∫ 1

u
(Q(p)−Q(u))d p. (8)
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M (u) is interpreted as the mean remaining life of a unit beyond the 100 (1− u)% of the
distribution. M (u) uniquely determines Q(u) by

Q(u) =
∫ u

0

M (p)
1− p

d p −M (u)+µ, (9)

where µ = E(X ). For a detailed and recent study on quantile functions, its properties,
and its usefulness in the identification of models, we refer to Lai and Xie (2006), Nair
and Sankaran (2009), Sankaran and Nair (2009), Nair and Vineshkumar (2011), Nair
et al. (2013) and the references therein. Throughout this paper, the terms increasing
and decreasing are used in a wide sense, that is, a function g is increasing (decreasing)
if g (x) ≤ (≥) g (y) for all x ≤ y. Whenever we use a derivative, an expectation, or a
conditional random variable, we are tacitly assuming that it exists.

The rest of the article is organized as follows. In Section 2, we introduce the quantile
version of the relevation transform and study its basic properties. The quantile based
relevation transform in the context of proportional hazards model and equilibrium dis-
tribution are discussed in Section 3 and Section 4 respectively. Finally, Section 5 sum-
maries major conclusions of the study.

2. QUANTILE BASED RELEVATION TRANSFORM

To introduce the quantile based relevation transform between X and Y , we denote
QX (u) and QY (u) as the quantile functions corresponding to the distribution functions
F (.) and G(.) respectively. From (1), by taking x = QX (u), we define quantile based
relevation transform as

TX #Y (QX (u)) = u − Ḡ(QX (u))
∫ u

0

1

Ḡ(QX (p))
d p

= u − (1−Q−1
Y (QX (u)))

∫ u

0

1
(1−Q−1

Y (QX (p)))
d p. (10)

Denote T ∗X #Y (u) = TX #Y (QX (u)) and Q1(u) =Q−1
Y (QX (u)), (10) becomes

T ∗X #Y (u) = u − (1−Q1(u))
∫ u

0

1
(1−Q1(p))

d p. (11)

If Q(u) is a quantile function and K(x) is a non-decreasing function of x, then K(Q(u))
is again a quantile function (Gilchrist, 2000). Now, since T (.) and Q−1

Y (.) are non-
decreasing functions, TX #Y (QX (u)) and Q−1

Y (QX (p)) represent the quantile functions of
F (T −1(x)) and F (G−1(x)). We call T ∗X #Y (u) as the relevation quantile function (RQF).
Note that, in general, the quantile based relevation transform is not symmetric, namely
T ∗X #Y (u) 6= T ∗Y #X (u). We can interpret T ∗X #Y (u) as the probability that the total lifetime
is less than or equal to 100u% point of X , given it exceeds a random time X .
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From (10), we have

T ∗X #Y (u) = TX #Y (QX (u))
⇒QX #Y (T

∗
X #Y (u)) =QX (u)

⇒ QX #Y (u) =QX (T
∗−1

X #Y (u)). (12)

Thus, we can compute the quantile function of the relevation random variable X #Y
from the relevation quantile function T ∗X #Y (u) using the identity (12).

PROPOSITION 1. Let X and Y be two random variables with survival functions F̄ (x)
and Ḡ(x) with quantile functions QX (u) and QY (u) respectively. Then T ∗X #Y (u) ≤ u for
all u ∈ (0,1).

PROOF. Denote T ∗X #Y (u) = u − S(u), where

S(u) = (1−Q1(u))
∫ u

0

1
(1−Q1(p))

d p ≥ 0 for all u ∈ (0,1). (13)

Since Q1(u) =Q−1
Y (QX (u)) = FY (QX (u)), we have Q1(u) ∈ (0,1) for all u ∈ (0,1). This

implies, S(u)≥ 0 for all u ∈ (0,1). From this, we get T ∗X #Y (u)≤ u for all u ∈ (0,1). 2

REMARK 2. From Proposition 1, we have

T ∗X #Y (u)≤ u for all u ∈ (0,1)
⇔ T (QX (u))≤ u for all u ∈ (0,1)
⇔QX (u)≤QX #Y (u) for all u ∈ (0,1). (14)

There are many situations in practice where we need to compare the characteristics
of two distributions. Stochastic orders are used for the comparison of lifetime distri-
butions. We shall consider the following stochastic orders. Their basic properties and
interrelations can be seen in Barlow and Proschan (1975) and Shaked and Shanthikumar
(2007).

If X and Y are lifetime random variables with absolutely continuous distribution
functions F (x) and G(x) respectively. Let f (x) and g (x) are the corresponding proba-
bility density functions. Then we have the following:

(i) X is smaller than Y in the usual stochastic order denoted by X ≤s t Y if and only
if F̄ (x)≤ Ḡ(x) for all x.

(ii) X is smaller than Y in hazard rate order, denoted by X ≤h r Y, if and only if Ḡ(x)
F̄ (x)

is increasing in x.

Nair et al. (2013) provided equivalent definitions of the above two orders in terms of
the quantile functions as follows
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(i) X ≤s t Y if and only if QX (u)≤QY (u) for all 0< u < 1.

(ii) X ≤h r Y, if and only if HX (u) ≥ HY ∗(u), for all 0 < u < 1, where HX (u) =
hX (QX (u)) and HY ∗(u) = hY (QX (u)).

Now from (14), since QX (u) ≤ QX #Y (u) for all u ∈ (0,1), we get X ≤s t X #Y .
Psarrakos and Di Crescenzo (2018) showed that X ≤h r X #Y . From Nair et al. (2013),

we have X ≤h r Y, if and only if F̄Y (QX (1−u))
u is decreasing in u. This implies

1−TX #Y (QX (1− u)
u

=
1−T ∗X #Y (1− u)

u
, is decreasing in u.

In the next proposition, we establish the relation between hazard quantile functions
of the random variable X #Y and X .

PROPOSITION 3. Let HX #Y (u) and HX (u) be the hazard quantile functions corre-
sponding to the random variables X #Y and X . Then

HX #Y (T
∗

X #Y (u)) =
1

qX (u)
d

d u
(− log(1−T ∗X #Y (u))) , (15)

or equivalently,

HX #Y (T
∗

X #Y (u))
HX (u)

= (1− u)
d

d u
(− log(1−T ∗X #Y (u))) . (16)

PROOF. From (12), we have,

QX #Y (T
∗

X #Y (u)) =QX (u).

Differentiating both sides with respect to u, we get,

qX #Y (T
∗

X #Y (u)) (T
∗

X #Y (u))
′ = qX (u).

⇒ 1
qX #Y (T ∗X #Y (u)) (T

∗
X #Y (u))′

=
1

qX (u)

⇒
HX #Y (T

∗
X #Y (u))

(T ∗X #Y (u))′
=

1
(1−T ∗X #Y (u)) qX (u)

⇒ HX #Y (T
∗

X #Y (u)) qX (u) =
(T ∗X #Y (u))

′

(1−T ∗X #Y (u))
. (17)

From (17), we have,

HX #Y (T
∗

X #Y (u)) =
1

qX (u)
d

d u
(− log(1−T ∗X #Y (u))) . (18)

Since qX (u) =
1

(1−u)HX (u)
, (16) follows directly from (18), which completes the proof. 2



202 D. Kumar et al.

PROPOSITION 4. Suppose X and Y be two random variables with same support D
and QE x p (u) be the quantile function of the unit exponential distribution. Then

HX #Y (T
∗

X #Y (u)) =
HX (u)
HZ (u)

, (19)

where HZ (u) is the hazard quantile function corresponding to the quantile function QZ (u) =
QE x p (T

∗
X #Y (u)).

PROOF. Since X and Y have the same support, D , we have, T ∗X #Y (0) = 0 and T ∗X #Y (1) =
1. From Gilchrist (2000), we have, if Q(u) is a quantile function and K(u) is a non-
decreasing function of u satisfying the boundary conditions K(0) = 0 and K(1) = 1,
then Q(K(u)) is again a quantile function of a random variable with the same support.
This gives

QZ (u) =QE x p (T
∗

X #Y (u)) =− log(1−T ∗X #Y (u)) (20)

is a quantile function with support QZ (0), QZ (1) = (0,∞).
From (20), we have

HZ (u) =
�

(1− u)
d

d u
(− log(1−T ∗X #Y (u)))

�−1

(21)

is the hazard quantile function of QZ (u). Now the result (19) follows from (16) and (21),
which completes the proof. 2

EXAMPLE 5. Suppose X follows uniform distribution with quantile function QX (u) =
θu and Y follows the exponential distribution with quantile function QY (u) =−

1
λ log(1−

u). Then Q1(u) =Q−1
Y (QX (u)) = 1− exp(−λθu), and hence

T ∗X #Y (u) = u − 1
λθ
(1− exp(−λθu)) . (22)

The identity (12) is useful for generating random observations of the relevation random
variable X #Y . Since T ∗X #Y (u) given in (22) is not directly invertible, we generate the ran-
dom sample of X #Y by first carrying out the numerical inversion of (22) and then using
the relation QX #Y (u) =QX (T

∗−1

X #Y (u)).

Relevation quantile function is not unique. There exist different distribution pairs
with same relevation quantile function. We illustrate this with the following example.

EXAMPLE 6. Let X , Y, W ,andZ be four random variables with quantile functions,
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respectively by

QX (u) =−
1
λ1

log(1− u); λ1 > 0, [exponential distribution(λ1)],

QY (u) =−
1
λ2

log(1− u); λ2 > 0, [exponential distribution(λ2)],

QW (u) = (1− u)−
1
λ1 − 1; λ1 > 0, [Pareto-II distribution(λ1)],

and

QZ (u) = (1− u)−
1
λ2 − 1; λ2 > 0, [Pareto-II distribution(λ2)].

Now we obtain

Q−1
Y (QX (u)) =Q−1

Z (QW (u)) = 1− (1− u)
λ2
λ1 .

This gives

T ∗X #Y (u) = T ∗W #Z (u) =
λ1

�

(1− u)λ2/λ1 − 1
�

+ u λ2

λ2−λ1
.

Note that Q−1
Y (QX (u)) is the quantile function of the rescaled beta distribution and

T ∗X #Y (u) is the linear combination of the quantile functions of the rescaled beta and the
uniform distributions.

EXAMPLE 7. Suppose X follows Govindarajalu distribution with quantile function,
QX (u) = σ((β+ 1)uβ −βuβ+1) and Y is uniform over the interval (0,1). In this case,
Q1(u) =βuβ+1− (β+ 1)uβ+ 1, then

T ∗X #Y (u) =
(β(u − 1)− 1)

�

βu
β+1

�β
B uβ
β+1
[1−β, 0]

β
+ u. (23)

EXAMPLE 8. Let X follows uniform (0,θ1) and Y follows uniform (0,θ2), with θ2 ≥
θ1. Then Q1(u) =

�

θ1
θ2

�

u and

T ∗X #Y (u) = u −
�

1−
θ1u
θ2

��

u −
θ1u2

2θ2

�

. (24)

Since T ∗X #Y (u) is a quantile function, we can make use of the models obtained in
Examples 5, 6 and 7 for modeling various types of lifetime data sets.
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3. PROPORTIONAL HAZARDS RELEVATION TRANSFORM

In reliability theory, proportional hazards model (PHM) plays a vital role in the com-
parison of the lifetime of two components. The random variables X and Y satisfy PHM
if

hY (x) = θhX (x), θ > 0, (25)

where hY (x) and hX (x) are the hazard rate functions of X and Y . An equivalent repre-
sentation of (25) is

Ḡ(x) = (F̄ (x))θ, θ > 0. (26)

For more details on PHM, one could refer to Lawless (2003) and Kalbfleisch and
Prentice (2011). When Y is the PHM of X with survival functions as in (26), we call the
transformation given in (1) as the proportional hazards relevation transform (PHRT).

When X is the PHM of Y , denote

T ∗P H (u) = TX #Y (QX (u)) = u − (1− u)θ
∫ u

0

1
(1− p)θ

d p

=
1− uθ
1−θ

−
(1− u)θ

1−θ
, u ∈ (0,1). (27)

We call T ∗P H (u) as the proportional hazards relevation quantile function (PHRQF).

When θ= 1,

T ∗P H (u) = TX #X (QX (u)) = u +(1− u) log(1− u), u ∈ (0,1). (28)

PROPOSITION 9. Let X and Y be two independent random variables. Then Y is the
PHM of X if and only if T ∗P H (u) satisfies the relation

T ∗P H (u) =QA(u)−QB (u), (29)

where

(i) QA(u) and QB (u) are the quantile functions of uniform (0, θ
θ−1 ) and rescaled beta

(0, 1
θ−1 ) respectively, when θ > 1, and

(ii) QA(u) is rescaled beta (0, 1
1−θ ) and QB (u) is uniform (0, θ

1−θ ), when θ < 1.

PROOF. From (27), we have

T ∗P H (u) =
θu
θ− 1

− 1
θ− 1

�

1− (1− u)θ
�

. (30)

This can be written as

T ∗P H (u) =
¨ θu
θ−1 −

1
θ−1

�

1− (1− u)θ
�

if θ > 1
1

1−θ
�

1− (1− u)θ
�

− θu
1−θ if θ < 1,

(31)
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which completes the proof for the ‘if’ part of the proposition. Conversely, assume that
T ∗P H (u) has the form (29), now for θ > 1, from (11), we have

T ∗P H (u) = u −ϑ(u)
∫ u

0

1
ϑ(p)

d p =
θu
θ− 1

− 1
θ− 1

�

1− (1− u)θ
�

,

where ϑ(u) = 1−Q−1
Y (QX (u)).

This implies

ϑ(u)
∫ u

0

1
ϑ(p)

d p =
((1− u)θ− (1− u))

1−θ
. (32)

Differentiating both sides with respect to u, we get

ϑ′(u)
∫ u

0

1
ϑ(p)

d p =
θ

1−θ
(1− (1− u)θ−1). (33)

Dividing (33) by (32), we obtain

ϑ′(u)
ϑ(u)

=
θ(1− (1− u)θ−1)

(u − 1)(1− (1− u)θ−1)
=
−θ

1− u
, (34)

which implies
d

d u
log(ϑ(u)) =

−θ
1− u

. (35)

On integration (35) reduces to

log(ϑ(u)) = log(1− u)θ.

This gives ϑ(u)) = (1− u)θ. Now from (11), we have

ϑ(u) = 1−Q−1
Y (QX (u)) = (1− u)θ,

which gives

QX (u) =QY (1− (1− u)θ), or equivalently Ḡ(x) = (F̄ (x))θ. (36)

Thus, Y is the PHM of X . Proof for the case θ < 1 is similar and hence the details
are omitted. 2

REMARK 10. From Proposition 9, we can see that T ∗P H (u) lies below uniform (0, θ
θ−1 )

quantile function when θ > 1 and it lies below rescaled beta (0, 1
1−θ ) quantile function when

θ < 1. We illustrate this for two particular cases of θ such as 0.5 and 2.5 in Figure 1.
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(a) θ= 2.5 (b) θ= 0.5

Figure 1 –: (a) Uniform (0, θ
θ−1 )with T ∗P H (u), and (b) rescaled beta (0, 1

1−θ )with T ∗P H (u).

Since T ∗P H (u) is a unit support quantile function, we can use T ∗P H (u) with an addi-
tional scale parameter for modelling lifetime datasets. Thus, consider the model

Q∗(u) =

(

σ
�

1−uθ
1−θ −

(1−u)θ

1−θ

�

if θ 6= 1

u +(1− u) log(1− u) if θ= 1.
(37)

The hazard quantile function has the form

H ∗(u) =
¨ 1−θ
θσ((1−u)θ+u−1) if θ 6= 1

(σ(u − 1) log(1− u))−1 if θ= 1.
(38)

Note that, when θ = 1, q∗(u) = d
d u Q∗(u) = −σ log(1− u), which is the quantile

function of an exponential distribution with meanσ . Thus q∗(u) is non decreasing when
θ= 1. H ∗(u) is bathtub shaped for all choices of the parameters. Change point of H ∗(u)

is u0 = 1−
�

1
θ

�
1
θ−1 , when θ 6= 1 and for θ= 1, change point u0 = 0.63 (see Figure 2).

We illustrate the utility of the above model with the aid of a real data set studied
by Zimmer et al. (1998). The data consists of time to first failure of 20 electric carts.
There are different methods for the estimation of parameters of the quantile function.
The method of percentiles, method of L-moments, method of minimum absolute devi-
ation, method of least squares and method of maximum likelihood are commonly used
techniques. With small and moderate samples the method of L-moments is more effi-
cient than other method of estimations. For more details, one could refer to Hosking
(1990) and Hosking and Wallis (1997). We estimate the parameters using the method of
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q= 0.5,  s= 5

q= 4,  s= 15

q= 1.1,  s= 5

q= 1,  s= 1

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

u

H
HuL

Figure 2 –: Hazard quantile function for different choices of parameters.

L-moments. The first and second L-moments are given by

L1 =
∫ 1

0
Q(u)d u =

θ
�

1
θ+1 −

1
2

�

σ

1−θ
, (39)

and

L2 =
∫ 1

0
(2u − 1)Q(u)d u =

θ
�

1
θ2+3θ+2 −

1
6

�

σ

1−θ
. (40)

We equate sample L−moments to corresponding population L-moments. Let x1, x2, ..., xn
be a random sample of size n from the population with quantile function (37). To
define the L- moments of a sample, we first take the order statistics of the sample:
x(1) ≤ x(2) ≤ ...≤ x(n) and define the sample L-moments, ll , l2, ..., ln by

lr =
r−1
∑

k=0

pr,k bk , (41)

where

bk =
�

1
n

� n
∑

i=1

(i − 1)(i − 2)...(i − k)
(n− 1)(n− 2)...(n− k)

x(i), for k = 0,1,2, ...n− 1. (42)
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In particular, the first two sample L−moments are given by

l1 =
�

1
n

� n
∑

i=1

x(i),

l2 =
�

1
2

�

�

n
2

�−1 n
∑

i=1

��

i − 1
1

�

−
�

n− i
1

��

x(i),
(43)

where x(i) is the i -th order statistic. For estimating the parameters θ and σ , we equate
the above two sample L−moments to corresponding population L-moments given in
(39) and (40). The parameters are obtained by solving the equations

lr = Lr ; r = 1,2. (44)

The estimates of the parameters are obtained as, θ̂= 2.004, σ̂ = 43.988. Midhu et al.
(2013) fitted the data using the class of distributions with linear mean residual quantile
function. The quantile function of the model proposed by Midhu et al. (2013) is

Q(u) =−(c +µ) log(1− u)− 2c u, µ> 0, −µ< c <µ. (45)

Mudholkar and Srivastava (1993) analyzed this data using an exponentiated-Weibull
model with distribution function

F (x) = (1− exp (−(λ x)γ )) , λ > 0, γ > 0. (46)

To compare the performance of the aforementioned models with the proposed quan-
tile function, we use the Akaike information criterion (AIC)(Akaike, 1974). The AIC
is defined by

AI C = 2k − 2 log(L̂),

where L̂ is the estimate of likelihood function. The AIC measure for the proposed model
is 151.5, whereas the AIC’s for the models proposed by Midhu et al. (2013) and Mud-
holkar and Srivastava (1993) are 153.45 and 748.41 respectively. On the basis of AIC
values, our model gives better fit.

4. RELEVATION TRANSFORM WITH EQUILIBRIUM DISTRIBUTION

The equilibrium distribution is a widely accepted tool in the context of analysis of ageing
phenomena. The equilibrium distribution associated with the random variable X is
defined by the survival function

F̄E (x) =
1
µX

∫ ∞

x
F̄ (t )d t . (47)
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Setting x =QX (u), from Nair et al. (2013), we have

FE (QX (u)) =
1
µX

∫ u

0
(1− p)qX (p)d p, (48)

where the integral

φX (u) =
1
µX

∫ u

0
(1− p)qX (p)d p (49)

is called the scaled total time on test transform (TTT) of the random variable X . For
various properties and applications of φX (u), one could refer to Nair et al. (2013).

From (48) and (49), we have

QX (u) =QE (φX (u)) , (50)

where QE (.) is the quantile function corresponding to the equilibrium distribution of
X .

PROPOSITION 11. Let X and Y be two non-negative random variables. Then Y is
the equilibrium random variable of X if and only if

T ∗X #Y (u) = u − (1−φX (u))
∫ u

0

d p
(1−φX (p))

. (51)

PROOF. Assume Y is the equilibrium random variable of X . From (10), we have

T (QX (u)) = u − (1−Q−1
Y (QX (u)))

∫ u

0

1
(1−Q−1

Y (QX (p)))
d p. (52)

Since Y is the equilibrium random variable of X , we have

QX (u) =QY (φX (u)) . (53)

Now using (53) in (52), we get

T ∗X #Y (u) = u −
�

1−Q−1
Y (QY (φX (u)))

�

∫ u

0

1
�

1−Q−1
Y (QY (φX (p)))

�d p,

= u − (1−φX (u))
∫ u

0

d p
(1−φX (p))

. (54)

Conversely, assume (51) is true. Now from (11), we have

u − (1−Q1(u))
∫ u

0

1
(1−Q1(p))

d p = u − (1−φX (u))
∫ u

0

d p
(1−φX (p))

.
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Taking derivative on both sides with respect u, and simplifying, we get

Q1(u) =φX (u)

⇔ Q−1
Y (QX (u)) =φX (u)

⇔ QX (u) =QY (φX (u)) .

Thus Y is the equilibrium random variable of X , which completes the proof. 2

COROLLARY 12. Suppose Y is the equilibrium random variable of X . Then T ∗X #Y (u)
uniquely determines φX (u) through the identity

φX (u) = 1− exp
�∫ u

0

(T ∗X #Y (p))
′

T ∗X #Y (p)− p
d p
�

. (55)

PROOF. From (51), we have

(1−φX (u))
∫ u

0

d p
(1−φX (p))

= u −T ∗X #Y (u). (56)

Differentiating both sides with respect to u, we get

1−φ′X (u)
∫ u

0

d p
(1−φX (p))

= 1− (T ∗X #Y (u))
′

⇔ φ′X (u)
∫ u

0

d p
(1−φX (p))

= (T ∗X #Y (u))
′. (57)

From (56), we have
∫ u

0
d p

(1−φX (p))
= u−T ∗X #Y (u)
(1−φX (u))

. Inserting this in (57), we obtain

φ′X (u)
1−φX (u)

=
(T ∗X #Y (u))

′

u −T ∗X #Y (u)
,

or
d

d u
(log(1−φX (u))) =

(T ∗X #Y (u))
′

T ∗X #Y (u)− u
,

which gives

φX (u) = 1− exp
�∫ u

0

(T ∗X #Y (p))
′

T ∗X #Y (p)− p
d p
�

.

This completes the proof. 2

REMARK 13. From Nair et al. (2013), we have φX (u) uniquely determines the distri-
bution through the relation

Q(u) =
∫ u

0

µX φ
′
X (p)

1− p
d p. (58)

Now, from Corollary 12, we have T ∗X #Y (u) uniquely determines the baseline distribu-
tion.
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EXAMPLE 14. Let X be distributed as generalized Pareto with quantile function

QX (u) =
b
a

�

(1− u)−
a

a+1 − 1
�

, b > 0,a >−1. (59)

Since µX = b , we get

φX (u) =
1
µ

∫ u

0
(1− p)qX (p)d p =

�

1− (1− u)
1

a+1

�

. (60)

Hence, the equilibrium random variable Y has its quantile function as, QY (u) =QX (φ
−1
X (u)).

Thus from (59) and (60), we obtain

QY (u) =
b
a

�

(1− u)−a − 1
�

. (61)

Using (51), we get

T ∗X #Y (u) =
1
a

�

(a+ 1)
�

1− (1− u)
1

a+1

�

− u
�

. (62)

From Nair et al. (2013), φX (u) and MX (u) are related through the identity

MX (u) =
1−φX (u)

1− u
. (63)

Inserting (63) in (51), we get

T ∗X #Y (u) = u − (1− u)MX (u)
∫ u

0

d p
(1− p)MX (p)

. (64)

Thus MX (u) uniquely determines T ∗X #Y (u), when Y corresponds to the equilibrium
distribution of X .

EXAMPLE 15. Suppose X follows linear mean residual quantile function distribution
with MX (u) =µ+ c u, and QX (u) as in (45) (Midhu et al., 2013). In this case

T ∗X #Y (u) = u +
(1− u)(c u +µ) log

�

µ−µu
c u+µ

�

c +µ
. (65)

In the next proposition, we provide a characterization for the exponential distribu-
tion using T ∗X #Y (u), when Y is the equilibrium random variable of X .

PROPOSITION 16. Let X be a non-negative random variable and Y be the correspond-
ing equilibrium random variable. Then X has exponential distribution if and only if

T ∗X #Y (u) = T ∗X #X (u), for all u ∈ (0,1). (66)
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PROOF. Assume X follows exponential distribution with quantile function QX (u) =
−1
λ log(1− u), λ > 0. We get µX =

1
λ and φX (u) = u. Since φX (u) = u, from (50), we

have QX (u) =QY (u). This implies

T ∗X #Y (u) = T ∗X #X (u).

Conversely, we have, T ∗X #Y (u) = T ∗X #X (u) for all u ∈ (0,1). Now from (11), we have

T ∗X #Y (u) = u +(1− u) log(1− u). (67)

Now using (55), we get φX (u) = u. Thus from (58), the baseline quantile function
of X is obtained as QX (u) =−µX log(1− u), which is exponential. This completes the
proof. 2

In T̄X #Y (x), given in (1), if we take F̄ (x) = 1
µX

∫∞
x Ḡ(t )d t and u =G(x), we get

1−TX #Y (QY (u)) =

∫ u
0 (1− p)qY (p)d p

µY
+(1− u)

∫ u

0

1
µY

d p,

= 1−
∫ u

0 (1− p)qY (p)d p

µY
+
(1− u)u
µY

,

which implies

TX #Y (QY (u)) = 1−φY (u)+
(1− u)u
µY

,

= 1−
(1− u)
µY

[MY (u)+ u], (68)

where MY (u) is the mean residual quantile function of Y.

5. CONCLUSION

The present work introduced an alternative approach to relevation transform using
quantile functions. Various properties and applications of quantile based relevation
transform were discussed. Quantile based relevation transform in the context of propor-
tional hazards and equilibrium models were presented. The PHRQF model is applied to
a real lifetime data set. It was proved that T ∗X #Y (u) uniquely determines the distribution
of X , when Y is the equilibrium random variable of X . We can develop quantile based
analysis of a sequence of random variables constructed based on the relevation trans-
form. The identity (66) can be used to test exponentiality. For this, one has to develop
non-parametric estimator of T ∗X #Y (u). The work in these directions will be reported
elsewhere.
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SUMMARY
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ties in the context of lifetime data analysis. We give important special cases of relevation transform
in the context of proportional hazards and equilibrium models in terms of quantile function.
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