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THE MEANING OF KURTOSIS, THE INFLUENCE FUNCTION 
AND AN EARLY INTUITION BY L. FALESCHINI*

A.M. Fiori, M. Zenga 

1. INTRODUCTION

The oldest and most common measure of kurtosis is the standard fourth mo-
ment coefficient: 
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which was introduced by K. Pearson (Pearson, 1905). 
There has been much discussion over whether 2 measures peakedness, tail 

weight or the “shoulders” of a distribution. A convenient way of grasping the 
meaning of 2  is to ask how 2 changes as observations are added to an existing 
distribution. To our knowledge, the author who first answered this question was 
Luigi Faleschini in 1948. 

In this work we rediscover Faleschini’s methodology and show how it can be 
used to assess the relative importance of tail heaviness and peakedness in deter-
mining 2 (section 2). The implications of Faleschini’s approach for a normal dis-
tribution are detailed in section 3. In section 4 we establish an unexpected con-
nection between a partial derivative computed by Faleschini and the influence 
function of 2, which appeared much later in statistical literature (Hampel, 1968 
and 1974; Ruppert, 1987). Our conclusions are outlined in section 5, where a 
short parallel is drawn between Faleschini’s methodology and Zenga’s new ap-
proach to kurtosis (Zenga, 1996 and 2006). 

2. FALESCHINI’S DERIVATIVE AND 2

Faleschini (1948) proposed the following methodology. Consider a statistical 
variable X consisting of n real values, x1, x2, ..., xn, sorted in increasing order (x1 <

This paper reflects the common thinking of the authors, although, more specifically, sections 1, 
3 and 5 are due to M. Zenga, sections 2 and 4 to A. M. Fiori. 
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x2 < ... < xn). Denote the corresponding frequencies by f1, f2, ..., fn and the total 

size of the distribution by 
1

n

rr
P f . To observe how 2 is changed by obser-

vations added at some particular point, say xr, compute the partial derivative of 2

with respect to the altered frequency fr . According to the sign of 2/ fr it is easy 
to identify the ranges where adding new observations raises (lowers) 2. As a con-
sequence, the centre, flanks and tails of a distribution may be quantitatively speci-
fied and their relative importance in determining 2 may be gauged from the ab-
solute value of 2/ fr .

Next is the computation of Faleschini’s derivative. Referring to the binomial 
theorem: 
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Faleschini used the following representation of a central moment of order s

(s  1, 2, 3, 4, ...): 
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where: 
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is the moment of order (s i) from the origin and  stands for the arithmetic 

mean ( m1). Elementary rules of differentiation lead to partial derivatives of 

ms  i and i with respect to fr :
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Combining (4) and (5) according to (3), we obtain the partial derivative of s

with respect to fr :
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With the substitution j (i 1) the last summation is equal to: 
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and (6) reduces, using (2) and (3), to the simple expression: 
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the leading term being the s-th power of the distance (xr ).
Since 2 is a ratio of central moments, a standard differentiation argument im-

plies that: 
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If the standardized quantity 2( )rx  is denoted by zr and the skewness co-

efficient 3 2
3 2 by 1, the partial derivative of 2 with respect to fr may be re-

written as: 
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In the symmetric case ( 1 0) closed-form solutions are available for the equa-

tion 2/ fr 0. Writing: 

2 2
2 2 2( ) ( 1)rz

we have: 

2
2 2 2( 1)rz .

Hence:

2 2 2( 1)rz

which is equivalent, for 2 , to the four solutions: 

1,2,3,4
2 2 2( 1)rx .

Owing to the inequality: 2  1 (see Stuart and Ord, 1994) the above roots are al-
ways real and break up the range of the statistical variable X into five regions: 
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Region I x X x is positive
f

Region II x X x is negative
f

Region III x X x is positive
f

Region IV x X x is negative
f

Region V x X x
f

  .
r

is positive

New observations lower 2 if added within regions II and IV, raise it if added 
within regions I, III and V. Regions II and IV can therefore be identified with the 

flanks, region III with the centre, regions I and V with the tails. Since 2/ fr  is of 

order 4
rz , it grows very rapidly as xr decreases below (1)

rx  or increases beyond 
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(4 )
rx . Hence it is clear that 2 is primarily a measure of tail behavior and only to a 

lesser extent of peakedness. 

3. THE CASE OF THE NORMAL DISTRIBUTION

For any symmetric distribution with 2  3 (including the normal as a special 
case), (8) reduces to: 
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with roots:  
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In the Gaussian model (Figure 1 - bottom) the centre (|xr |  0,742 ) ac-

counts for nearly 55% of the data, the tails (|xr |  2,334 ) for less than 2%. 

The steepness of the function 2/ fr (Figure 1 - top) indicates however that tail 
outliers drastically affect the value of 2.

Figure 1 – The behavior of Faleschini's derivative for 2  3 (top), with indication of the ranges cor-
responding to the centre, flanks and tails (bottom). Both charts are drawn for standard parameter 

values (  0,  1), the lower represents a normal density function. 
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Relating (9) to a normal distribution, Faleschini argued that “a symmetric curve 

with 2 3 will be iperbinomial (i.e. leptokurtic) because some values at the centre 
and in the tails will have higher frequency than in the normal curve with the same 
mean and variance, and some values in the flanks will be underweighted com-
pared to the corresponding normal curve. The situation is reversed for distribu-

tions with 2  3” (Faleschini, 1948). Since 2  3 is not sufficient to ensure the 
normal like behavior of a symmetric distribution (see Balanda and MacGillivray, 
1988, or Kale and Sebastian, 1996) the above argument should be used with cau-
tion.

4. 2 AND THE INFLUENCE FUNCTION APPROACH

Faleschini’s derivative was nearly overlooked by statistical literature and a 
number of erroneous interpretations of 2 appeared in the following decades (see 
Balanda and MacGillivray, 1988 or Zenga, 2006 for a comprehensive review). It 
was only in 1987 that Ruppert succeeded in “quantitatively analyzing the meaning of 
kurtosis” by means of Hampel’s influence function (IF).

The influence function approach (Hampel, 1968 and 1974) focuses on statisti-
cal measures which may be expressed as (real-valued) functionals, i.e. mappings 
from a set of probability distributions to the real numbers. For a distribution F
with finite fourth moment, the kurtosis coefficient (1) is the functional defined 
by:
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The IF of 2 is computed as follows. Consider the cumulative distribution func-
tion:
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and define the mixture: 
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( ) (1 ) ( ) ( )xF t F t G t  0 1. (11) 

“F  is nothing but F with contaminants at x and  is the proportion of contami-
nation” (Ruppert, 1987). Then, 
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is the (one-sided) derivative of 2 at F in the direction toward Gx and is called  
the influence function of 2 at F and x [IF (x; F, 2)]. Formula (12) has a heuristic 
interpretation as the change of 2 caused by an infinitesimal contamination at  
the point x, standardized by the size of the contaminating mass. This is logically 
related to Faleschini’s derivative and it is shown below that computing the IF of 

2 from its own definition (12) does indeed result in the same expression as 

2/ fr .

If (F ) denotes the mean of the contaminated distribution, it follows from 
(11) that: 

( ) (1 ) ( )F F x  (13) 

and the same argument generalizes to the central moments: 
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Replacing (F ) by (13) we have: 
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where the integrand may be expanded binomially by (2). 

Application of (14) for s  2 yields the variance of the contaminated distribu-
tion:  
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and for s  4, after some computation and rearrangement, the fourth central mo-
ment obtains: 
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We are now in a position to compute the influence function of 2:
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Using (15) and (16) we obtain, as  0, 
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and replacing 2( ( )) ( )x F F  by z and 3 2
3 2( ) [ ( )]F F  by 1 it reduces to: 
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which is nothing but Faleschini’s derivative (8) multiplied by P (the size of the 
distribution) and rewritten in a continuous random variable notation (zr is substi-
tuted for z). Although Faleschini considered 2 as a moment ratio and not as a 
functional of a probability distribution F, he had already answered the basic ques-
tion addressed by Ruppert: how does 2 change if we throw in an additional ob-

servation at some point on the real line? The partial derivative 2/ fr is indeed 
the first intuitive notion of the influence function of 2 and provides the “quanti-
tative understanding of kurtosis ” invoked by Ruppert (1987). 

It is worth mentioning that Ruppert did not compute (17) but a slight variant 
called the symmetric influence function (SIF)1. He started with a symmetric distri-

bution F with (F)  0 and contaminated it at x with equal probability, so as to 

leave the position of (F) unchanged. The resulting SIF of 2 differs from (17) 
only in the last term (which obviously disappears), hence it provides the same in-
formation as the IF of 2 when the underlying distribution is itself symmetric (we 
refer the reader to Fiori (2005) for further details). 

1 It is interesting to note that Ruppert himself referred the SIF of 2 to an earlier intuition by 
Darlington (1970). 
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5. CONCLUSIONS

We have shown that Luigi Faleschini devised an influence function approach 
to kurtosis in 1948, i.e. twenty years before the IF was available in Hampel’s thesis 
(1968) and nearly forty years before the publication of Ruppert’s SIF for 2 (1987). 

By Faleschini’s derivative 2/ fr we have illustrated that peakedness and tailed-
ness are both components of kurtosis, and 2 is clearly dominated by tail weight.  

An alternative to Faleschini’s idea of adding observations at a point in a fre-
quency distribution is to consider transfers between different units for a fixed dis-
tribution size. This technique is central to income inequality studies and appears 
to have first been used in kurtosis measurement by Zenga (1996, 2006). By trans-
formations that increase (decrease) kurtosis in an observed population Zenga ob-
tained a “two-faced” variant of the Lorenz curve which he termed the “kurtosis 
diagram”.

Besides allowing for a partial ordering of distributions by kurtosis, the kurtosis 
diagram suggests how to construct new kurtosis measures with desirable proper-
ties. Interested readers are referred to the appropriate references. 
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RIASSUNTO

L’interpretazione della curtosi e la sua curva di influenza in un’intuizione di L. Faleschini 

In questo lavoro si è mostrato come Luigi Faleschini, in un articolo apparso su Statistica
nel 1948, abbia per primo intuito la derivazione della curva di influenza del coefficiente di 
curtosi. 

SUMMARY

The meaning of kurtosis, the influence function and an early intuition by L. Faleschini

In this work we have shown that an onverlooked paper by Luigi Faleschini (1948) con-
tains the first intuition of the influence function approach to kurtosis. 


