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1. INTRODUCTION

Lindley (1958) proposed the classical one parameter Lindley distribution with scale pa-
rameter θ > 0 and the probability density function defined by

f (x,θ) =
θ2

θ+ 1
(1+ x)e−θx , x > 0,θ > 0. (1)

The corresponding cumulative distribution function is given by

F (x,θ) = 1−
�

θ+ 1+θx
θ+ 1

�

e−θx , x > 0,θ > 0. (2)

The probability density function (pdf) of the one-parameter Lindley distribution
given in (1) is a two-component mixture of exponential (θ) and gamma (2, θ). Equation
(1) can be expressed as

f (x,θ) = p f1(x)+ (1− p) f2(x), (3)

where f1(x) and f2(x) are the pdf of the exponential(θ) and gamma(2,θ) distribution
and p is the mixing proportion. Ghitany et al. (2008) studied the properties of the one
parameter Lindley distribution and applied it to a waiting time data. Considering some
comparison criteria, it was shown that the distribution is a better model than the ex-
ponential distribution in modeling lifetime data. But due to the failure rate property of
the one parameter Lindley distribution, there are some situations where the distribution
fails to provide a good fit in modeling real lifetime data. To address this situation, many
researchers have proposed generalized forms of the one parameter Lindley distribution.

1 Corresponding Author. E-mail: nosakhare.ekhosuehi@uniben.edu
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Bhati et al. (2015) introduced a new family of distributions with survival function given
by

F̄ (x) =
θ2

θ+ 1

∫ − logG(x)

0
(1+ t )e−θt d t , x > 0,θ > 0. (4)

The corresponding density function is given by

f (x) =
θ2

θ+ 1
([1− logG(x)]G(x))θ−1 g (x), x > 0,θ > 0, (5)

where G(x) is the cdf of the parent distribution.
Lazri and Zeghdoudi (2016) used the T −X family of distribution framework pro-

posed by Alzaartreh et al. (2013) to generate a new family of Lindley distribution called
the Lindley-X family of distribution. The cumulative distribution function of the new
family is given by

F (x) =
θ2

θ+ 1

∫
G(x)

1−G(x)

0
(1+ t )e−θt d t , x > 0,θ > 0 (6)

and the corresponding density function is given by

f (x) =
θ2

θ+ 1

�

g (x)
(1−G(x))2

�

1+
G(x)

1−G(x)

�

exp
�

−θ
�

G(x)
1−G(x)

���

. (7)

Other generalizations of the Lindley distribution are found in the works of Nadara-
jah et al. (2011); Bakouch et al. (2012); Al-Babtain et al. (2015); Maya and Irshad (2017)
and a host of others.

In this paper, we introduced a new family of Lindley distribution by considering an
integral transform of the density function of a random variable which follows the one
parameter Lindley distribution with cumulative distribution function defined by

F (x,φ) =
θ2

θ+ 1

∫ G(x,φ)

0
(1+ t )e−θt d t

= 1−
[1+θ(1+G(x,φ))] e−θ[G(x,φ)]

(θ+ 1)
, x > 0,θ > 0,φ> 0.

(8)

The density function is given by

f (x,φ) =
θ2

θ+ 1
(1+G(x,φ))e−θ[G(x,φ)] g (x,φ), x > 0,θ > 0,φ> 0. (9)

In literature, G(x,φ) could either be the survival function or the cumulative distri-
bution function of any defined probability density function g (x,φ). Our interest in this
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paper is to consider G(x,φ)ε(0,∞) as a non-negative monotonically increasing function
depending on the parameter vector and also differentiable.

The remaining sections of this paper are organized as follows. An account of the
mathematical properties of the proposed distribution is given in Sections 2-7. These
properties include: the density function, cumulative distribution function, the survival
function, the hazard rate function, the quantile function, moments and related mea-
sures, Renyi entropy and the distribution of the ordered statistics. An estimation of the
parameters of the proposed distribution using maximum likelihood method is presented
in Section 8. Finally, Section 9 presents an application of the proposed distribution to
two real lifetime data sets alongside with some well-known related lifetime distributions.

2. DENSITY FUNCTION

Consider a family of distributions whose cumulative distribution function and probabil-
ity density function is defined by Equations (8) and (9), respectively. Let G(x,φ) = xα

β ,
then the cumulative distribution function and the density function of the three param-
eter generalized Lindley distribution (TPGLD) are given by

F (x) = 1−
(1+λβ+λxα)e−λxα

1+λβ
, x > 0,θ,λ,β> 0, (10)

and

f (x) =
αλ2(β+ xα)xα−1e−λxα

1+λβ
, x > 0,θ,λ,β> 0. (11)

The density function in equation (11) which is a two-component mixture of Weibull
distribution with shape parameter α and scale parameter λ and a generalized gamma
distribution with shape parameters (2,α) and scale parameter (λ) can be expressed as

f (x,λ) = p f1(x)+ (1− p) f2(x),

where f1(x) and f2(x) are pdf of Weibull distribution and generalized gamma distribu-
tion, respectively, and p = λβ

1+λβ is the mixing proportion.
The graphical representation of the density function of TPGLD for some fixed value

of the parameters is shown in Figure 1.
Table 1 shows some of the existing sub-models of the proposed class of distribution.
Remark: For α=β= 1, the TPGLD reduces to the classical one parameter Lindley

distribution and also reduce to the Power Lindley distribution when β= 1.
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Figure 1 – Density function of the TPGLD for (a):β= 2,λ= 3; (b):β= 5,λ= 2.

TABLE 1
Distributions and corresponding G(x;φ).

Distributions Density function G(x;φ) Authors

Lindley θ2(1+x)e−θx

(1+θ) x Lindley (1958)

Power Lindley αθ2(1+xα)xα−1e−θxα

(1+θ) xα Ghitany et al. (2013)

Sushila θ2(1+x)e−θx

(1+θ)
x
β Shanker et al. (2013)

Lindley-Pareto βθ2eθx2β−1e−[θ(
x
α )
β]

α2β(1+θ) ( x
θ )
β− 1 Lazri and Zeghdoudi (2016)

Lindley-Half Logistic θ2(1+e x )e [
θ
2 (1−e x )+x]

[4(1+θ)]
e x−1

2 Silva et al. (2017)

TPGLD αλ2(β+xα)xα−1e−λxα

(1+λβ)
xα

β This paper
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3. SURVIVAL AND HAZARD RATE FUNCTION

Let X be a continuous random variable with density function f (x) and cumulative dis-
tribution function F (x). The survival (reliability) function and hazard rate (failure rate)
function of the three parameter generalized Lindley distribution are defined by

s(x) =
(1+λβ+λxα)e−λxα

1+λβ
, x > 0,θ,λ,β> 0, (12)

and

h(x) =
αλ2(β+ xα)xα−1

(1+λβ+λxα)
, x > 0,θ,λ,β> 0. (13)

The graph of the hazard rate function of the TPGLD for different value of the pa-
rameters is given in Figure 2.

Figure 2 – Hazard rate function of the TPGLD.

Clearly from Figure 2, the TPGLD exhibits both monotone increasing and decreas-
ing failure rate property. It decreases monotonically when α < 1 and increases mono-
tonically when α≥ 1.

4. QUANTILES

Given the cumulative distribution function F (X ) defined by Equation (10), the quantile
function of the TPGLD can be obtain as QX (p) = F −1(p). The quantile function of the
Lindley family of distributions can be expressed in a closed form using the Lambert W
function proposed in Jodra (2010).

The p th quantile function is obtained by solving F (x) = p, i.e.

1−
(1+λβ+λxα)e−λxα

(1+λβ)
= p,
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(1+λβ+λxα)e−λxα = (1+λβ)(1− p).

Multiplying both sides by e−(1+−λβ), we have

(−1−λβ−λxα)e−(1+λβ+λxα) =−(1+λβ)(1− p)e−(1+λβ).

Clearly, we observe that (−1− λβ− λxα) is the Lambert W function of the real
argument −(1+λβ)(1− p)e−(1+λβ). Thus, we have

W−1

�

−(1+λβ)(1− p)e−(1+λβ)
�

= (−1−λβ−λxα),

λxα =W−1

�

−(1+λβ)(1− p)e−(1+λβ)
�

,

x =
�

−β− 1
λ
− 1
λ

W−1

�

−(1+λβ)(1− p)e−(1+λβ)
�

�
1
α

, (14)

where pε(0,1).
The median of the TPGLD can be obtained by substituting p = 1

2 in Equation (14)
which yields

Median=Q2 =
�

−β− 1
λ
− 1
λ

W−1

�

−1
2
(1+λβ)e−(1+λβ)

��
1
α

. (15)

5. MOMENTS

Let X be a continuous random variable with density function f (x), then the r th raw
moment of X is defined by

µ
′

r = E(X r ) =
∫ ∞

−∞
x r f (x)d x. (16)

Given the pdf in Equation (11), the r th raw moment of the TPGLD is defined by

µ
′

r = E(X r ) =
∫ ∞

0

x rαλ2(β+ xα)xα− 1e−λxα

1+λβ
d x

=
αλ2

1+λβ

�∫ ∞

0
βxα+r−1e−λxαd x +

∫ ∞

0
βx2α+r−1e−λxαd x

�

.

Using the transformations y = λxα, x =
� y
λ

�
1
α , d x = 1

αλ

� y
λ

�
1
α−1 d y,
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∫ ∞

0
βxα+r−1e−λxαd x =

β

αλ

�

∫ ∞

0

�

� y
λ

�
1
α

�α+r−1

e−y
� y
λ

�
1
α−1

d y

�

=
β

αλ

�

∫ ∞

0

y
r
α e−y

λ
r
α

d y

�

=
βΓ ( r

α + 1)

αλ
r
α+1

.

Similarly,

∫ ∞

0
βx2α+r−1e−λxαd x =

Γ ( r
α + 2)

αλ
r
α+2

,

µ
′

r =
αλ2

1+λβ

�

βΓ ( r
α + 1)

αλ
r
α+1

+
Γ ( r

α + 2)

αλ
r
α+2

�

=
r [α(λβ+ 1)+ r ]Γ ( r

α )

α2λ
r
α (1+λβ)

, r = 1,2,3,4, ...
(17)

From Equation (17), the first four raw moments of the TPGLD can be obtained as
follows

µ
′

1 =µ=
[α(λβ+ 1)+ 1]Γ ( 1

α )

α2λ
1
α (1+λβ)

, µ
′

2 =
2 [α(λβ+ 1)+ 2]Γ ( 2

α )

α2λ
2
α (1+λβ)

,

µ
′

3 =
3 [α(λβ+ 1)+ 3]Γ ( 3

α )

α2λ
3
α (1+λβ)

, µ
′

4 =
4 [α(λβ+ 1)+ 4]Γ ( 4

α )

α2λ
4
α (1+λβ)

,

so that the variance (σ2), coefficient of variation (γ ), measure of skewness (Sk ) and mea-
sure of kurtosis (Ks ) of the TPGLD can be obtained as

σ2 = µ
′

2−µ
2, γ =

σ

µ
, Sk =

µ
′

3− 3µ
′

2µ+ 2µ3

�

µ′2−µ2
�

3
2

and

Ks =
µ
′

4− 4µ
′

3µ+ 6µ
′

2µ
2− 3µ4

�

µ′2−µ2
�2 .

Table 2 shows the theoretical moments of the TPGLD for different values of the
parameters. From Table 2, we observed that the TPGLD can be positively skewed and
negatively skewed. Also, at some selected values of the parameters, the distribution can
be leptokurtic as well as platykurtic.
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TABLE 2
Theoretical moments of TPGLD for selected values of the parameters.

α β λ µ
′

1 µ
′

2 µ
′

3 µ
′

4 σ2 γ Sk Ks
2 2 3 0.5482 0.3810 0.3107 0.2857 0.0804 2.0070 0.5981 3.1661

4 0.4677 0.2778 0.1939 0.1528 0.0590 2.3523 0.6097 3.1919

3 3 0.5372 0.3667 0.2942 0.2667 0.0780 2.0479 0.6134 3.2003
4 0.4602 0.2692 0.1853 0.1442 0.0575 2.3910 0.6201 3.2164

4 2 3 0.7133 0.5482 0.4464 0.3810 0.0394 1.5424 -0.1105 2.7428
4 0.6587 0.4677 0.3520 0.2778 0.0338 1.6703 -0.1020 2.7434

3 3 0.7059 0.5372 0.4334 0.3667 0.0389 1.5586 -0.0994 2.7438
4 0.6532 0.4602 0.3437 0.2692 0.0334 1.6843 -0.0947 2.7449

6. RENYI ENTROPY

An entropy of a random variable X is a measure of variation of uncertainty associated
with the random variable X . Renyi (1961) defined the Renyi entropy of X with density
function f (x) as

τR(γ ) =
1

1− γ
log

�
∫

f γ (x)d x
�

, γ > 0,γ 6= 1. (18)

Using Equation (18), the Renyi entropy of the TPGLD is defined by

τR(γ ) =
1

1− γ
log

�∫ ∞

0

(αλ2)γ (β+ xα)γ xγ (α−1)e−γλxα

(1+λβ)γ
d x
�

=
1

1− γ
log

��

αλ2

1+λβ

�γ ∫ ∞

0
(β+ xα)γ xαγ−γ e−γλxαd x

�

.

(19)

From the series expansion

(a+ b )n =
∞
∑

j=0

�

n
j

�

an− j b j ,

=
1

1− γ
log





�

αλ2

1+λβ

�γ ∞
∑

j=0

�

n
j

�

βγ− j
∫ ∞

0
xα j+αγ−γ e−γλxαd x



 ,

but
∫ ∞

0
xα j+αγ−γ e−γλxαd x =

Γ
�

j + γ − γ
α +

1
α

�

α (γλ) j+γ−
γ
α+

1
α

,
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so that

τR(γ ) =
1

1− γ
log





�

αλ2

1+λβ

�γ ∞
∑

j=0

�

n
j

�

βγ− j
Γ
�

j + γ − γ
α +

1
α

�

α (γλ) j+γ−
γ
α+

1
α





=
1

1− γ
log





 

αγ−1λγ(1+
1
α )− 1

α

(1+λβ)γγ γ (1−
1
α )+

1
α

!

∞
∑

j=0

�

γ
j

�

βγ− j

(γλ) j
Γ
�

j + γ −
γ

α
+

1
α

�



 .

(20)

7. THE DISTRIBUTION OF THE ORDERED STATISTICS

Suppose that Y1:n < Y2:n < · · ·< Yn:n is the order statistics of a random sample generated
from TPGLD, then the probability density function of the k th order statistics, say X =
Yn:n is given by

gk (x) =
n!

(n− k)!(k − 1)!
[G(x)]k−1 [1−G(x)]n−k g (x), (21)

where

g (x) =
αλ2

(1+λβ)
(β+ xα) xα−1e−λxα , G(x) = 1−

(1+λβ+λxα)
(1+λβ)

e−λxα ,

gk (x) =
n!

(n− k)!(k − 1)!

∞
∑

j=0

�

n− k
j

�

(−1) j [G(x)] j+k−1 g (x)

gk (x) =
αλ2n!

(n− k)!(k − 1)!(1+λβ)

∞
∑

j=0

�

n− k
j

�

(−1) j (β+ xα) xα−1e−λxα

×
�

1−
(1+λβ+λxα)
(1+λβ)

e−λxα
� j+k−1

.

(22)

Using the series expression
�

1−
(1+λβ+λxα)
(1+λβ)

e−λxα
� j+k−1

=
∞
∑

m=0

�

j + k − 1
m

�

(−1)m
(1+λβ+λxα)
(1+λβ)m

e−mλxα ,

Equation (22) becomes

=
αλ2+pβp+1−q n!

(n− k)!(k − 1)!(1+λβ)m+1

∞
∑

j=0

j
∑

m=0

m
∑

p=0

p+1
∑

q=0

�

n− k
j

��

j + k − 1
m

��

m
p

�

×
�

p + 1
q

�

(−1) j+m xα(1+q)−1e−λ(m+1)xα .

(23)
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The s th moment of the k th order statistics from the TPGLD is defined by

E(X s
k ) =

∫ ∞

0
x s gk (x)d x (24)

=
αλ2+pβp+1−q n!

(n− k)!(k − 1)!(1+λβ)m+1

∞
∑

j=0

j
∑

m=0

m
∑

p=0

p+1
∑

q=0

�

n− k
j

��

j + k − 1
m

��

m
p

�

×
�

p + 1
q

�

(−1) j+m
∫ ∞

0
x s+α(1+q)−1e−λ(m+1)xαd x

(25)

but

∫ ∞

0
x s+α(1+q)−1e−λ(m+1)xαd x =

Γ
� s
α + q + 1

�

α (λ(m+ 1))
s
α+q+1

.

Thus

E(X s
k ) =

αλ2+pβp+1−q n!
(n− k)!(k − 1)!(1+λβ)m+1

∞
∑

j=0

j
∑

m=0

m
∑

p=0

p+1
∑

q=0

�

n− k
j

��

j + k − 1
m

�

×
�

m
p

��

p + 1
q

�

(−1) j+m Γ
� s
α + q + 1

�

α (λ(m+ 1))
s
α+q+1

.

(26)

8. MAXIMUM LIKELIHOOD ESTIMATION

Let (x1, x2, · · · , xn) be random samples from the TPGLD, then the log-likelihood func-
tion is defined as

`(x,φ) =
n
∑

i=1

log
�

αλ2(β+ xα)xα−1e−λxα

1+λβ

�

, φ= (α,β,λ)T , (27)

= n logα+2n logλ+
n
∑

i=1

log (β+ xαi )+(α−1)
n
∑

i=1

log xi−λ
n
∑

i=1

(xαi )−n log(1+λβ). (28)

On differentiating the log-likelihood function with respect to the parameters, we
obtain the score function as
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∂ `

∂ α
=

n
α
+

n
∑

i=1

xαi log xi

(β+ xαi )
+

n
∑

i=1

log xi −λ
n
∑

i=1

xαi log xi ,

∂ `

∂ λ
=

2n
λ
−

n
∑

i=1

xαi −
nβ

(1+λβ)
.

The maximum likelihood estimator φ̂ ofφ can be obtained by solving the system of
non-linear equation ∂ `

∂ φ = 0. This non-linear equation can be solved using the Newton
Raphson iterative scheme given by

φ̂ = φk −H−1(φk )U (φk ), (29)

where U (φk ) is the score function and H (φk ) is the Hessian matrix, which is the second
derivative of the log-likelihood function.

A closed form expression of the Fisher information matrix is defined by

I (φk ) =−E[H (φk )] =−E

















∂ 2`
∂ α2

∂ 2`
∂ α∂ β

∂ 2`
∂ α∂ λ

∂ 2`
∂ β∂ α

∂ 2`
∂ β2

∂ 2`
∂ β∂ λ

∂ 2`
∂ λ∂ α

∂ 2`
∂ λ∂ β

∂ 2`
∂ λ2

















The elements of the observed information matrix of the TPGLD are available upon
request from the authors.

9. DATA ANALYSIS

In this section, we fit the proposed distribution to two real data sets alongside with some
well-known lifetime distributions with the following density functions.

(i) Exponentiated Power Lindley distribution (EPLD) reported in Warahena-Liyanage
and Pararai (2014):

f (x) =
αλ2β(1+ xα)xα−1e−λxα

1+λ

�

1−
�

1+
λxα

1+λ

�

e−λxα
�β−1

, x > 0,α,λ,β> 0.

(ii) Exponentiated Lindley geometric distribution (ELGD) reported in Wang (2013):

f (x) =
αβ2(1−λ)(1+ x)e−βx

�

1−
�

1+ βx
1+β

�

e−βx
�α−1

(1+β)
�

1−λ+λ
�

1−
�

1+ βx
1+β

�

e−βx
�α�2 , x > 0,α,β> 0,0< λ< 1.
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(iii) Power Lindley distribution (PLD) reported in Ghitany et al. (2013):

f (x) =
αλ2(1+ xα)xα−1e−λxα

1+λ
, x > 0,α,λ > 0.

(iv) Lindley-exponential distribution (LED) reported in Bhati et al. (2015):

f (x) =
αλ2e−αx (1− e−αx )λ−1(1− l o g (1− e−αx ))

1+λ
, x > 0,α,λ > 0.

(v) Lindley distribution reported in Lindley (1958):

f (x) =
λ2(1+ x)e−λ

1+λ
, x > 0,λ > 0.

The comparison criteria considered in this work includes, the estimates of the param-
eters of the distribution,−2 log(L) , Akaike information criterion [AI C = 2k−2 log(L)],
Bayesian information criterion [BI C = k log(n) − 2 log(L)], Anderson Darling test
statistic (A∗) and Crammer-von Mises test statistic (W ∗), where n is the number of ob-
servations, k is the number of estimated parameters and L is the value of the likelihood
function evaluated at the parameter estimates.

Data Set 1: This data set consists of 72 exceedances of flood peaks (in m3/s ) of the
Wheaton river near Carcross in Yukon Territory, Canada for the years 1958-1984. This
data was first used by Choulakian and Stephens (2001) to examine the applicability of
the generalized Pareto distribution and also was reported in Akinsete et al. (2008). This
data set is given in Table 3.

TABLE 3
Exceedances of Wheaton river flood data.

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3
1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 27.0 14.4 1.7
37.6 0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1
0.6 9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0
3.6 5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7
64.0 1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5

Plots of the density and the cumulative distribution fit for the Wheaton river flood
data is shown in Figure 3.

Data Set 2: This dataset consists of the strengths of 1.5 cm glass fibres measured
by the National Physical Laboratory in England reported in Bera (2015). The data was
originally used by Smith and Naylor (1987). Table 5 presents the data set.



A Three Parameter Generalized Lindley Distribution 245

TABLE 4
Summary statistics for the data set 1 (standard error in parenthesis).

Models Estimates -2 log L AIC BIC A∗ W ∗

TPGLD α=0.870(0.110)
β=16.515(35.714) 502.730 508.730 515.560 0.808 0.141
λ=0.154(0.083)

EPLD α=0.730(0.236)
β=0.916(0.599) 504.425 510.425 517.255 0.858 0.149
λ=0.300(0.281)

ELGD α=0.559(0.121)
β=0.095(0.024) 505.089 511.089 517.919 0.842 0.141
λ=0.281(0.466)

PLD α=0.700(0.057) 504.444 508.444 512.997 0.877 0.153
λ=0.339(0.056)

LED α=0.062(0.012) 503.073 507.073 511.626 0.845 0.154
λ=1.121(0.141)

Lindley α=0.150(0.013) 528.424 530.424 532.700 7.421 0.818

Figure 3 – Density and cumulative distribution fit for the Wheaton river flood data.
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TABLE 5
Strength of glass fibers data.

0.55 0.93 1.25 1.36 1.49 1.52 1.58 1.61 1.64 1.68 1.73 1.81 2.00
0.74 1.04 1.27 1.39 1.49 1.53 1.59 1.61 1.66 1.68 1.76 1.82 2.01
0.77 1.11 1.28 1.42 1.50 1.54 1.60 1.62 1.66 1.69 1.76 1.84 2.24
0.81 1.13 1.29 1.48 1.50 1.55 1.61 1.62 1.66 1.70 1.77 1.84 0.84
1.24 1.30 1.48 1.51 1.55 1.61 1.63 1.67 1.70 1.78 1.89

TABLE 6
Summary statistics for the data set 2 (standard error in parenthesis).

Models Estimates -2 log L AIC BIC A∗ W ∗

TPGLD α=4.944(0.658)
β=3.429(4.401) 28.421 34.421 40.851 0.999 0.166
λ=0.156(0.071)

EGLD α=9.521(20.587)
β=6.217(0.628) 31.663 37.663 44.093 1.280 0.171

λ=-653.220(1341.380)

PLD α=4.458(0.387) 29.380 33.380 37.666 1.119 0.190
λ=0.222(0.047)

LED α=2.612(0.239) 62.816 66.816 71.102 4.341 0.799
λ=32.308(9.558)

Lindley α=0.996(0.095) 162.557 164.557 166.700 16.245 3.332

Figure 4 – Density and cumulative distribution fit for the strengths of glass fiber data.
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Plots of the density and the cumulative distribution fit for the strengths of glass fiber
data are shown in Figure 4. When comparing lifetime distributions, the distribution
with the smallest −2 log L, AIC, BIC, A∗ and W ∗ is considered to be the best model in
fitting a given data set. However, when the number of parameters of a distribution is
small, the likelihood of selecting such a distribution as the best model will be increased
in terms of−2 log L, AIC and BIC. In this case, one resort to measures of goodness of fit
test statistics such as Anderson Darling test, Crammer-von Mises test and Komolgorov-
Smirnov test statistics to validate the superiority of a model for a given data set. Conse-
quently, Tables 4 and 6 show that the TPGLD has the least value of−2 log L, AIC, BIC,
A∗ and W ∗, which indicates that the TPGLD demonstrates superiority over the EPLD,
ELGD, PLD, LED and the classical one parameter Lindley distribution in modeling
the lifetime data sets under study. This claim was further supported by inspecting the
density and cumulative distribution fit of the distributions for the real lifetime data set.
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SUMMARY

In this paper, we introduced a new class of lifetime distribution and considered the mathemati-
cal properties of one of the sub models called a three parameter generalized Lindley distribution
(TPGLD). The new class of distributions generalizes some of the Lindley family of distribution
such as the power Lindley distribution, the Sushila distribution, the Lindley-Pareto distribution,
the Lindley-half logistic distribution and the classical Lindley distribution. An application of the
TPGLD to two real lifetime data sets reveals its superiority over the exponentiated power Lindley
distribution, the exponentiated Lindley geometric distribution, the power Lindley distribution,
the Lindley-exponential distribution and the classical one parameter Lindley distribution in mod-
eling the lifetime data sets under study.

Keywords: Lindley distribution; Power Lindley distribution; Hazard rate; Moments.


