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1. INTRODUCTION

Lindley (1958) proposed the classical one parameter Lindley distribution with scale pa-
rameter & > 0 and the probability density function defined by

2
f(x,0)= eil(l—kx)e&x, x>0,6>0. (1)

The corresponding cumulative distribution function is given by
F(x,@):l—<%>e_§x, x>0,0>0. )

The probability density function (pdf) of the one-parameter Lindley distribution
given in (1) is a two-component mixture of exponential (¢) and gamma (2, §). Equation

(1) can be expressed as
f(x.0)=pfi(x)+(1=p)A(x), &)

where f(x) and f,(x) are the pdf of the exponential(f) and gamma(2, 6) distribution
and p is the mixing proportion. Ghitany ez al. (2008) studied the properties of the one
parameter Lindley distribution and applied it to a waiting time data. Considering some
comparison criteria, it was shown that the distribution is a better model than the ex-
ponential distribution in modeling lifetime data. But due to the failure rate property of
the one parameter Lindley distribution, there are some situations where the distribution
fails to provide a good fit in modeling real lifetime data. To address this situation, many
researchers have proposed generalized forms of the one parameter Lindley distribution.
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Bhati ez al. (2015) introduced a new family of distributions with survival function given
by

- 62 log G(x) oy 0
Fx)=—— 1 - 0 0. 4
(x) 9+1f0 (14+1t)e7'dr, x>0,0> )
The corresponding density function is given by
2
f0)= 5 (1-Tog GG glx), x>0,6>0, ©

where G(x) is the cdf of the parent distribution.

Lazri and Zeghdoudi (2016) used the 7' — X family of distribution framework pro-
posed by Alzaartreh et al. (2013) to generate a new family of Lindley distribution called
the Lindley-X family of distribution. The cumulative distribution function of the new
family is given by

G(x)

H? e )
J (1+¢t)e "'de, x>0,0>0 6)

0

and the corresponding density function is given by

o= e (e =l Zew ) @

Other generalizations of the Lindley distribution are found in the works of Nadara-
jah er al. (2011); Bakouch er al. (2012); Al-Babtain et al. (2015); Maya and Irshad (2017)
and a host of others.

In this paper, we introduced a new family of Lindley distribution by considering an
integral transform of the density function of a random variable which follows the one
parameter Lindley distribution with cumulative distribution function defined by

2 G(x,9)
F(x,¢)= 0 f (14 1)e ¥ dt
0

0+1 ®)
=1— [1+001+ (i(;j:i)))] e 106 , x>0,0>0,¢6>0.
The density function is given by
flx,$)= o 51+ G ,$))e 0D g(x, ), x>0,0>0,4>0. )

In literature, G(x, (,é) could either be the survival function or the cumulative distri-
bution function of any defined probability density function g(x, ). Our interest in this
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paper is to consider G(x, ¢)e(0, 00) as a non-negative monotonically increasing function
depending on the parameter vector and also differentiable.

The remaining sections of this paper are organized as follows. An account of the
mathematical properties of the proposed distribution is given in Sections 2-7. These
properties include: the density function, cumulative distribution function, the survival
function, the hazard rate function, the quantile function, moments and related mea-
sures, Renyi entropy and the distribution of the ordered statistics. An estimation of the
parameters of the proposed distribution using maximum likelihood method is presented
in Section 8. Finally, Section 9 presents an application of the proposed distribution to
two real lifetime data sets alongside with some well-known related lifetime distributions.

2. DENSITY FUNCTION

Consider a family of distributions whose cumulative distribution function and probabil-
ity density function is defined by Equations (8) and (9), respectively. Let G(x, ¢) = %,
then the cumulative distribution function and the density function of the three param-
eter generalized Lindley distribution (TPGLD) are given by

1+ AB + Ax®)e= M

Flx)=1 TSV

x>0,0,A,8>0, (10)

and
B a/{Z(IB_an)xa—le—/lx“

1+ A8 ’

The density function in equation (11) which is a two-component mixture of Weibull
distribution with shape parameter @ and scale parameter A and a generalized gamma
distribution with shape parameters (2, @) and scale parameter (1) can be expressed as

[, )= pfi(x)+(1—p)fi(x),
where f{(x) and f,(x) are pdf of Weibull distribution and generalized gamma distribu-

f(x) x>0,0,4,6>0. (11)

tion, respectively, and p = % is the mixing proportion.

The graphical representation of the density function of TPGLD for some fixed value
of the parameters is shown in Figure 1.

Table 1 shows some of the existing sub-models of the proposed class of distribution.

Remark: For o = 8 = 1, the TPGLD reduces to the classical one parameter Lindley
distribution and also reduce to the Power Lindley distribution when S =1.
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Figure 1 - Density function of the TPGLD for (a):58=2,A=3; (b):f=5A1=2.

TABLE 1
Distributions and corresponding G(x; §).
Distributions Density function ~ G(x; @) Authors
B 62 x)e—0x .

Lindley % x Lindley (1958)
Power Lindley W x® Ghitany et al. (2013)
Sushila 62(%@5% % Shanker et al. (2013)

5-1,-1003)° x . .
Lindley-Pareto % (9)5 —1 Lazri and Zeghdoudi (2016)

2ol § (=¥ 1) . )

Lindley-Half Logistic % = ! Silva et al. (2017)
TPGLD (faxte e el This paper

(1+48) B
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3. SURVIVAL AND HAZARD RATE FUNCTION

Let X be a continuous random variable with density function f(x) and cumulative dis-
tribution function F(x). The survival (reliability) function and hazard rate (failure rate)
function of the three parameter generalized Lindley distribution are defined by

()= (1+/1,6+/1x“)e_4xa
S 1+ A8 ’

x>0,0,4,8>0, (12)

and

B a (B +x*)xe!
M= B )

The graph of the hazard rate function of the TPGLD for different value of the pa-
rameters is given in Figure 2.

x>0,0,4,6>0. (13)

Figure 2 - Hazard rate function of the TPGLD.

Clearly from Figure 2, the TPGLD exhibits both monotone increasing and decreas-
ing failure rate property. It decreases monotonically when o < 1 and increases mono-
tonically when o > 1.

4. QUANTILES

Given the cumulative distribution function F(X) defined by Equation (10), the quantile
function of the TPGLD can be obtain as Qy(p) = F~!(p). The quantile function of the
Lindley family of distributions can be expressed in a closed form using the Lambert W
function proposed in Jodra (2010).

The p™ quantile function is obtained by solving F(x) = p, i.e.

_ 1+ A8+ Ax®)e= A B
! i+ P
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(14 A8+ Ax®)e ™ = (1+ AB)(1—p).
Multiplying both sides by e1*—*%), we have

(_1_/1/6_/1xa)e—(1+/1,6+/1xa) :_(14_/1/5)(1_[))@—(14-/1,6)'

Clearly, we observe that (—1 — A3 — Ax®) is the Lambert W function of the real
argument —(14 A3)(1— p)e 4. Thus, we have

W, [—(14AB) (1= p)e ] = (1= 25— Ax%),

Ax® = W, [—(14 AB)(1— p)e 1+47)],

v= (== 2= TV [+ A e R]), (14)

where pe(0,1).
The median of the TPGLD can be obtained by substituting p = % in Equation (14)
which yields

1

Median = Q, = <—,6 - }1 W, [—%(1 + /1,3)e_(1+"'8)]>; . (15)

5. MOMENTS
Let X be a continuous random variable with density function f(x), then the » raw
moment of X is defined by

oo

b =Ex) =[x fd (16)

Given the pdf in Equation (11), the 7! raw moment of the TPGLD is defined by

, X" (B4 x¥)x% — e
—E(X")= d
My (X7) fo 1+ A8 X
= _a/lz [Jm /Bx““_le_lxadx +fm ﬁxzo’”_le”xadx]
1+/1ﬁ 0 0

1 1
Using the transformations  y = Ax%, x=(%)*, dx= a_l,l( )5_1 dy,

=
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L Gt
-5(J7 )

_ PTG+
I
Similarly,
Joo Bx2atr A gy = G ,+2),
0 a i +2

aR [,Br<§+1>+r<§+z>]

Fr = 1+ A8 aAst! adat? a7)
:r[a(wler]r(a), r=1,2,3,4,...
2 (14 A8)

From Equation (17), the first four raw moments of the TPGLD can be obtained as
follows

. [a(AB+1)+1]T(3) 2[a(AB+1)+2]T(3)
e ias T T adaas)
,3[a(AB+1)+3]T() , 4[a(AB+ 1) +4T(2)
T s T T adaeas)

so that the variance (%), coefficient of variation (y), measure of skewness (S,) and mea-
sure of kurtosis (K;) of the TPGLD can be obtained as

: s = 3u+2u’
Vo g gn O o BT+
# </“2 - /“2> ’
and ) ) . \
Mg — Ay b+ Oy u”—3u
/ 2 2 .
(/uz —H )

Table 2 shows the theoretical moments of the TPGLD for different values of the
parameters. From Table 2, we observed that the TPGLD can be positively skewed and
negatively skewed. Also, at some selected values of the parameters, the distribution can
be leptokurtic as well as platykurtic.

K =

s
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TABLE 2
Theoretical moments of TPGLD for selected values of the parameters.
a B A p 2 Ks Ky o’ Y S K,
2 2 3 0.5482 0.3810 0.3107 0.2857 0.0804 2.0070 0.5981 3.1661

4 04677 0.2778 0.1939 0.1528 0.0590 2.3523 0.6097 3.1919

3 3 05372 03667 0.2942 0.2667 0.0780 2.0479 0.6134 3.2003
4 0.4602 0.2692 0.1853 0.1442 0.0575 23910 0.6201 3.2164

4 2 3 07133 05482 0.4464 0.3810 0.0394 15424 -0.1105 2.7428
4 0.6587 0.4677 0.3520 0.2778 0.0338 1.6703 -0.1020 2.7434

3 3 07059 0.5372 0.4334 03667 0.0389 1.5586 -0.0994 2.7438
4 0.6532 0.4602 0.3437 0.2692 0.0334 1.6843 -0.0947 2.7449

6. RENYI ENTROPY

An entropy of a random variable X is a measure of variation of uncertainty associated
with the random variable X. Renyi (1961) defined the Renyi entropy of X with density
function f(x) as

sn)= gl | Fdx], p>op#t 19

Using Equation (18), the Renyi entropy of the TPGLD is defined by

1 ® (@)1 (B + x%) xr(eemrAxt
1—rl°gUo (L+ 4By d"}

1 aAr \ [ .
[ — ek AN @YY =Y AX )
n ;/Og|:<1+/1,5> fo (B4x%) x* e dx:|

From the series expansion

(a+b)" i< >a”_/bf,

j=0

1 r&e .
— r=i I Har—y o=y Ax
=, o8 <1+/1,6> Z< )é f e dx

7=

(19)

but
1

o0 T(j+y—L+-=
f x@rar—=y o=y A g (] I : f)
0 a(y/l)j”_ﬁ;
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so that

)= 1 log <1i/1;6>V]§;<7]1_>I3y—jr<j+7/__gy+%>]

a(}/i)/ﬂ—;ﬁ

=1 (1+5)—3 % r—i
= ! log a4 — Z(}’)ﬁ T<]'+}/—Z+l>
I—y (14 AB)yryrU=2r3 )45\ T/ (yAY a a

(20)

7. 'THE DISTRIBUTION OF THE ORDERED STATISTICS

Supposethat Y., < Y,., <--- <Y, isthe order statistics of a random sample generated
from TPGLD, then the probability density function of the &£ order statistics, say X =
Y,., is given by

n!

_ k— n—k
8k(x)—m[ (] [1=G)]" ™ g(x), 1)
where
ok o et _ o (0 AB+ AT
g(x)—(1+/w)(,5+x )x* e, G(x)= —We )
_ n! A n—k\, .\ OV o (x
e DN G (U CLTAD

_ a/lzn' < n_k a—1_—Ax?
gk(x)_(n—/e)(/e W1+ A5) ]Z:< i > J(B+x%)x" e

1+ A8+ Ax%) P
[1‘ +8) ] |

(22)

Using the series expression

A+ A8+ Ax7) L PH & ]—l—/e—l m(LEAB+AxT) e
ool I (A Tl v v ol

Equation (22) becomes

e SRS ()

j=0 m=0 p=0 ¢=0

m=0

(23)

% < p ;‘ 1 >(_1)/+mxa(1+q)—1e—/l(m-f-l)x“.
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The s moment of the £ order statistics from the TPGLD is defined by

B0 = | s 049

e T )

7=0 m=0 p=0 g=0

25)
% < p+1 ><_1>j+m f * x5 ta(l4q)=1 = Alm+1)x* g
9 0
but
foo x5+a(1+q)—1e—/1(m+1)x"dx r(% +4q +j 1) .
0 a(A(m +1))=+1*!
Thus
a \2+P Brei=ay) o J m P+1< n—pk ><j+/e—1 >
E(X))= .
&0 (n—k)\(k— 1)1+ AB)m+1 ;;;; ] m
(26)

()72 e Tt

8. MAXIMUM LIKELIHOOD ESTIMATION

Let (x;,%,,* , %, ) be random samples from the TPGLD, then the log-likelihood func-
tion is defined as

n a2 x? xa—le—/lx“
og) =30 L] pm@pd @)

=nloga+2nlog /H—Z log (8 + xf‘)—i—((z—l)z logx,—A Z(xf’)—n log(1+A08). (28)
1= 1=1 1=1

1=1

On differentiating the log-likelihood function with respect to the parameters, we
obtain the score function as
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av n x{logx; 2,

P _;-i—lz; Brxz +Z_:logx )lzz;xi logx;,
ot _2_”_

ar (1+/1,3)

The maximum likelihood estimator ¢ of ¢ can be obtained by solving the system of
non-linear equation % = 0. This non-linear equation can be solved using the Newton
Raphson iterative scheme given by

¢ = $—H ($)U(¢y) (29)

where U(¢,) is the score function and H (¢, ) is the Hessian matrix, which is the second
derivative of the log-likelihood function.
A closed form expression of the Fisher information matrix is defined by

% % %
da? dad dad A

2 o ou
W) =—E[H(@)=—E| 722z 25  75m2

M
EDEFRNN-DY:J: DY

The elements of the observed information matrix of the TPGLD are available upon
request from the authors.
9. DATA ANALYSIS

In this section, we fit the proposed distribution to two real data sets alongside with some
well-known lifetime distributions with the following density functions.

(i) Exponentiated Power Lindley distribution (EPLD) reported in Warahena-Liyanage
and Pararai (2014):

2 a\,.a—1 ,—Ax? a B—1
f(x):al{ /3(1+1>:_);c e [1_<1+1/11A>em] > 0mA B0

(i) Exponentiated Lindley geometric distribution (ELGD) reported in Wang (2013):

a,BZ 1= (1 +x)e P [1— (14 £5 ) e 7]
(1+B)[1=A+A[1—(1 +1+,B> sl ]

a—1

, x>0,a,>0,0< A< 1.



244 N. Ekhosuebi and F. Opone

(i) Power Lindley distribution (PLD) reported in Ghitany et al. (2013):

B a/12(1+xa)xa—1e—/1x“
B 1+ 4

, x>0,a,A>0.

f(x)

(iv) Lindley-exponential distribution (LED) reported in Bhati ez al. (2015):

2 ,—ax(1 __ ,—ax\A—=1/1 __ _,—ax
f(x):a)e (1—e )1+</11 fog(1—e )), x>0,a,4>0.

(v) Lindley distribution reported in Lindley (1958):

A1+ x)e

, x>0,A>0.
1+ A

f(x)=

The comparison criteria considered in this work includes, the estimates of the param-
eters of the distribution,—2log(L) , Akaike information criterion [AI C = 2k—2log(L)],
Bayesian information criterion [BIC = klog(n) — 2log(L)], Anderson Darling test
statistic (A*) and Crammer-von Mises test statistic (W*), where 7 is the number of ob-
servations, k is the number of estimated parameters and L is the value of the likelihood
function evaluated at the parameter estimates.

Data Set 1: This data set consists of 72 exceedances of flood peaks (in 7% /s) of the
Wheaton river near Carcross in Yukon Territory, Canada for the years 1958-1984. This
data was first used by Choulakian and Stephens (2001) to examine the applicability of
the generalized Pareto distribution and also was reported in Akinsete et al. (2008). This
data set is given in Table 3.

TABLE 3
Exceedances of Wheaton river flood data.

1.7 22 144 11 04 206 53 0.7 1.9 130 120 93
1.4 187 85 255 116 141 221 1.1 25 270 144 17
376 0.6 22 390 03 150 110 73 229 17 0.1 1.1
0.6 9.0 1.7 70 201 04 28 141 99 104 107 30.0
3.6 56 308 133 42 255 34 119 215 276 364 27
640 15 25 274 1.0 271 202 168 53 97 275 25

Plots of the density and the cumulative distribution fit for the Wheaton river flood
data is shown in Figure 3.

Data Set 2: This dataset consists of the strengths of 1.5 cm glass fibres measured
by the National Physical Laboratory in England reported in Bera (2015). The data was
originally used by Smith and Naylor (1987). Table 5 presents the data set.
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TABLE 4
Summary statistics for the data set 1 (standard error in parenthesis).
Models Estimates 2logl  AIC BIC A W
TPGLD  2=0.870(0.110)
B=16.515(35.714) 502.730 508.730 515.560 0.808 0.141
A=0.154(0.083)
EPLD  =0.730(0.236)
£=0.916(0.599) 504.425 510.425 517.255 0.858 0.149
1=0.300(0.281)
ELGD @=0.559(0.121)
IB:O.O95(O.024) 505.089 511.089 517919 0.842 0.141
A=0.281(0.466)
PLD «=0.700(0.057) 504.444 508.444 512.997 0.877 0.153
1=0.339(0.056)
LED «=0.062(0.012) 503.073 507.073 511.626 0.845 0.154
A=1.121(0.141)
Lindley @=0.150(0.013)  528.424 530.424 532.700 7.421 0.818
Density fit for the Data Set 1 Cumulative distribution fit for the Data Set 1
e . — TPGLD 2
o ; PLD
e ELCD
t PLD o |
-— [ED o
=R Lindley
z ° |} W S
2 4 0
8 .‘"‘%\ © =
1 N -
4.\?. hd
N = |

Figure 3 - Density and cumulative distribution fit for the Wheaton river flood data.

data

60

data
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TABLE 5
Strength of glass fibers data.

055 093 125 136 149 152 158 161 164 168 173 181 200
074 1.04 127 139 149 153 159 161 166 168 176 182 201
077 111 128 142 150 154 160 162 166 169 176 184 224
081 113 129 148 150 155 161 162 166 170 177 184 0.84
124 130 148 151 155 161 163 167 170 178 1.89

TABLE 6
Summary statistics for the data set 2 (standard error in parenthesis).
Models Estimates 2loglL  AIC BIC A* w*
TPGLD a=4.944(0.658)
ﬁ:3.429(4.401) 28.421 34.421 40.851 0.999 0.166

A=0.156(0.071)

EGLD @=9.521(20.587)

=6.217(0.628) 31.663  37.663  44.093  1.280 0.171
A=-653.220(1341.380)

PLD a=4.458(0.387) 29.380  33.380 37.666 1.119 0.190
1=0.222(0.047)
LED 2=2.612(0.239) 62816  66.816  71.102 4341  0.799
A=32.308(9.558)
Lindley @=0.996(0.095) 162.557 164.557 166.700 16.245 3.332
Density fit for the Data Set 2 Cumulative distribution fit for the Data Set 2
] — TPGLD
- ELGD

Density
CDF

Figure 4 - Density and cumulative distribution fit for the strengths of glass fiber data.
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Plots of the density and the cumulative distribution fit for the strengths of glass fiber
data are shown in Figure 4. When comparing lifetime distributions, the distribution
with the smallest —2log L, AIC, BIC, A* and W* is considered to be the best model in
fitting a given data set. However, when the number of parameters of a distribution is
small, the likelihood of selecting such a distribution as the best model will be increased
in terms of —2log L, AIC and BIC. In this case, one resort to measures of goodness of fit
test statistics such as Anderson Darling test, Crammer-von Mises test and Komolgorov-

Smirnov test statistics to validate the superiority of a model for a given data set. Conse-

quently, Tables 4 and 6 show that the TPGLD has the least value of —2log L, AIC, BIC,
A* and W*, which indicates that the TPGLD demonstrates superiority over the EPLD,
ELGD, PLD, LED and the classical one parameter Lindley distribution in modeling
the lifetime data sets under study. This claim was further supported by inspecting the
density and cumulative distribution fit of the distributions for the real lifetime data set.
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SUMMARY

In this paper, we introduced a new class of lifetime distribution and considered the mathemati-
cal properties of one of the sub models called a three parameter generalized Lindley distribution
(TPGLD). The new class of distributions generalizes some of the Lindley family of distribution
such as the power Lindley distribution, the Sushila distribution, the Lindley-Pareto distribution,
the Lindley-half logistic distribution and the classical Lindley distribution. An application of the
TPGLD to two real lifetime data sets reveals its superiority over the exponentiated power Lindley
distribution, the exponentiated Lindley geometric distribution, the power Lindley distribution,
the Lindley-exponential distribution and the classical one parameter Lindley distribution in mod-
eling the lifetime data sets under study.

Keywords: Lindley distribution; Power Lindley distribution; Hazard rate; Moments.



