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1. INTRODUCTION

Since 1997 when Marshall and Olkin proposed a way to add a parameter to the expo-
nential distribution by compounding with the geometric distribution (obtaining what
is referred to as the exponential geometric (EG) distribution), many new distributions
have been proposed based on compounding lifetime distributions with members of the
power series family. The exponential Poisson (EP) and exponential logarithmic (EL) dis-
tributions were introduced and studied by Kus (2007) and Tahmasbi and Rezaei (2008),
respectively. Chahkandi and Ganjali (2009) proposed the exponential power series (EPS)
distribution, which contains as special cases these distributions. Recently, Morais and
Barreto-Souza (2011) proposed the Weibull power series (WPS) distribution which con-
tains the EPS distribution as a special case.

The odd log-logistic (OLL) family of distributions was developed by Gleaton and
Lynch (2004). The name “odd” originates from the idea of evaluating the odds of death
of a patient. The OLL family of distributions have the cumulative distribution function
(cdf) and probability density function (pdf) specified by

G (x;γ ,τττ) =
Π (x;τττ)γ

Π (x;τττ)γ +Π (x;τττ)γ
(1)

1 Corresponding Author. E-mail: mbbsssn2@manchester.ac.uk
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and

g (x;γ ,τττ) =
γπ (x;τττ)

�

Π (x;τττ)Π (x;τττ)
�γ−1

�

Π (x;τττ)γ +Π (x;τττ)γ
�2 , (2)

respectively, where π (x;τττ), Π (x;τττ) and Π (x;τττ) are the pdf, cdf and survival function
of the baseline distribution. The survival function of the OLL distribution is G (x;τττ) =
1−G (x;τττ), where τττ are parameters of the baseline distribution.

In this paper, we introduce the OLL power series distribution (OLL-PS) obtained by
compounding the OLL family and power series distributions. The compounding pro-
cedure follows key ideas of Marshall and Olkin (1997), builds a wider and more flexible
family of continuous lifetime distributions.

The contents of this paper are organized as follows: Section 2 introduces the OLL-
PS family of distributions; Section 3 derives some mathematical properties; estimation
of the parameters of the OLL-PS family of distributions by maximum likelihood is in-
vestigated in Section 4; Section 5 presents five special cases of the OLL-PS family of
distributions; a simulation study is given in Section 6; applications to two real data sets
are illustrated in Section 7. The paper is concluded in Section 8.

2. THE NEW DISTRIBUTION

Let X1,X2, . . . ,XN be a random sample following the OLL distribution with cdf and pdf
given by (1) and (2), respectively. Let G (x;ςςς) = 1−G (x;ςςς) denote the survival function,
whereςςς = (γ ,τττ) are the parameters of (1) and (2). Let N follow the zero-truncated power
series distribution. A distribution is said to be a power series distribution (Noack, 1950)
if its probability mass function (pmf) can be written in the form

P (N = n;θ) =
anθ

n

A(θ)
(3)

for n = 0,1,2, . . ., where an depends only on n and not on θ, A(θ) =
∑∞

n=0 anθ
n and

θ > 0 is such that A(θ) is finite. In (3), θ is the power parameter of the distribution and
A(·) is the series function. Thus, we can define a zero-truncated power series distribution
with pmf as follows:

P (N = n;θ) =
anθ

n

C (θ)

for n = 1,2,3, . . ., where C (θ) =A(θ)−a0 =
∑∞

n=1 anθ
n . For more details about power

series distributions, see Johnson et al. (2005).
Table 1 in Appendix E shows useful quantities of some power series distributions

(truncated at zero) such as Poisson, geometric, logarithmic, negative binomial and bino-
mial distributions.
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The OLL-PS family of distributions is defined by the random variable X =min{Xi}
N
i=1.

Then

F (x | n;γ ,τττ) = 1−G (x;γ ,τττ)n

= 1−
∞
∑

n=1

¨

Π (x;τττ)γ

Π (x;τττ)γ +Π (x;τττ)γ

«n
anθ

n

C (θ)
.

The marginal cdf of X , if N has truncated at zero power series distribution, is

F (x;ξ ) =
∞
∑

n=1

F (x | n;γ ,τττ)P (N = n;θ)

= 1−
∞
∑

n=1

¨

Π (x;τττ)γ

Π (x;τττ)γ +Π (x;τττ)γ

«n
anθ

n

C (θ)

= 1− [C (θ)]−1
∞
∑

n=1

an

¨

θΠ (x;τττ)γ

Π (x;τττ)γ +Π (x;τττ)γ

«n

= 1− [C (θ)]−1C

�

θ

¨

Π (x;τττττττττ)γ

Π (x;τττττττττ)γ +Π (x;τττ)γ

«�

, (4)

where ξ = (θ,γ ,τττ) is the parameter vector of the OLL-PS family of distributions. The
random variable X following (4) extends some distributions introduced in the literature.
The EPS (Chahkandi and Ganjali, 2009) and WPS (Morais and Barreto-Souza, 2011) dis-
tributions are obtained by taking exponential and Weibull distributions as the baseline
distributions and γ = 1.

THEOREM 1. The exponentiated OLL family of distributions with shape parameter c
is a limiting special case of the OLL-PS family of distributions when θ→ 0+, where c =
min{n ∈N : an > 0}.

PROOF. Let c = min{n ∈N : an > 0}. Using C (θ) =
∞
∑

n=1
anθ

n for x > 0, we have

that

lim
θ→0+

F (x;ξξξ ) = 1− lim
θ→0+

1
C (θ)

C
�

θG (x;ςςς)
�

= 1− lim
θ→0+

∞
∑

n=c
an

�

θG(x;ςςς)
�n

∞
∑

n=c
anθn

= 1− lim
θ→0+

�

G(x;ςςς)
�c
+ a−1

c

∞
∑

n=c+1
an

�

θG(x;ςςς)
�n

1+ a−1
c

∞
∑

n=c+1
anθn
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= 1−
�

G(x;ςςς)
�c

for x > 0. For more details see Nadarajah and Kotz (2006). 2

3. SOME USEFUL PROPERTIES

3.1. Density, survival and failure rate functions

Let X be an OLL-PS random variable with cdf (4). The corresponding pdf, survival
function and failure rate function are

f (x;ξξξ ) = θ [C (θ)]−1 g (x;ς)C ′
�

θG (x;ς)
�

=
γθπ (x;τττ)

�

Π (x;τττ)Π (x;τττ)
�γ−1

C (θ)
�

Π (x;τττ)γ +Π (x;τττ)γ
�2 C ′

�

θΠ (x;τττ)γ

Π (x;τττ)γ +Π (x;τττ)γ

�

, (5)

F (x;ξξξ ) = [C (θ)]−1C

�

θ

¨

Π (x;τττ)γ

Π (x;τττ)γ +Π (x;τττ)γ

«�

, (6)

and

h (x;ξξξ ) =
γθπ (x;τττ)

�

Π (x;τττ)Π (x;τττ)
�γ−1

�

Π (x;τττ)γ +Π (x;τττ)γ
�2











C ′
�

θΠ(x;τττ)γ

Π(x;τττ)γ+Π(x;τττ)γ

�

C
�

θ
n

Π(x;τττ)γ

Π(x;τττ)γ+Π(x;τττ)γ

o�











,

respectively, for x > 0. Two useful linear representations for (4) and (5) can be derived
using the concept of power series. We can prove that the cdf (4) admits the expansion

G (x)
n
=
�

Π (x)γ

Π (x)γ +Π (x)γ

�n

=

∞
∑

r=0
λrΠ (x)

r

∞
∑

r=0
ρrΠ (x)

r
=
∞
∑

r=0

brΠ (x)
r ,

where

λr =
∞
∑

l=r

(−1)l+r
�

γn
l

��

l
r

�

, ρr = hr (γ , n)

and

br = br (γ , n) =
1
ρ0

�

ρr −
1
ρ0

r
∑

s=1

ρs br−s

�
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for r > 1 and b0 =
λ0
ρ0

, see Appendix A. For more details, see Cordeiro et al. (2015).

Second by using the power series expansion for C
�

θG(x)
�

, we have

C
�

θG (x)
�

=
∞
∑

n=1

anθ
nG (x)n =

∞
∑

n=1

anθ
n
∞
∑

r=0

brΠ (x)
r =

∞
∑

n=1

∞
∑

r=0

anθ
n brΠ (x)

r .

Then, (6) can be expressed as

F (x) = [C (θ)]−1
∞
∑

n=1

∞
∑

r=0

anθ
n brΠ (x)

r (7)

and the pdf of the OLL-PS distribution can be represented as

f (x) = [C (θ)]−1π (x)
∞
∑

n=1

∞
∑

r=0

cn,rθ
nΠ (x)r , (8)

where cn,r =− (r + 1)an br+1. The OLL-PS pdf is an infinite linear combination of the
baseline survival function.

In Appendix B, we introduce and calculate the following

κ (a, b , c) = E
�

X aπ (X )b−1Π (X )c
�

=
∫ ∞

−∞
xa[π (x)]b

�

Π (x)
�c

d x.

This can be used to express the moments, moment generating function, mean residual
functions, etc.

3.2. Moments, moment generating and mean residual life time functions

Moments are the most important measures in statistical analysis especially in applied
work. For all s > 0, direct integration of (8) shows that

E [X s ] = [C (θ)]−1
∞
∑

n=1

∞
∑

r=0

cn,rθ
n
∫ +∞

−∞
x sΠ (x)r π (x)d x

= [C (θ)]−1
∞
∑

n=1

∞
∑

r=0

cn,rθ
nκ (s , 1, r ). (9)

The moment generating function of X can be determined by using an expansion of
exp(tX ) and (9). It is given by

MX (t ) = E
�

e tX �= E

� ∞
∑

s=0

(tX )s

s !

�

=
∞
∑

s=0

t s

s !
E [X s ]

= [C (θ)]−1
∞
∑

n=1

∞
∑

r,s=0

cn,rθ
n t s

s !
κ (s , 1, r ).
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Given the survival to time x0 until the time of failure, the mean residual lifetime is

m (x0) = E [X − x0|X > x0]

=
�

F (x0)
�−1

∫ ∞

x0

F (v)d v

= [C (θ)]−1
∞
∑

n=1

∞
∑

r=0

anθ
n br

∫ ∞

x0

Π (v)r d v

= [C (θ)]−1
∞
∑

n=1

∞
∑

r=0

anθ
n brκx0

(0,0, r ),

where the incomplete kappa function κx0
(a, b , c) is introduced in Appendix B.

3.3. Random number generation

By inverting (4), we obtain the quantile function of X , say x =Q(u) = F −1(u), as

x =Q (u) =Π−1







1+
�

u ′ (θ)
1− u ′ (θ)

�
1
γ





−1

 , (10)

where Π−1(·) denotes the inverse cdf of the baseline distribution, C−1(·) denotes the
inverse C (·) function and u ′ (θ) = θ−1C−1 (uC (θ)). So, the OLL-PS distribution can
be simulated as follows: if U is a uniform [0,1] random variable, then the previous
transformation of U has the OLL-PS distribution.

3.4. Entropies

Many information measures are suggested in the literature. Two most widely used uncer-
tainty measures are Rényi entropy (Rényi, 1961) and Shannon entropy (Shannon, 1948).
The Shannon entropy of a random variable X is given by IS (X ) =−E [log ( f (X ))]. By
(5),

IS (X ) = log (C (θ))− log (γ )− log (θ)− E [log (π (X ))]

+2E
�

log
�

Π (X )γ +Π (X )γ
��

− (γ − 1)
¦

E [log{Π (X )}]+ E
�

log
¦

Π (X )
©�©

−E

�

log

¨

C ′
�

θΠ (X )γ

Π (X )γ +Π (X )γ

�«�

.

We define and calculate

B (a1,a2,a3,a4;a;θ) =
∫ 1

0

ua1(1− u)a2

(ua +(1− u)a)a3

�

C ′
�

θ(1− u)a

ua +(1− u)a

��a4

d u
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=
∫ 1

0

ua1(1− u)a2

(ua +(1− u)a)a3

∞
∑

n=0

ca4,n
θn(1− u)na

(ua +(1− u)a)n
d u

=
∞
∑

n=0

ca4,nθ
n
∫ 1

0

ua1(1− u)a2+na

(ua +(1− u)a)a3+n d u

=
∞
∑

n=0

ca4,nθ
nA(a1,a2+ na,a3+ n;a),

where A(a1,a2,a3;a) is as defined by Cordeiro et al. (2015). After some calculus, it is
possible to derive the Shannon entropy for a member of the OLL-PS family.
For X a random variable with pdf (5),

E [log{Π (x)}] =
θγ

C (θ)
∂

∂ t
B (γ + t − 1,γ − 1,2,1;γ ;θ) ,

E
�

log
¦

Π (x)
©�

=
θγ

C (θ)
∂

∂ t
B (γ − 1,γ + t − 1,2,1;γ ;θ) ,

E
�

log
¦

Πγ (x)+Π
γ
(x)
©�

=
θγ

C (θ)
∂

∂ t
B (γ − 1,γ − 1,2+ t , 1;γ ;θ)

and

E

�

log

¨

C ′
�

θΠ (x)γ

Π (x)γ +Π (x)γ

�«�

=
θγ

C (θ)
∂

∂ t
B (γ − 1,γ − 1,2,1+ t ;γ ;θ) .

Hence, the Shannon entropy of X is

IS (X ) = log (C (θ))− log (γ )− log (θ)− E [log (π (X ))]

−
θγ (γ − 1)

C (θ)
∂

∂ t
B (γ + t − 1,γ − 1,1,1;γ ;θ)

−
θγ (γ − 1)

C (θ)
∂

∂ t
B (γ − 1,γ + t − 1,1,1;γ ;θ)

+
2θγ

C (θ)
∂

∂ t
B (γ − 1,γ − 1,1+ t , 1;γ ;θ)

−
θγ

C (θ)
∂

∂ t
B (γ − 1,γ − 1,2,1+ t ;γ ;θ) .

The Rényi entropy of a random variable with pdf f (x) is defined by

IR (X ) =
1

1−η
log

�∫ ∞

0
f (x)η d x

�
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for η > 0 and η 6= 1. The Shannon entropy is a special case of the Rényi entropy.
Now, we derive expressions for the Rényi entropy for the OLL-PS family. Since

C (θ) =
∑∞

n=1 anθ
n and θ > 0, C ′ (θ) =

∞
∑

n=1
nanθ

n−1 is a power series too. By (20),

�

C ′ (θ)
	η =

∞
∑

n=0

cη,nθ
n ,

where cη,n = (na1)
−1

n
∑

m=1
(n+ 1) [m(n+ 1)− n]am+1cη,n−m . Using the power series for

the ratio of two power series, we have

ua1(1− u)a2

(ua +(1− u)a)a3
=

∞
∑

i=0

(−1)i
�

a2

i

�

ua1+i

(ua +(1− u)a)a3

=
∞
∑

i=0

(−1)i
�

a2

i

�

∞
∑

k=1
δ1,k uk

∞
∑

k=1
δ2,k uk

=
∞
∑

i ,k=0

(−1)i
�

a2

i

�

δ3,k uk , (11)

where δ1,k = ak (a1+ i), δ2,k = hk (a,a3) and

δ3,k =
1
δ2,0

�

δ1,k −
1
δ2,0

k
∑

r=1

δ2,rδ3,k−r

�

.

For more details, see Appendix A. Hence, by using (5) and (11), we have

[ f (x)]η =
�

γθ

C (θ)

�ηπ (x)η
�

Π (x)Π (x)
�η(γ−1)

�

Π (x)γ +Π (x)γ
�2η

∞
∑

n=0

cη,n

�

θΠ (x)γ

Π (x)γ +Π (x)γ

�n

=
�

γθ

C (θ)

�η

π (x)η
∞
∑

n=0

cη,n
θnΠ (x)η(γ−1)Π (x)γ (η+n)−η

�

Π (x)γ +Π (x)γ
�2η+n

=
�

γθ

C (θ)

�η

π (x)η
∞
∑

n=0

∞
∑

i=0

∞
∑

k=0

(−1)i cη,nθ
n
�

η(γ − 1)
i

�

δ3,k

�

Π (x)
�k

. (12)

By using (12) and direct integration, we obtain

IR (X ) =
1

1−η
log

�∫ ∞

0
f η (x)d x

�

d x
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=
η

1−η
[log{γ}+ log{θ}− log{C (θ)}]

+
1

1−η
log

(

∞
∑

n,i ,k=0

wn,i ,kκ (0,η, k)

)

,

where wn,i ,k = (−1)i cη,nθ
n
�η(γ−1)

i

�

δ3,k and κ (0,η, k) =
∫∞

0 π (x)ηΠ (x)k d x.

3.5. Order statistics

Let X1,X2, . . . ,Xm be independent OLL-PS random variables. Let Xi :m denote the i th
order statistic. The pdf of Xi :m , say fi :m(x), is

fi :m (x) = K f (x)F (x)i−1{1− F (x)}m−i

= K f (x)
i−1
∑

j=1

(−1) j
�

i − 1
j

�

�

F (x)
�m+ j−i

,

where K = m!/ [(i − 1)!(m− i)!]. An explicit expression for this is derived by the fol-
lowing theorem.

THEOREM 2. The pdf of Xi :m can be expressed as

fi :m (x) =
Kγθm−i+1π (x)

[C (θ)]m−i+1

i−1
∑

j=1

∞
∑

n=1

∞
∑

r,k=0

ci , j ,n,rδ3,k

�

Π (x)
�k

. (13)

For the proof see Appendix C.
Equation (13) is the main result of this section. It reveals that the pdf of the OLL-

PS order statistic is a linear combination of survival functions. So, some mathemati-
cal properties of the OLL-PS order statistic such as ordinary, incomplete and factorial
moments, moment generating function, mean deviations, etc can be easily found. For
example, the s th moment of the i th order statistic Xi :m can be expressed as

E
�

X s
i :m

�

=
Kγθm−i+1

[C (θ)]m−i+1

i−1
∑

j=1

∞
∑

n=1

∞
∑

r,k=0

ci , j ,n,rδ3,kκ (s , 1, k).

4. MAXIMUM LIKELIHOOD ESTIMATION

Suppose X1,X2, . . . ,Xn is a random sample with observed values x1, x2, . . . , xn from the
OLL-PS family of distributions with unknown parameters ξ = (θ,γ ,τττ). Furthermore,
let g (x,ςςς) and G (x,ςςς) denote the pdf and survival function of the OLL-PS family of
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distributions with unknown parameters ςςς = (γ ,τττ). The log-likelihood function of ξ is

` (ξξξ |xxx) = n logγ + n logθ− n log [C (θ)]+
n
∑

i=1

log [π (xi ;τττ)] (14)

+(γ − 1)
n
∑

i=1

log [Π (xi ;τττ)]

+(γ − 1)
n
∑

i=1

log
�

Π (xi ;τττ)
�

− 2
n
∑

i=1

log
�

Π (xi ;τττ)
γ +Π (xi ;τττ)

γ
�

+
n
∑

i=1

log

�

C ′
�

θΠ (xi ;τττ)
γ

Π (xi ;τττ)
γ +Π (xi ;τττ)

γ

��

. (15)

The log-likelihood function can be maximized by solving the nonlinear likelihood equa-
tions obtained by differentiating (14). The components of the score function Un (ξ ) =
(∂ `/∂ θ,∂ `/∂ γ ,∂ `/∂ τττ) are given by

∂ `

∂ θ
=

n
θ
−

nC ′ (θ)
C (θ)

+
n
∑

i=1

Π (xi ;τττ)
γ

Π (xi ;τττ)
γ +Π (xi ;τττ)

γ











C ′
�

θΠ(xi ;τττ)
γ

Π(xi ;τττ)
γ+Π(xi ;τττ)

γ

�

C ′′
�

θΠ(xi ;τττ)
γ

Π(xi ;τττ)
γ+Π(xi ;τττ)

γ

�











,

∂ `

∂ γ
=

n
γ
+

n
∑

i=1

log [Π (xi ;τττ)]+
n
∑

i=1

log
�

Π (xi ;τττ)
�

−2
n
∑

i=1

Π (xi ;τττ)
γ log [Π (xi ;τττ)]+Π (xi ;τττ)

γ log
�

Π (xi ;τττ)
�

Π (xi ;τττ)
γ +Π (xi ;τττ)

γ

+θ
n
∑

i=1

Π (xi ;τττ)
γ Π (xi ;τττ)

γ
¦

log
�

Π (xi ;τττ)
�

− log [Π (xi ;τττ)]
©

�

Π (x;τττ)γ +Π (x;τττ)γ
�2

·











C ′
�

θΠ(xi ;τττ)
γ

Π(xi ;τττ)
γ+Π(xi ;τττ)

γ

�

C ′′
�

θΠ(xi ;τττ)
γ

Π(xi ;τττ)
γ+Π(xi ;τττ)

γ

�











,

and

∂ `

∂ τττ
=

n
∑

i=1

πτττ (xi ;τττ)
π (xi ;τττ)

+ (γ − 1)
n
∑

i=1

Πτττ (xi ;τττ)
Π (xi ;τττ)

+ (γ − 1)
n
∑

i=1

Πτττ (xi ;τττ)

Π (xi ;τττ)

−2γ
n
∑

i=1

Πτττ (xi ;τττ)Π (xi ;τττ)
γ−1+Πτττ (xi ;τττ)Π (xi ;τττ)

γ−1

Π (x;τττ)γ +Π (x;τττ)γ
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+γθ
n
∑

i=1

Π (xi ;τττ)
γ−1Πγ (xi ;τττ)

�

Πτττ (xi ;τττ)Π (xi ;τττ)−Πτττ (xi ;τττ)Π (xi ;τττ)
�

�

Π (x;τττ)γ +Π (x;τττ)γ
�2

·











C ′
�

θΠ(xi ;τττ)
γ

Π(xi ;τττ)
γ+Π(xi ;τττ)

γ

�

C ′′
�

θΠ(xi ;τττ)
γ

Π(xi ;τττ)
γ+Π(xi ;τττ)

γ

�











,

where C ′ (·) and C ′′ (·) are the first and second derivatives of C (·), respectively. Further-
more,

πτττ (x;τττ) =
d

dτττ
π (x;τττ) , Πτττ (x;τττ) =

d
dτττ
Π (x;τττ) , Πτττ (x;τττ) =

d
dτττ
Π (x;τττ) .

The maximum likelihood estimate (MLE) of ξξξ say bξξξ should satisfy the following
equation Un (ξξξ ) = 0. The solution of this nonlinear system of equations has no closed
form. To solve this equation, it is usually more convenient to use nonlinear optimization
algorithms such as quasi-Newton algorithm to numerically maximize the log-likelihood
function. In the data applications section, the MLEs were obtained by directly maximiz-
ing (14) with respect to the parameters. The optim routine in R was used for maximiza-
tion.

Asymptotic properties of the MLE are needed for interval estimation and tests of hy-
potheses. Under certain regularity conditions (Lehmann and Casella, 1998),

p
n
�

bξξξ −ξξξ
�

approaches N
�

0,K (ξξξ )−1
�

in distribution as n→∞, where K (ξξξ ) = lim
n→∞

n−1In (ξξξ ) and

In (ξξξ ) denotes the observed information matrix.

5. SOME SPECIAL CASES

In this section, we study some special cases of the OLL-PS distribution. To illustrate
the flexibility of the distributions, plots of the pdf and failure rate function for some
selected values of the parameters are presented.

5.1. Odd exponential power series (OEPS) distribution

The pdf and cdf of the exponential distribution are given by Π(x;β) = 1− e−βx and
π(x;β) =βe−βx , respectively. Inserting these into (5) gives the OEPS pdf

f (x;β,γ ,θ) =
γθβe−βx

��

1− e−βx
�

e−βx
�γ−1

C (θ)
��

1− e−βx
�γ + e−βγ x

�2 C ′
�

θ
¦�

eβx − 1
�γ
+ 1

©−1
�

for x > 0, β> 0 and γ > 0.
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5.2. Odd Lindley power series (OLPS) distribution

Consider the Lindley distribution with cdf and pdf given by

Π(x;β) = 1−
β+ 1+βx
β+ 1

e−βx

and

π(x;β) =
β2

β+ 1
(1+ x) e−βx ,

respectively. Inserting these into (5) gives the OLPS pdf

f (x;β,γ ,θ) =
γθβ2 (1+ x) e−βx

��

1− β+1+βx
β+1 e−βx

�

β+1+βx
β+1 e−βx

�γ−1

(β+ 1)C (θ)
��

1− β+1+βx
β+1 e−βx

�γ
+
�

β+1+βx
β+1 e−βx

�γ�2

·C ′
�

θ

�

1+
�

β+ 1
β+ 1+βx

eβx − 1
�γ�−1�

for x > 0, β> 0 and γ > 0.

5.3. Odd Weibull power series (OWPS) distribution

The OWPS distribution is defined from (5) by takingΠ(x;α,β) = 1−e−βxα andπ(x;α,β) =
αβxα−1e−βxα . Its pdf is

f (x;α,β,γ ,θ) =
γθαβxα−1e−βxα

��

1− e−βxα
�

e−βxα
�γ−1

C (θ)
��

1− e−βxα
�γ + e−βγ xα

�2

·C ′
�

θ
¦�

eβxα − 1
�γ
+ 1

©−1
�

for x > 0, β> 0 and αγ > 0. Figures 1 and 2 in Appendix D display the pdf and failure
rate function of the OWPS distribution for selected parameter values.

5.4. Odd Lomax power series (OLxPS) distribution

The cdf and pdf of the Lomax distribution are Π(x;β) = 1− [1+βx]−α and π(x;β) =
αβ[1+βx]−α−1, respectively. Inserting these into (5) gives the OLxPS pdf

f (x;α,β,γ ,θ) =
γθαβ[1+βx]−α−1�[1+βx]−α− [1+βx]−2α	γ−1

C (θ)
��

1− [1+βx]−α
�γ +[1+βx]−αγ

�2

·C ′
�

θ{1+([1+βx]α− 1)γ }−1�

for x > 0, α > 0, β> 0 and γ > 0.



The Odd Log-Logistic Power Series Family 89

5.5. Odd log-logistic power series (OLLPS) distribution

Consider the log-logistic distribution distribution with cdf and pdf (for x > 0) given by
Π (x;α,β) =

�

1+(βx)−α
�−1 and π (x;α,β) = αβ(βx)α−1[1+(βx)α]−2, respectively.

The OLLPS pdf is

f (x;α,β,γ ,θ) =
αβγθ(βx)αγ−1

C (θ) [1+(βx)αγ ]2
C ′ (θ [1+(βx)αγ ]) (16)

for x > 0, α > 0, β> 0 and γ > 0. Since the log-logistic distribution is closed under the
OLL generalization, (16) is the pdf of the log-logistic distribution compounded with the
power series distribution.

6. SIMULATION STUDY

In this section, we assess the performance of the MLEs of the OWG distribution as the
special case of the OLL-PS family with respect to sample size n. Samples of sizes 50,
100, 200 and 500 were generated for different combinations of ξξξ = (α,β,γ ,θ) from
the OWG distribution by using (10). We repeated the simulation k = 10000 times and
calculated the MLEs of the parameters. The standard deviation (SD) of the parameter
estimates were calculated by inverting the observed information matrices. The biases,
mean squared errors (MSEs), coverage probabilities (CP) and coverage lengths (CL) were
computed by

biasε (n) =
1

10000

10000
∑

i=1

(bεi − ε),

MSEε (n) =
1

10000

10000
∑

i=1

(bεi − ε)
2,

CPε (n) =
1

10000

10000
∑

i=1

1
�

bεi − 1.95996s
bεi
< ε< bεi + 1.95996s

bεi

�

and

CLε (n) =
3.91992
10000

10000
∑

i=1

s
bεi

for ε= α,β,γ , θ, where 1(·) denotes the indicator function and bεi is i th MLE of εwith
standard error s

bεi
. The empirical results given in Table 2 in Appendix E indicate that

the MLEs perform well for estimating the model parameters. When the sample size
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increases, the biases and standard deviations of the estimates decrease. Furthermore, i)
the MSEs for each parameter decrease to zero and appear reasonably small at n = 500; ii)
although the coverage probabilities are slightly above or below the nominal level, they
reach the nominal level at n = 500; iii) the coverage lengths for each parameter decrease
to zero and appear reasonably small at n = 500.

7. ILLUSTRATIVE REAL DATA EXAMPLES

In this section, we provide illustrations to two real data sets to show the importance of
the OLL-PS family. We consider the special cases: odd Weibull Poisson (OWP), odd
Weibull geometric (OWG), odd Weibull logarithmic (OWL), odd Weibull negative bi-
nomial (OWN) and odd Weibull binomial (OWB) distributions specified by the pdfs

fOW P (x;ξξξ 4) =
αβγθxα−1eβxα

�

eβxα − 1
�γ−1

(eθ− 1)
�

1+
�

eβxα − 1
�γ	2 exp

�

θ
¦

1+
�

eβxα − 1
�γ©−1

�

,

fOW G (x;ξξξ 5) =
αβγ (1−θ)xα−1eβxα

�

eβxα − 1
�γ−1

��

eβxα − 1
�γ + 1−θ

	2 ,

fOW L (x;ξξξ 6) =
αβγθxα−1eβxα

�

eβxα − 1
�γ−1

− log (1−θ)
�

1+
�

eβxα − 1
�γ	�1−θ+

�

eβxα − 1
�γ	 ,

fOW N (x;ξξξ 7) =
mαβγθxα−1eβxα

�

eβxα − 1
�γ−1

�

(1−θ)−m − 1
��

1+
�

eβxα − 1
�γ	2

·
h

1−θ
¦

1+
�

eβxα − 1
�γ©−1

i−m−1
,

and

fOW B (x;ξξξ 8) =
mαβγθxα−1eβxα

�

eβxα − 1
�γ−1

[(1+θ)m − 1]
�

1+
�

eβxα − 1
�γ	2

�

1+θ+
�

eβxα − 1
�γ

1+
�

eβxα − 1
�γ

�m−1

,

respectively, where ξξξ i = (α,β,γ ,θ)> for i = 4,5, . . . , 8, αγ > 0 and β > 0. The θ
in the OWP distribution is allowed to take values in (−∞,+∞) for more flexibility.
Similar extensions may be applied for parameters of other OLL-PS distributions, as can
be viewed in Table 1 in Appendix E. For the OWN and OWB distributions, we assume
m = 5, so every fitted distribution has four parameters. The MLEs of the parameters
and the goodness-of-fit statistics were computed and compared with those of the popular
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odd Weibull (OW) (Cooray, 2006), beta Weibull (BW) (Famoye et al., 2005) and beta
generalized exponential (BGE) (Barreto-Souza et al., 2010) distributions specified by the
pdfs

fOW (x;ξξξ 1) =
αβγ xαeβxα

�

eβxα − 1
�

�

1+
�

eβxα − 1
�γ	−2

γ−1

,

x > 0, αγ > 0, β> 0,

fBW (x;ξξξ 2) =
αβxα−1

B (a, b )
e−bβxα

�

1− e−βxα
�a−1

,

x > 0, α > 0, β> 0, a > 0, b > 0,

and

fBGE (x;ξξξ 3) =
αβe−βx

B(a, b )

�

1− e−βx
�aα−1�

1−
�

1− e−βx
�α�b−1

,

x > 0, α > 0, β> 0, a > 0, b > 0,

respectively, where ξξξ 1 = (α,β,γ )>, ξξξ 2 = (α,β,a, b )>, ξξξ 3 = (α,β,a, b )> and B(a, b )
denotes the beta function.

The first data set consists of the strength of 1.5 cm glass fibres, measured at the Na-
tional physical laboratory, England (see Smith and Naylor, 1987). The data are: 0.55,
0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39,
1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60,
1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70,
1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89. The second
data are times to death of twenty six psychiatric patients. This data has been studied by
Elbatal et al. (2015). The data are: 1, 1, 2, 22, 30, 28, 32, 11, 14, 36, 1, 33, 33, 37, 35, 25,
31, 22, 26, 24, 35, 34, 30, 35, 40, 39.

The MLEs, log-likelihood value, the corresponding standard errors, the Kolmogorov
Smirnov statistic, its p-value, the AIC value, the AICc value and the BIC value are shown
in Tables 3 and 4 in Appendix E. For both data sets, we can see that the largest log-
likelihood value, the largest p-value, the smallest AIC value, the smallest AICc value
and the smallest BIC value are obtained for the OLL-PS family. For the first data set,
although the results are very close to those obtained by other members of the OLL-PS
family, the OWG distribution gives the best fit with respect to all indices. For the sec-
ond data set too, the OWG distribution gives the best fit. It gives the smallest values for
all indices. The histogram of the data sets and plots of the estimated pdfs are displayed
in Figures 3 and 4 in Appendix D. Furthermore, estimated quantiles versus observed
quantiles for both data sets are shown in Figure 5 and 6 in Appendix D. These figures
support good fits of the OLL-PS family of distributions. Plots of the estimated hazard
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rate functions are displayed in Figure 7 in Appendix D for data sets 1 and 2. The OWG
distribution proposes an increasing hazard rate function for data set 1 and a J -shape haz-
ard rate function for data set 2.

8. CONCLUDING REMARKS

We have proposed a new family of distributions named the OLL-PS family by com-
pounding the OLL family and power series distributions. The family extends some
common classes of distributions studied recently. The number of series components
are taken to be a power series random variable and the lifetime of each component is
taken to be an OLL random variable. Both random variables are assumed to be inde-
pendent. The OLL-PS distribution contains the OLL, exponential power series and
Weibull power series distributions as special cases. The mathematical properties of the
OLL-PS distribution derived include: moments, moment generating function, mean
residual lifetime, Shannon entropy, and Rényi entropy. We have studied the behaviour
of the MLEs by means of a simulation study. Illustrations to two real data sets show that
the proposed distribution provides better fits than popular lifetime distributions. A fu-
ture work is to construct multivariate extensions of the OLL-PS family of distributions.
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APPENDIX

A. SOME USEFUL EXPANSIONS

Some power series expansions required for the proofs in Section 3 are as follows.

1. For a > 0 real non-integer and 0≤ y ≤ 1, we have the binomial expansion

(1− y)a =
∞
∑

k=0

(−1)k
�

a
k

�

yk , (17)

where
�a

k

�

= a (a− 1) (a− 2) · · · (a− k + 1)/k!.

2. The following expansion holds for any a > 0 real non-integer

ya =
∞
∑

k=0

αk (a)y
k , (18)

where αk (a) =
∑∞

k=i (−1)k+i
�a

k

��k
i

�

. The proof follows by writing y = [1−(1−y)]
and applying (17) twice.

3. We have

yλ =
∞
∑

k=0

(λ)k (y − 1)k/k!=
∞
∑

k=0

gk yk , (19)

where λ is a positive integer and

gk = gk (λ) =
∞
∑

j=0

(−1) j−k

j !

�

j
k

�

(λ) j

and (λ)k = λ (λ− 1) · · · (λ− k + 1).

4. We have
� ∞
∑

k=0

ak yk

�n

=
∞
∑

k=0

cn,k yk , (20)

where the coefficients cn,k , k = 1,2, . . . are obtained from the recurrence equation

cn,k = (ka0)
−1

k
∑

m=1

[m(k + 1)− k]am cn,k−m

and cn,0 = an
0 (Gradshteyn and Ryzhik, 2014).
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5. By using (20),
� ∞
∑

n=1

an yn

�z

=
∞
∑

n=0

dz,n yn+z ,

where

dz,n = (na1)
−1

n
∑

r=1

[r (n+ 1)− n]an+1dz,n−r .

6. We now obtain an expansion for [x c +(1− x)c]a . We can write from (17) and (18)

[x c +(1− x)c] =
∞
∑

k=0

tk xk ,

where

tk = (−1)k
�

�

c
k

�

+
∞
∑

i=k

(−1)i
�

c
i

��

c
k

�

�

.

Then, using (19), we have

[x c +(1− x)c]a =
∞
∑

j=0

g j

� ∞
∑

k=0

tk xk

� j

,

where fi is defined as before. Finally, using (20), we obtain

[x c +(1− x)c]a =
∞
∑

k=0

hk xk ,

where

hk = hk (c ,a) =
∞
∑

i=0

gi mi ,k ,

mi ,k = (k t0)
−1

k
∑

j=1

[ j (k + 1)− k] t j mi ,k− j

and mi ,0 = t i
0 .
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B. A USEFUL QUANTITY

In this appendix, we introduce and calculate a very useful quantity κ(a, b , c) defined as

κ (a, b , c) = E
�

X aπ (X )b−1Π (X )c
�

=
∫ ∞

−∞
xa[π (x)]b

�

Π (x)
�c

d x,

where a, c are positive real numbers and b ≥ 1. If b = 1, c = 0 and a is a nonnegative
integer, then κ (a, 1, 0) represents the conventional moment about the origin of order a.
If κ (a, 1, 0) exists and π(x) is a continuous function, then κ (a, b , c) exists for all b ≥ 1
and nonnegative c .

If c is a nonnegative integer, then

κ (a, 1, c) =M (a, 0, c) =
∞
∑

k=0

(−1)k
�

c
k

�

M (a, k , 0) ,

where M (i , j , l ) is the (i , j , l )th probability weighted moment (PWM) defined by Green-
wood et al. (1979) as

M (i , j , l ) = E
�

X iΠ (X ) j Π (X )l
�

=
∫ +∞

−∞
x iΠ (x) j Π (x)l π (x)d x.

In the special case, where a and c are nonnegative integers, (c+1)κ (a, 1, c) is the ath mo-
ment about the origin of the first order statistic for a sample of size c+1. Furthermore,
the incomplete kappa function could be defined as

κx0
(a, b , c) =

∫ ∞

x0

xa[π (x)]b
�

Π (x)
�c

d x

which arises in mean residual lifetime of reliability models. It is obvious that if κ (a, b , c)
exists for a lifetime distribution, then the incomplete kappa function exists for every
x0 > 0.

One can obtain expressions for κ (a, b , c) for some distributions. For others, this
quantity can be evaluated numerically. Closed form expressions for κ for exponential,
Weibull, Lomax, Lindley and log-logistic distributions are as follows.

1. For the exponential distribution,

κ (a, b , c) =βb
∫ ∞

0
xa e−(b+c)βx d x =βb−a−1(b + c)−a−1Γ (a+ 1) .

2. For the Weibull distribution,

κ (a, b , c) = αbβb
∫ ∞

0
x b (α−1)+a e−(b+c)βxαd x =

αb−1Γ
�

b + a−b+1
α

�

(b + c)b [β (b + c)]
a−b+1
α

.
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3. For the Lomax distribution,

κ (a, b , c) = αbβb
∫ ∞

0
xa[1+βx]−α(b+c)−b d x

= αbβb−α−1B (α(b + c)+ b − a− 1,a+ 1) .

4. For the Lindley distribution,

κ (a, b , c) =
β2b−a−1

(b + c)a+1(β+ 1)b

n+m
∑

k=0

ck
Γ (k + a+ 1)

[β(b + c)]k
,

where

ck = ck (β) =
n
∑

l=max{0,k−m}

�

b
l

��

c
k − l

��

β

β+ 1

�k−l

.

5. For the log-logistic distribution,

κ (a, b , c) = αbβαb
∫ ∞

0
x b (α−1)+a[1+(βx)α]−2b−c d x

= αb−1βb−a−1B
�

b +
a− b + 1

α
, b + c − a− b + 1

α

�

.

C. PROOF OF THEOREM 2

By using (20), we have

�

F (x)
�m+ j−i

=





C
�

θG (x)
�

C (θ)





m+ j−i

= [C (θ)]i− j−m

� ∞
∑

n=1

an

�

θG (x)
�n
�m+ j−i

= [C (θ)]i− j−m
∞
∑

n=1

dm+ j−i ,n

�

θG (x)
�n+m+ j−i

, (21)

where

dm+ j−i ,n = (na1)
−1

n
∑

r=1

[r (n+ 1)− n]an+1dm+ j−i ,n−r .

On the other hand C ′(θ) =
∑∞

n=0 bnθ
n , where bn = (n+ 1)an+1. By using (21), we have

C ′
�

θG (x)
�

F (x)m+ j−i
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= [C (θ)]i− j−mC ′
�

θG (x)
�¦

C
�

θG (x)
�©m+ j−i

=
�

θG (x)
�m+ j−i ∞∑

n=0

bn

�

θG (x)
�n ∞∑

n=1

dm+ j−i ,n

�

θG (x)
�n

=
�

θG (x)
�m+ j−i ∞∑

n=1

φm+ j−i ,n

�

θG (x)
�n

, (22)

where bn = (n+ 1)an+1 and φm+ j−i ,n =
∞
∑

l=0
bl dm+ j−i ,n−l . The pdf of i th order statistic

can be derived by using (5), (11), (13) and (22) as follows

fi :m (x) = K f (x)
i−1
∑

j=1

�

i − 1
j

�

(−1) j [C (θ)]i− j−m

·
∞
∑

n=1

dm+ j−i ,n

�

θG (x)
�n+m+ j−i

= K







γθπ (x)
�

Π (x)Π (x)
�γ−1

C (θ)
�

Π (x)γ +Π (x)γ
�2







i−1
∑

j=1

�

i − 1
j

�

(−1) j [C (θ)]i− j−m

·
∞
∑

n=1

φm+ j−i ,n

�

θΠ (x)γ

Π (x)γ +Π (x)γ

�n+m+ j−i

= γθm−i+1[C (θ)]i−m−1Kπ (x)

·
i−1
∑

j=1

∞
∑

n=1

�

i − 1
j

�

(−1) jθn+ jφm+ j−i ,n[C (θ)]
− j

·
∞
∑

r,k=0

(−1)r
�

γ − 1
r

�

δ3,k

�

Π (x)
�k

=
γθm−i+1Kπ (x)

[C (θ)]m−i+1

i−1
∑

j=1

∞
∑

n=1

∞
∑

r,k=0

ci , j ,n,rδ3,k

�

Π (x)
�k

,

where δ3,k is as defined before and

ci , j ,n,r = ci , j ,n,r (γ ,θ) = (−1) j+rθn+ j
�

i − 1
j

��

γ − 1
r

�

φm+ j−i ,n[C (θ)]
− j .

2
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Figure 1 – Plots of the OWPS pdf for some parameter values: odd Weibull Poisson (top left),
odd Weibull geometric (top right), odd Weibull logarithmic (middle left), odd Weibull negative
binomial (middle right) and odd Weibull binomial (bottom) distributions.
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Figure 2 – Plots of the OWPS failure rate function for some parameter values: odd Weibull Poisson
(top left), odd Weibull geometric (top right), odd Weibull logarithmic (middle left), odd Weibull
negative binomial (middle right) and odd Weibull binomial (bottom) distributions.
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Figure 3 – Estimated pdfs of the OWPS and other competitive distributions for the first data set.
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Figure 4 – Estimated pdfs of the OWPS and other competitive distributions for the second data
set.
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Figure 5 – Quantile-quantile plots for the fitted distributions for the first data set.
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Figure 6 – Quantile-quantile plots for the fitted distributions for the second data set.
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Figure 7 – Plots of the estimated failure rate functions of the OWG distribution for data sets 1 and
2.

E. TABLES

TABLE 1
Members of the power series family.

Distribution Pdf θ The power parameter space an C (θ) C ′(θ)
in compounded distribution

Zero-truncated Poisson e−θθn/n!
�

1− e−θ
�

θ > 0 θ ∈ (−∞,+∞) 1/n! eθ− 1 eθ

Geometric (1−θ)θn−1 0<θ < 1 θ ∈ (−∞, 0)
⋃

(0,1) 1 θ/(1−θ) (1−θ)−2

Logarithmic −θn/n log (1−θ) 0<θ < 1 θ ∈ (−∞, 0)
⋃

(0,1) 1/n -log(1−θ) (1−θ)−1

Negative binomial
�n+m−1

n

�

(1−θ)mθn/1− (1−θ)m 0<θ < 1 θ ∈ (−∞, 0)
⋃

(0,1)
�

n+m− 1
n

�

(1−θ)−m − 1 m(1−θ)−m−1

Zero-truncated binomial
�m

n

�

θn/ ((1+θ)m − 1) 0<θ <∞ θ ∈ (−1,0)
⋃

(0,+∞)
�

m
n

�

(1+θ)m − 1 m(1+θ)m−1
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TABLE 2
The mean, bias, MSE, standard error, CP and CL of the MLE estimators from 10000 samples.

Real value n ξξξ AVξξξ (n) Biasξξξ (n) MSEξξξ (n) SD(bξξξ ) CPξξξ (n) CLξξξ (n)

ξξξ = (2,1,1.5,0.7) 50 α 3.352 1.352 4.862 4.024 0.901 8.233
β 1.941 0.441 0.320 0.692 0.923 2.735
γ 1.196 - 0.304 0.483 1.012 0.861 2.965
θ 0.555 -0.145 0.213 0.954 0.769 3.554

100 α 2.595 0.595 2.345 2.687 0.969 5.963
β 0.970 -0.031 0.239 0.602 0.930 1.641
γ 1.341 -0.169 0.321 0.754 0.936 2.412
θ 0.561 -0.139 0.154 0.761 0.909 1.689

200 α 2.286 0.286 0.767 0.823 0.935 3.770
β 0.960 -0.040 0.102 0.412 0.955 1.379
γ 1.424 - 0.076 0.123 0.392 0.929 1.322
θ 0.602 -0.098 0.070 0.494 0.933 0.105

500 α 2.095 0.095 0.211 0.301 0.954 1.785
β 0.994 -0.006 0.032 0.052 0.961 0.745
γ 1.480 -0.020 0.059 0.067 0.939 0.766
θ 0.683 -0.118 0.0364 0.089 0.951 0.681

ξξξ = (0.7,2,0.6,0.5) 50 α 0.932 0.232 0.252 0.420 0.915 1.897
β 2.103 0.103 0.555 0.743 0.933 3.065
γ 0.524 -0.076 0.125 0.303 0.878 1.130
θ 0.610 0.110 0.099 0.231 0.918 1.294

100 α 0.794 0.094 0.065 0.123 0.891 1.003
β 2.016 0.016 0.136 0.369 0.927 1.110
γ 0.532 -0.068 0.130 0.312 0.946 1.193
θ 0.584 0.084 0.049 0.145 0.968 0.839

200 α 0.779 0.079 0.034 0.099 0.941 0.703
β 2.019 0.019 0.091 0.988 0.973 1.194
γ 0.572 -0.029 0.011 0.110 0.909 0.451
θ 0.484 -0.016 0.039 0.135 0.934 0.682

500 α 0.715 0. 015 0.017 0.088 0.953 0.465
β 2.003 0.003 0.029 0.460 0.947 0.603
γ 0.059 -0.001 0.007 0.047 0.932 0.351
θ 0.492 -0.008 0.008 0.096 0.944 0.373

ξξξ = (1.5,3,0.5,0.3) 50 α 1.931 0.431 0.787 1.032 0.883 3.489
β 3.287 0.287 0.890 1.251 0.798 2.013
γ 0.472 -0.028 0.056 0.217 0.899 0.958
θ 0.368 0.068 0.641 0.281 0.826 1.033

100 α 1.653 0.153 0.464 0.803 0.868 1.561
β 3.077 0.077 0.581 0.720 0.837 2.842
γ 0.474 -0.026 0.022 0.101 0.914 0.564
θ 0.285 -0.016 0.044 0.367 0.88 0.827

200 α 1.573 0.073 0.164 0.410 0.934 1.097
β 3.014 0.014 0.161 0.242 0.969 0.909
γ 0.492 -0.008 0.027 0.115 0.933 0.631
θ 0.301 0.001 0.012 0.162 0.927 0.481

500 α 1.510 0.010 0.012 0.135 0.953 0.364
β 2.995 -0.005 0.079 0.234 0.946 0.886
γ 0.496 -0.004 0.006 0.029 0.951 0.215
θ 0.297 0.003 0.004 0.071 0.934 0.188
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TABLE 3
Estimates and goodness-of-fit measures for the first data set.

Model bξξξ −`
�

bξξξ
�

K-S p-value AIC AICc BIC

OW 6.0258, 0.0539, 0.9438 15.187 0.155 0.114 36.374 37.064 42.803
SE

�

bξξξ
�

(1.3333, 0.0331, 0.2667)

BW 7.0138, 0.5533, 0.4498, 0.0499 13.044 0.118 0.387 34.088 35.141 42.661
SE

�

bξξξ
�

(0.8896, 0.6459, 0.1810, 0.0464)

BGE 22.6124, 0.9227, 0.4125, 93.4655 15.599 0.158 0.103 39.198 40.251 47.771
SE

�

bξξξ
�

(22.8153, 0.5135, 0.3152, 116.6665)

OWP 4.3726, 0.6842, 0.3820, -5.0114 11.909 0.097 0.623 31.818 32.871 40.391
SE

�

bξξξ
�

(0.0829, 0.5699, 0.1780, 1.6585)

OWG 3.5469, 0.8086, 0.6918, -14.0978 11.594 0.093 0.681 31.188 32.241 39.761
SE

�

bξξξ
�

(1.056, 0.7265, 0.2841, 15.9532)

OWL 4.7159, 0.2434, 0.8933, -19.5031 13.509 0.121 0.348 35.019 36.072 43.591
SE

�

bξξξ
�

(1.0349, 0.1968, 0.2756, 37.2955)

OWN 4.2334, 0.6283, 0.4739, -1.1735 11.859 0.099 0.613 31.720 32.773 40.292
SE

�

bξξξ
�

(0.8850, 0.5539, 0.2199, 0.5532)

OWB 4.5457, 0.7867, 0.2832, -0.8372 11.725 0.096 0.642 31.450 32.503 40.023
SE

�

bξξξ
�

(0.7437, 0.5577, 0.1221, 0.1667)

TABLE 4
Estimates and goodness-of-fit measures for the second data set.

Model bξξξ −`
�

bξξξ
�

K-S p-value AIC AICc BIC

OW 2.3569, 0.0021, 0.2612 102.166 0.399 0.003 210.332 213.189 214.106
SE

�

bξξξ
�

(0.1763, 0.0008, 0.1296)

BW 2.8460, 0.0021, 0.1813, 0.0285 96.722 0.219 0.278 201.544 204.544 206.476
SE

�

bξξξ
�

(0.4389, 0.0004, 0.1482, 0.0433)

BGE 8.4938, 0.0173, 0.1583, 202.2628 101.603 0.299 0.050 211.206 214.206 216.238
SE

�

bξξξ
�

(0.0097, 4.8377, 0.0867, 245.0212)

OWP 2.2870, 0.0038, 0.1994, -3.0296 94.589 0.169 0.596 197.178 200.178 202.210
SE

�

bξξξ
�

(0.1935, 0.0016, 0.1053, 0.9890)

OWG 2.3142, 0.0048, 0.2028, -8.7458 93.141 0.141 0.803 194.282 197.282 199.314
SE

�

bξξξ
�

(0.2026, 0.0021, 0.1107, 5.5701)

OWL 2.4275, 0.0027, 0.1952, -10.0368 94.488 0.179 0.523 196.976 199.976 202.008
SE

�

bξξξ
�

(0.2337, 0.0041, 0.0664, 0.1436)

OWN 2.3867, 0.0046, 0.1341, -0.9751 93.732 0.145 0.789 195.464 198.464 200.496
SE

�

bξξξ
�

(0.2014, 0.0021, 0.0730, 0.3269)

OWB 2.2758, 0.0064, 0.1271, -0.6981 94.468 0.154 0.707 196.936 199.936 201.968
SE

�

bξξξ
�

(0.2337, 0.0041, 0.0664, 0.1436)
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SUMMARY

A new family of continuous distributions obtained by compounding the odd log-logistic and
power series distributions is introduced. The mathematical properties of the proposed family are
discussed. The estimation of the parameters is considered by the maximum likelihood method.
In order to assess the finite sample performance of maximum likelihood estimators, simulation
studies are performed. Finally, the potentiality of the family is illustrated by means of applications
to two real data sets.

Keywords: Estimation; Odd log-logistic family of distributions; Power series distribution; Sensi-
tivity analysis.


