
STATISTICA, anno LXXVIII, n. 2, 2018

METHODS OF ESTIMATING THE PARAMETERS OF THE
QUASI LINDLEY DISTRIBUTION

Festus C. Opone 1

Department of Mathematics, University of Benin, Benin City, Nigeria

Nosakhare Ekhosuehi
Department of Mathematics, University of Benin, Benin City, Nigeria

1. INTRODUCTION

The Lindley distribution introduced by Lindley (1958) have received considerable atten-
tion in developing a generalized form of the distribution. Ghitany et al. (2013) proposed
the power Lindley distribution as an extension of the classical one-parameter Lindley
distribution by considering the power transformation X = T

1
α . Shanker et al. (2013) in-

troduced a two-parameter Lindley distribution which they call the Sushila distribution.
Shibu and Irshad (2016) proposed the extended new generalized Lindley distribution, a
variant of this distribution is the new extended generalized Lindley distribution intro-
duced in Maya and Irshad (2017).

Shanker and Mishra (2013) proposed the quasi Lindley distribution (QLD) with pa-
rameters (α,θ) and its probability density function is defined by

f (x,α,θ) =
θ(α+ xθ)e−θx

α+ 1
, x > 0,θ > 0,α >−1. (1)

The QLD which is an extension of the one-parameter Lindley distribution is a two-
component mixture of exponential (θ) and a special case of gamma (2,θ) distribution.
Equation (1) can also be written in the form

f (x,α,θ) = p f1(x)+ (1− p) f2(x), (2)

where f1(x) = θe−θx and f2(x) = θ
2e−θx are the density functions of the exponential

distribution (θ) and gamma distribution (2,θ) respectively and p = α
α+1 is the mixing

proportion.

1 Corresponding Author. E-mail: festus.opone@physci.uniben.edu
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The corresponding cumulative distribution function of the QLD is given by

F (x,α,θ) = 1−
(1+α+ xθ)e−θx

α+ 1
, x > 0,θ > 0,α >−1. (3)

Amongst the mathematical properties of the distribution studied were; the shape of
density function, cumulative distribution function, failure rate function, mean residual
life function, stochastic ordering and its moments with related measures. The method of
moments and maximum likelihood was used in estimation of the parameters of the dis-
tribution and was applied to a real lifetime data set. It was shown that the quasi Lindley
distribution can be used as an alternative model to the one-parameter Lindley distribu-
tion and the popular exponential distribution, as it provides better fit in applicability
to lifetime data. For more detail on the mathematical properties of the QLD, we refer
readers to Shanker and Mishra (2013).

In spite of the mathematical properties studied, Shanker and Mishra (2013) did not
address the quantile function of the distribution which can be used to generate random
samples from the distribution. Although, the method of moment and maximum likeli-
hood were used in estimation of the parameters of the distribution, their work fails to
examine the performance and accuracy of the parameter estimates of the distribution.
These pitfalls form the basis of our study.

Motivation of this paper arose from the work of Roozegar and Nadarajah (2017),
which presents meaningful criticism and useful suggestions on the generalized Lindley
distribution proposed by Nedjar and Zeghdoudi (2016). The remaining sections of this
paper are organized as follows: Section 2 presents the quantile function of the quasi
Lindley distribution. In Section 3, the method of moment and the maximum likeli-
hood for parameter estimation are considered and a simulation study was conducted to
examine the behaviour of the estimators of each parameter. Finally, in Section 4, we ex-
amined the applicability of the QLD alongside with other related existing distributions
in modeling lifetime data sets.

2. QUANTILE FUNCTION OF THE QUASI LINDLEY DISTRIBUTION

Jodra (2010) derived a closed-form expression for the quantile function of probability
distributions which are related to the Lambert W function. This expression enables us
to generate random samples from the distribution through the use of inverse transform.

THEOREM 1. For any θ > 0,α >−1, the quantile function of the quasi Lindley distri-
bution X is defined by

x = − 1
θ
− α
θ
− 1
θ

W−1

�

−
(1− u)(α+ 1)

e (1+α)

�

, (4)

where W−1 denotes the negative branch of the Lambert W function.
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PROOF. Let F (x) be the distribution function of the QLD defined in Equation (3).
For any θ > 0,α > −1 and 0 < u < 1, we need to set F (x) = u to obtain a system of
non-linear equation which is given by

−(1+α+θx)e−θx = (u − 1)(α+ 1). (5)

Multiplying both sides of Equation (5) by e−(1+α), we obtain

−(1+α+θx)e−(θx+α+1) = −(1− u)(α+ 1)e−(1+α). (6)

From Equation (6), we see that−(1+α+θx) is the Lambert W function of the real
argument −(1− u)(α+ 1)e−(1+α). Thus, we have

W
�

−
(1− u)(α+ 1)

e (1+α)

�

= −(1+α+θx). (7)

Moreover, for any θ > 0,α >−1 and x > 0 ,it is immediate that (1+α+θx)> 1 and
it can also be checked that (1− u)(α+ 1)e−(1+α)ε(− 1

e , 0) since uε(0,1). Therefore, by
taking into account the properties of the negative branch of the Lambert W function,
Equation (7) becomes

W−1

�

−
(1− u)(α+ 1)

e (1+α)

�

= −(1+α+θx)

x = − 1
θ
− α
θ
− 1
θ

W−1

�

−
(1− u)(α+ 1)

e (1+α)

�

. (8)

This completes the proof. 2

TABLE 1
Some quantiles of the QLD for selected values of the parameters.

u (θ= 0.3,α= 0.1) (θ= 0.1,α= 0.5) (θ= 0.2,α= 2) (θ= 2,α= 1)
0.01 0.2722 0.2958 0.0753 0.0272
0.02 0.4667 0.5839 0.1511 0.0505
0.03 0.6302 0.8657 0.2276 0.0715
0.04 0.7759 1.1419 0.3046 0.0911
0.05 0.9098 1.4134 0.3823 0.1094
0.06 1.0351 1.6809 0.4606 0.1268
0.07 1.1540 1.9448 0.5395 0.1435
0.08 1.2678 2.2058 0.6191 0.1597
0.09 1.3776 2.4641 0.6994 0.1753
0.10 1.4840 2.7201 0.7804 0.1906
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Oluyede et al. (2016), also suggested an explicit form of expressing the quantile func-
tion of probability distributions using numerical method. As an alternative to the in-
verse transform method, random samples from probability distribution are generated
by solving the system of non-linear equation defined in Equation (5) using numerical
method. The quantiles in Table 1 was generated by solving the system of non-linear
equation given in Equation (5).

3. PARAMETER ESTIMATION

3.1. Method of maximum likelihood (MLM)

Let x1, x2, · · · , xn be a random sample of size n from QLD(α,θ), then the log-likelihood
estimate is defined by

`(x,α,θ) =
n
∑

i=1

log
�

θ(α+ xθ)e−θx

α+ 1

�

(9)

= n logθ− n log(α+ 1)+
n
∑

i=1

log(α+ xθ)− nθX̄ . (10)

The associated score function is defined by

∂ `

∂ θ
=

n
θ
+

n
∑

i=1

x
(α+ xθ)

− nX̄ = 0, (11)

∂ `

∂ α
= − n

α+ 1
+

n
∑

i=1

1
(α+ xθ)

= 0. (12)

The maximum likelihood estimators θ̂ and α̂ can be achieved using the Newton
Raphson iterative method.

3.2. Method of moment (MOM)

The moment estimation is a technique for constructing an estimator of a parameter that
is based on matching the sample moments with the corresponding distribution (theo-
retical) moments.

Let x1, x2, · · · , xn represent a random sample of size n drawn from a probability dis-
tribution for which we seek an unbiased estimator for the r t h moment. An expression
for the sample moment is given by

m
′

r =
1
n

n
∑

r=1

x r . (13)
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Shanker and Mishra (2013) defined the r t h moment of the quasi Lindley distribution
as

µ
′

r =
Γ (r + 1)(α+ r + 1)

θr (α+ 1)
, r = 1,2,3, ... (14)

Taking r = 1, 2, 3 and 4 in Equation (14), the first four raw moments of the QLD
are obtained as

µ
′

1 =
1
θ

�

α+ 2
α+ 1

�

, µ
′

2 =
2
θ2

�

α+ 3
α+ 1

�

, µ
′

3 =
6
θ3

�

α+ 4
α+ 1

�

, µ
′

4 =
24
θ4

�

α+ 5
α+ 1

�

.

Equating Equations (13) and (14), when r = 1, an estimate for the parameter θ is
obtained as

θ̂=
1

X̄

�

α+ 2
α+ 1

�

. (15)

Similarly, to obtain an estimate for the parameter α, we divide the second moment
by the square of the first moment to get an expression which is a function of α only.

µ
′

2

µ2
1

=
2(α+ 3)(α+ 1)
(α+ 2)2

= k . (16)

Equation (16) results to a system of quadratic equation given by

(2− k)α2+ 4(2− k)α+(6− 4k) = 0. (17)

Solving the system of equations in (17), an expression for the estimate ofα is obtained
as

α̂=
−(4− 2k)+

p
4− 2k

2− k
, (18)

where k is obtained by replacing the first moment (µ′1) and the second moment (µ′2) by
m
′

1 and m
′

2 respectively.

3.3. Interval estimates

In this subsection, the asymptotic confidence intervals for the parameters of the QLD
are presented. Under the normality condition, η̂ ∼ N [η, I−1(η)] , i.e. the asymptotic
distribution of an estimator η̂ of a parameter η is approximately normal with mean η and
variance obtained by inverting the Fisher information matrix. The Fisher information
matrix is given by

I (ηk ) = −E
�

∂ 2`

∂ η2

�

=−E







∂ 2`
(∂ θ)2

∂ 2`
∂ θ∂ α

∂ 2`
∂ α∂ θ

∂ 2`
(∂ α)2






, η= (θ,α)T ,
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where
∂ 2`
(∂ θ)2 = −

n
∑

i=1

x2

(α+ xθ)2
− n
θ2

,

∂ 2`
∂ θ∂ α = ∂ 2`

∂ α∂ θ =
n
∑

i=1

x
(α+ xθ)2

,

∂ 2`
(∂ α)2 = n

(α+1)2 −
n
∑

i=1

1
(α+ xθ)2

.

The approximate (1− δ)100 CIs for the parameters θ and α are respectively α̂ ±
Z δ

2

p

var(α̂) and θ̂ ± Z δ
2

q

var(θ̂), where var(α̂) and var(θ̂) are the variance of α and

θ which are given by the first and second diagonal element of the variance-covariance
matrix I−1(ηk ) and Z δ

2
is the upper(δ2 ) percentile of the standard normal distribution.

3.4. Simulation study

In this subsection, we consider two methods of parameter estimation (MLM and MOM)
to investigate the performance and accuracy of the parameter estimates of the QLD.
The flexibility of these methods are compared through a simulation study for different
parameter values as well as different sample sizes. We generated random data from the
QLD using Equation (5). The Monte Carlo simulation study is repeated 1000 times for
different sample sizes n = 60,90,120,150 and parameter values (θ = 0.35, α = 0.15), (θ
= 1, α = 0.2) and (θ = 2, α = 0.3).

An algorithm for the simulation study is given by the following steps.

1. Choose the value N (i.e. number of Monte Carlo simulation);

2. choose the values η0 = (θ0,α0) corresponding to the parameters of the QLD (θ,α);

3. generate a sample of size n from QLD;

4. compute the maximum likelihood estimates η̂0 of η0 and the moment estimate
defined in Equations (15) and (18);

5. repeat steps (3-4), N -times;

6. compute the bias= 1
N

N
∑

i=1

(η̂i−η0) and the mean square error (MSE)= 1
N

N
∑

i=1

(η̂i−

η0)
2.

Tables 2, 3 and 4 present two methods of estimating the parameters of quasi Lindley
distribution. The performance of these methods is compared based on the bias and mean
square error criteria at different choice of sample size n.
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TABLE 2
Monte Carlo simulation results for α= 0.2, θ= 1.

n Methods Bias(α) Bias(θ) MSE(α) MSE(θ)
60 MLM 0.0338 0.0266 0.1010 0.0225

MOM 0.0527 0.0397 0.3602 0.0286

90 MLM 0.0296 0.0168 0.0481 0.0119
MOM 0.0368 0.0284 0.1206 0.0170

120 MLM 0.0256 0.0033 0.0334 0.0090
MOM 0.0271 0.0185 0.0890 0.0134

150 MLM 0.0153 0.0011 0.0291 0.0069
MOM 0.0188 0.0108 0.0574 0.0106

TABLE 3
Monte Carlo simulation results for α= 0.3, θ= 2.

n Methods Bias(α) Bias(θ) MSE(α) MSE(θ)
60 MLM 0.0605 0.0447 0.2462 0.1003

MOM 0.0661 0.0790 0.3550 0.1151

90 MLM 0.0316 0.0258 0.0809 0.0526
MOM 0.0505 0.0450 0.1517 0.0744

120 MLM 0.0266 0.0181 0.0645 0.0409
MOM 0.0454 0.0357 0.1422 0.0646

150 MLM 0.0243 0.0058 0.0479 0.0290
MOM 0.0317 0.0218 0.1043 0.0487
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TABLE 4
Monte Carlo simulation results for α= 0.15, θ= 0.35.

n Methods Bias(α) Bias(θ) MSE(α) MSE(θ)
60 MLM 0.0467 0.0137 0.1628 0.0027

MOM 0.0625 0.0145 0.5057 0.0031

90 MLM 0.0299 0.0042 0.0552 0.0015
MOM 0.0506 0.0069 0.1114 0.0022

120 MLM 0.0263 0.0025 0.0320 0.0011
MOM 0.0461 0.0043 0.0975 0.0016

150 MLM 0.0066 0.0004 0.0231 0.0008
MOM 0.0067 0.0030 0.0501 0.0012

Evidently, as the sample size n increases, the values of the bias and the mean square
error of the parameter estimates for both methods decreases and hence the estimation
precision of the parameters increases. Although, the method of moment has a closed
form expression for the parameter estimates, the method of maximum likelihood per-
forms better for all sample size considered, therefore we recommend the method of max-
imum likelihood in estimating the parameters of the quasi Lindley distribution.

4. DATA ANALYSIS

In this section, we applied the quasi Lindley distribution to a real lifetime data and com-
pare its fit with the ones attained by power Lindley distribution (PLD), Sushila distribu-
tion and Lindley distribution. Table 5 shows the waiting time (in minutes) of 100 Bank
customers reported in Ghitany et al. (2008).

TABLE 5
Waiting time data.

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1 3.2
3.3 3.5 3.6 4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.6 4.7
4.7 4.8 4.9 4.9 5.0 5.3 5.5 5.7 6.1 6.2 6.2 6.2 6.2
6.3 6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0 8.2 8.6
8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6 9.7 9.8 10.7 10.9 11.0
11.0 11.1 11.2 11.2 11.5 11.9 12.4 12.5 12.9 13.0 13.1 13.3 13.6
13.7 13.9 14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0 19.9
20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5 - - - -

The variance-covariance matrix of the data is given by
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I−1(ηk ) =
�

0.000299 −0.000715
−0.000715 0.0053140

�

and the 95% confidence intervals for the model parameters are estimated as
θε(0.177291 0.245109) and αε(−0.222279 0.063478).

The parameter estimates, the Log-lik, Akaike information criterion (AIC), Kolmogorov-
Smirnov (K − S) and the Cramér von Mises (W ∗) statistic with their corresponding
p-value of the distributions for the waiting time data are shown in Table 6.

TABLE 6
Summary statistic of the results of waiting time data.

Distributions Estimates Log-lik AIC K − S W ∗

(p-value) (p-value)

QLD α = -0.0791 -316.9255 637.8511 0.0567 0.0449
θ = 0.2112 (0.9052) (0.9076)

PLD α = 1.0830 -318.3186 640.6372 0.0519 0.0456
θ = 0.1531 (0.9504) (0.9034)

SUSHILA α = -0.3757 -316.9255 637.8511 0.1528 0.0614
θ = -0.0794 (0.0187) (0.022)

LINDLEY θ=0.1866 -319.0374 640.0748 0.0678 0.0582
(0.7494) (0.8265)

Figure 1 – Density and cumulative distribution fit for the waiting time data.
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Figure 2 – Probability-Probability plot for the waiting time data.

The graphical illustration of the density and cumulative distribution fit and P-P plots
of the distributions for the waiting time data is shown in Figures 1 and 2 respectively.
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SUMMARY

In this paper, we review the quasi Lindley distribution and established its quantile function. A
simulation study is conducted to examine the bias and mean square error of the parameter esti-
mates of the distribution through the method of moment estimation and the maximum likelihood
estimation. Result obtained shows that the method of maximum likelihood is a better choice of
estimation method for the parameters of the quasi Lindley distribution. Finally, an applicability
of the quasi Lindley disttribution to a waiting time data set suggests that the distribution demon-
strates superiority over the power Lindley distribution, Sushila distribution and the classical one-
parameter Lindley distribution in terms of the maximized loglikelihood, the Akaike information
criterion, the Kolmogorov-Smirnov and Cramér von Mises test statistic.

Keywords: Quasi Lindley distribution; Quantile function; Moment estimation; Maximum like-
lihood estimation.


