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1. INTRODUCTION

Quantile functions are alternatives to distribution functions in specifying probability
distributions and can be successfully employed in all forms of statistical analysis. Al-
though one can be mathematically derived from the other, quantile functions, which
are simple in form and very much flexible, can be generated without reference to the
distribution function. This gives a variety of quantile functions to model random phe-
nomenon in addition to distribution functions. For the relative advantages of quantile
function, its adaptability to modelling and methods of generating quantile functions we
refer to Gilchrist (2000) and Nair et al. (2013). There has been a spurt in interest in re-
cent times to utilize quantile functions and concepts derived from it in modelling and
analysis of lifetime data, and in information theory, see for example Nair and Sankaran
(2009), Nair and Vineshkumar (2010, 2011), Franco-Pereira et al. (2012), Soni and Dewan
(2012), Nair et al. (2013), Lin et al. (2016), Kumar and Rani (2018), Kayal and Tripathy
(2018), Sadeghi et al. (2019) and their references.

Some attempts have been made in the literature to extend the concept of quantile
functions to higher dimensions, as can be seen from the works of Chen and Welsh (2002),
Serfling (2002), Belzunce et al. (2007) and Cai (2010). However, none of these approaches
appear to have been utilized in the context of reliability analysis. Moreover, extenstion
of univariate quantiles to represent bivariate life distributions does not seem to have
been discussed in the literature. The present work is, therefore, an attempt to discuss
a definition of bivariate quantile function appropriate to analyze bivariate lifetime data
and to derive some basic results in this connection. This is motivated by extending to
the bivariate case the advantages of the univariate quantile-based approach namely, the
benefits of alternative methodology, new simple and flexible models, certain new results
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that are difficult to find through the distribution function approach, more robust esti-
mation procedures and sometimes better insight into the data generating mechanism.
In the process, it is conceived that for a nonnegative random vector (X1,X2) , the bi-
variate quantile function is a pair that transforms the unit square [0,1]2, to points in
the plane x1 − x2, where (x1, x2) stands for the realization of (X1,X2) . By doing so we
ensure that the bivariate results are consistent with quantile-based reliability concepts
and results in the univariate case, and also the basic notions in the existing distribution
function approach. Based on the proposed bivariate quantile function, we define the
bivariate hazard and mean residual quantile functions, and establish some of their prop-
erties. Some new flexible quantile functions are suggested and a real data set is modeled
with one of them.

The paper is organized into seven sections. In Section 2, some basic definitions and
results in univariate case needed for sequel are presented. The definition of bivariate
quantile function and some examples form the material in Section 3. This is followed in
Section 4 by the discussions on the concepts of bivariate hazard and mean residual quan-
tile functions. Section 5 is devoted to the derivation of new models using special forms
bivariate hazard and mean residual quantile functions. In Section 6, the application of
the results to real data set is considered, and the work is concluded in Section 7.

2. BASIC RESULTS IN THE UNIVARIATE CASE

Let X be a nonnegative random variable with absolutely continuous distribution func-
tion F (x), quantile function

Q (u) = inf{x |F (x)≥ u } , 0≤ u ≤ 1

and the quantile density function q(u) = dQ(u)
d u . If f (x) is the probability density func-

tion of X we have the relationship f (Q(u)) = [q(u)]−1. Analogous to the hazard rate
of the random variable X , defined as

h(x) =
f (x)

1− F (x)
,

in the quantile function approach we have the hazard quantile function

H (u) = h (Q(u)) = [(1− u)q(u)]−1,

which determines Q(u) uniquely as

Q (u) =
∫ u

0

d p
(1− p)H (p)

.

Similarly, corresponding to the mean residual function

m(x) =
1

1− F (x)

∫ ∞

x
(t − x) f (t )d t ,
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the mean residual quantile function is defined as

M (u) = m (Q(u)) = (1− u)−1
∫ 1

u
(1− p)q(p)d p.

Further

[H (u)]−1 =M (u)− (1− u)
d M (u)

d u
and

Q (u) =
∫ u

0

M (p)− (1− p) d M (p)
d p

1− p
d p.

Let X and Y be two lifetimes with hazard quantile functions HX (.) and HY (.) , and
mean residual quantile functions MX (.) and MY (.) , respectively. When X and Y are to
be compared, we say that X is smaller than Y

1. in hazard quantile function order, written as X ≤H Q Y if HX (u) ≥ HY (u) for
0≤ u ≤ 1, and

2. in mean residual quantile function order , denoted by X≤M RQ Y if MX (u) ≤
MY (u) for 0≤ u ≤ 1.

Mathematically 1 and 2 are equivalent respective to the dispersive order and excess wealth
order, respectively, although the two have different interpretations and reliability prop-
erties. For details see Vineshkumar et al. (2015). It may be noted that the hazard (mean
residual) quantile orders mentioned above are different from the usual hazard rate (mean
residual life) orders. For detailed study of the concepts and definitions given in this sec-
tion we refer to Nair et al. (2013) and Vineshkumar et al. (2015).

3. BIVARIATE QUANTILE FUNCTIONS

Let (X1, X2) be a nonnegative random vector with absolutely continuous distribution
function F (x1, x2), survival function F̄ (x1, x2) and probability density function f (x1, x2).
We denote by Fi (xi ) (F̄i (xi )) the marginal distribution (survival) function of Xi , i = 1, 2.
The quantile function of Xi is

Qi (ui ) = inf{xi |Fi (xi )≥ ui } , 0≤ ui ≤ 1, i = 1,2. (1)

In defining bivariate quantile functions we seek transformations of points [0, 1]2 in the
unit square representing the u1− u2 plane to points in the x1− x2 plane. Our approach,
which is slightly different from the existing ones, consists in choosing the quantile func-
tions of P (X1 > x1) and P (X2 > x2 |X1 > x1 ) that makes up the joint distribution func-
tion through

F̄ (x1, x2) = P (X1 > x1)P (X2 > x2 |X1 > x1 ) .
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The advantage of this approach is that the terms on the right are more convenient to
define various reliability functions.

DEFINITION 1. The bivariate quantile function of (X1, X2) is defined as the pair
(Q1(u1),Q21(u2 | u1)), where Q1(u) is as given in (1) and

Q21 (u2 |u1 ) = inf{x2 |P (X2 ≤ x2 |X1 >Q1(u1) )≥ u2 } . (2)

EXAMPLE 2. For the Gumbel’s bivariate exponential distribution

F̄ (x1, x2) = exp [−λ1x1−λ2x2−θx1x2] , x1, x2 > 0; λ1, λ2 > 0, 0≤ θ≤ λ1λ2

F1(x1) = 1− exp [−λ1x1] gives Q1(u1) =
− log(1−u1)

λ1
. Also

P (X2 > x2 |X1 > x1 ) = e−(λ2+θx1)x2

has quantile function

Q21 (u2 |u1 ) =
−λ1 log(1− u2)

λ1λ2−θ log(1− u1)
.

EXAMPLE 3. Consider the bivariate Pareto distribution with survival function

F̄ (x1, x2) = (1+ a1x1+ a2x2+ b x1x2)
−p , x1, x2 > 0, a1,a2 > 0, 0≤ b ≤ (p − 1)a1a2.

The marginal distribution function of X1 is

F1(x1) = 1− (1+ a1x1)
−p ,

which yields

Q1(u1) =
1
a1
(1− u1)

−1
p − 1.

From the conditional distribution

P [X2 > x2 |X1 > x1 ] =
(1+ a1x1+ a2x2+ b x1x2)

−p

(1+ a1x1)
−p ,

we can find the quantile function Q21(u2 | u1) as

Q21 (u2 |u1 ) =
a1(1− u1)

− 1
p

�

(1− u2)
− 1

p − 1
�

a1a2+ b
�

(1− u1)
− 1

p − 1
� .

More examples are given in Table 1.
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If needed the distribution function of (X1, X2) can be recovered from the quantile
functions Q1 and Q21 using

F1(x1) = inf [u1 |Q1(u1)≥ x1 ]

and
P (X2 ≤ x2 |X1 > x1 ) = inf [u2 |Q21(u2 |u1)> x2 ] .

By way of illustration, from Example 2, since Q1 and Q21 are strictly increasing, from
Q1(u1), F1(x1) = 1− exp [−λ1x1] and P (X2 ≤ x2 |X1 > x1 ) = 1− exp (−λ2x2−θx1x2)
after setting Q1(u1) = x1 and Q21(u2 |u1) = x2 . The joint survival function now follows.

4. BASIC RELIABILITY FUNCTIONS

4.1. Bivariate hazard quantile function

Based on the definitions given in Section 2, the bivariate hazard quantile function of
(X1, X2) is defined as the pair (H1(u1), H21(u1, u2)) , where

H1(u1) = [(1− u1)q1(u1)]
−1, H21(u1, u2) = [(1− u2)q21(u2 |u1) ]

−1, (3)

in which q1(u1) =
dQ1(u1)

d u1
and q21(u2 |u1 ) =

dQ21(u2|u1 )
d u2

are the quantile density functions
of Q1 and Q21 , respectively. It is further observed that the distribution of (X1, X2) is
uniquely determined by (H1, H21) through the equations

Q1(u1) =
∫ u1

0

d p
(1− p)H1(p)

(4)

and

Q21(u2 |u1) =
∫ u2

0

d p
(1− p)H21(u1, p)

. (5)

In the case of Gumbel’s bivariate exponential distribution considered above H1(u1) = λ1

and H21(u1, u2) = λ2−
θ
λ1

log(1− u1) and it is easy to recover Q1 and Q21 from (4) and
(5) as obtained in Example 2. See Table 2 for expressions of (H1(u1), H21(u1, u2)) of
distributions in Table 1.

REMARK 4. The quantile function corresponding to F̄ (x1, x2) can also be defined as
Q12(u1 | u2) and Q2(u2), the quantile functions of P (X1 > x1 |X2 > x2 ) and F̄2(x2), respec-
tively. In this case, the hazard quantile function is the vector (H12(u1, u2), H2(u2)), with

H12(u1, u2) = [(1− u1)q12(u1 |u2) ]
−1, H2(u2) = [(1− u2)q2(u2)]

−1, (6)

where q12 and q2 are the quantile density functions of Q12 and Q2 , respectively.
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The hazard function (H1, H21) can be employed to define the ageing concepts, the
increasing (decreasing) hazard quantile function, IHQ (DHQ). We say that (X1, X2)
is IHQ (DHQ) according as H1 is increasing (decreasing) in u1 and H21 is increasing
(decreasing) in u2 for all u1. Since u1 increases with x1 and u2 increases with x2 , the
bivariate IHR (DHR) criterion with respect to the vector hazard rate of Johnson and

Kotz (1975), defined as (a1(x1, x2), a2(x1, x2)), where ai (x1, x2) =
−∂ log F̄ (x1, x2)

∂ xi
, i = 1,2,

implies IHQ (DHQ).
There are occasions when one has to compare hazard rates of two devices, for exam-

ple same devise produced by two manufactures under different processes. If (X1,X2) and
(Y1,Y2) are lifetimes with (a1(x1, x2),a2(x1, x2)) and (b1(x1, x2), b2(x1, x2)) as respective
hazard rates, then Hu et al. (2003) proposed that (X1,X2) has lesser bivariate hazard rate
than (Y1,Y2), denoted by (X1, X2)≤w h r (Y1, Y2) whenever

ai (x1, x2)≥ bi (x1, x2), i = 1, 2; x1, x2 > 0.

With reference to the bivariate hazard quantile functions (H1, H21) and (K1,K21)
of (X1,X2) and (Y1,Y2), we say that (X1,X2) has lesser hazard quantile function than
(Y1,Y2), written as (X1, X2)≤H Q (Y1, Y2) if H1(u1)≥K1(u1) for all u1 and H21 (u1, u2)≥
K21 (u1, u2) for 0 ≤ u1, u2 ≤ 1. Since the univariate ordering ai (x1, 0) ≥ bi (x1, 0) nei-
ther implies nor implied by H1(u1)≥ K1(u1) (Vineshkumar et al., 2015), it follows that
the orders ≤w h r and ≤H Q are not equivalent and latter defines a different stochastic
order. Some additional properties of≤H Q are given below. If Ḡ (x1, x2) denotes the sur-
vival function of (Y1,Y2), then (X1,X2) is smaller than (Y1,Y2) in upper orthant order,
(X1, X2)≤uo (Y1, Y2) (see Shaked and Shanthikumar, 2007) if F̄ (x1, x2)≤ Ḡ (x1, x2) for
x1, x2 > 0.

THEOREM 5. If Xi , i = 1,2 have the same lower end of their supports then

(X1, X2)≤H Q (Y1, Y2)⇒ (X1, X2)≤uo (Y1, Y2)

PROOF. Since (X1,X2)≤H Q (Y1,Y2) , from Vineshkumar et al. (2015)

H1(u1)≥K1(u1)⇒X1≤s t Y1⇔ F̄1(x1)≤ Ḡ1(x1),

where Ḡ1 is the survival function of Y1. Also

H21(u1, u2)≥K21(u1, u2)⇒ P [X2 > x2 |X1 > x1 ]≤ P [Y2 > x2 |Y1 > x1 ] .

Hence
(X1,X2)≤H Q (Y1,Y2)⇒H1(u1)H21(u1, u2)≥K1(u1)K21(u1, u2)

⇒ F̄ (x1, x2)≤ Ḡ (x1, x2)⇒ (X1, X2)≤uo (Y1, Y2) .

2
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EXAMPLE 6. Let (X1,X2) and (Y1,Y2) be random vectors with bivariate quantile func-
tions

�

(1− u1)
− 1

2 − 1, (1− u1)
− 1

2

�

(1− u2)
− 1

2 − 1
��

and
 

�

u1

1− u1

�
1
2

,
�

u2

(1− u1) (1− u2)

�
1
2

!

,

respectively with corresponding hazard quantile functions

(H1 (u1) , H21 (u1, u2)) =
�

2(1− u1)
1
2 , 2((1− u1) (1− u2))

1
2

�

and

(K1 (u1) , K21 (u1, u2)) =

 

2u1

�

1− u1

u1

�
1
2

, 2u2

�

(1− u1) (1− u2)
u2

�
1
2

!

.

It is easy to show that H1(u1) > K1(u1) for all u1 and H21(u1, u2) > K21(u1, u2) for all u1
and u2. Therefore, (X1, X2)≤H Q (Y1, Y2). The survival functions of (X1,X2) and (Y1,Y2)
are

F̄ (x1, x2) = (1+ x1+ x2)
−2, x1, x2 > 0

and
Ḡ (x1, x2) =

�

1+ x2
1 + x2

2

�−1, x1, x2 > 0.

Since (1+ x1+ x2)
2 > 1+x2

1+x2
2 for all x1, x2 > 0, F̄ (x1, x2)< Ḡ (x1, x2) for all x1, x2 > 0,

which implies (X1, X2)≤uo (Y1, Y2). This illustrates Theorem 5.

Another implication is with the reversed hazard quantile function order. The bivari-
ate reversed hazard quantile function of (X1,X2) is defined as the pair (R1(u1), R21(u1, u2)),
where

R1(u1) = [u1q1(u1)]
−1

and
R21(u1, u2) = [u2q21(u2 |u1) ]

−1.

With similar definitions, let (T1(u1), T21(u1, u2)) be the corresponding function of (Y1,Y2).
Then we say that (X1,X2) is smaller than (Y1,Y2) in reversed hazard quantile function or-
der, written as (X1, X2)≤RH Q (Y1, Y2) if R1(u1)≤ T1(u1) and R21 (u1, u2)≤ T21 (u1, u2)
for all 0< u1, u2 < 1. It is easy to see that

(X1, X2)≤RH Q (Y1, Y2)⇔ (X1, X2)≥H Q (Y1, Y2) ,

a result which does not hold between usual bivariate hazard and reversed hazard rates.
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TA
BLE

1
Bivariatequantilefunction

ofsom
elifetim

edistributions.

M
odel

F̄
( x

1 ,
x

2 )
( Q

1 (u
1 ),

Q
21 ( u

2 |u
1 ))

1
exp

h−
( x

m1
+

x
m2
)

1m

i,
x

1 ,
x

2
>

0,
m
>

0
�−

log(1−
u

1 ), {[ −
log(1−

u
1 )(1−

u
2 )] m
−
[ −

log(1−
u

1 )] m}
1m

�

2
( 1−

b
1 x

1 −
b

2 x
2 +

cx
1 x

2 )
p,0

<
x

1
<

1b1 ,0≤
x

2 ≤
1−

b
x1

b2 −
cx1 ,b

1 ,b
2
>

0



1b1 ( 1−
(1−

u
1 ))

1p,
b1 ( 1−

(1−
u

2 ))
1p
(1−

u
1 )

1p

b1 b2 +
b1 c

�1−
(1−

u
1 )

1p
�



3
( 1
+

a
1 x

1 +
a

2 x
2 ) −

p,
x

1 ,
x

2
>

0,
a

1 ,
a

2 ,
p
>

0



(1−
u

1 ) −
1p
−

1
a1

,
(1−

u
1 ) −

1p
�(1−

u
2 ) −

1p
−

1
�

a2



4
�e
λ

1 x1+
e
λ

2 x2−
1
�−

1,
x

1 ,
x

2
>

0;
λ

1 ,
λ

2
>

0
�−

1λ
1 log(1−

u
1 ),

1λ
2 log

�

1−
u

1 +
u

1 u
2

( 1−
u

1 )( 1−
u

2 )

�
�

5
β

β
+

x
k1
+

x
k2 ,

x
1 ,

x
2
>

0,
β
>

0,
k
>

0
�

β
�

u
1

1−
u

1

�
1k,
�

β
u

2
(1−

u
1 )(1−

u
2 )

�
1k

�



Bivariate Quantile Functions 11

TABLE 2
Bivariate hazard quantile functions of lifetime distributions in Table 1.

Model (H1, H21)

1
�

1, [(− log(1− u1)(1− u2))
m − (− log(1− u1))

m]1−
1
m (− log(1− u1)(1− u2))

1−m
�

2
�

p b1(1− u1)
−1
p , p

�

b2+ c(1− (1− u1)
1
p

�

(1− u1)
−1
p (1− u2)

−1
p

�

3
�

pa1(1− u1)
1
p , pa2(1− u1)

1
p (1− u2)

1
p

�

4 (λ1, λ2 (1− u1+ u1 u2) )

5
�

k u1

�

1−u1
βu1

�
1
k , k u2

�

(1−u1)(1−u2)
βu2

�
1
k

�

4.2. Bivariate mean residual quantile function

The bivariate mean residual quantile function of (X1,X2) is defined as the vector
(M1(u1), M21(u1, u2)), where

M1(u1) =
1

1− u1

∫ 1

u1

(1− p)q1(p)d p (7)

and

M21(u1, u2) =
1

1− u2

∫ 1

u2

(1− p)q21(p |u1 )d p. (8)

For example, the Gumbel distribution considered above has

M1(u1) = λ
−1
1

and

M21(u1, u2) =
�

λ2−
θ

λ1
log(1− u1)

�−1

.

The bivariate hazard quantile function is related to (7) and (8) as

[H1 (u1)]
−1 =M1(u1)− (1− u1)

d M1(u1)
d u1

and

[H21 (u1, u2)]
−1 =M21(u1, u2)− (1− u2)

d M21(u1, u2)
d u2

, 0≤ u1 ≤ 1.

Further the distribution of (X1,X2) is recovered from (M1(u1), M21(u1, u2)) through the
quantile functions

Q1 (u1) =
∫ u1

0

M1(p)− (1− p) d M1(p)
d p

1− p
d p
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and

Q21 (u2 |u1 ) =
∫ u1

0

M21(u1, p)− (1− p) d M21(u1, p))
d p

1− p
d p.

As in the case of hazard quantile function, (X1,X2) has decreasing (increasing) mean
residual life, DMRQ (IMRQ), if M1(u1) is decreasing (increasing) in u1 and M21(u1, u2)
is decreasing in u2 for all u1 , and is equivalent to the usual notion of bivariate DMRL
(IMRL) using the distribution functions. Recall that the bivariate mean residual life
function in the latter case is (m1(x1, x2), m2(x1, x2)) where

mi (x1, x2) = E (Xi − xi |X1 > x1, X2 > x2 ) .

Similarly, if (n1(x1, x2), n2(x1, x2)) is the mean residual life function of (X1,X2) , then
(X1,X2) is smaller than (Y1,Y2) in mean residual life order, (X1, X2)≤m r l (Y1, Y2), if
mi (x1, x2)≤ ni (x1, x2), x1, x2 ≥ 0.

We can also define a stochastic order among (X1,X2) and (Y1,Y2) by saying that the
former is smaller than the latter in mean residual quantile function order denoted by
(X1, X2)≤M RQ (Y1, Y2) if M1(u1)≤N1(u1) for all u1 and M21 (u1, u2)≤N21 (u1, u2) for
0 ≤ u1, u2 ≤ 1, where (N1,N21) is the mean residual quantile function of (Y1,Y2). Vi-
neshkumar et al. (2015) have shown that m1(x1, 0)≤ n1(x1, 0) does not imply M1(u1)≤
N1(u1), and therefore, (X1, X2)≤m r l (Y1, Y2) does not imply (X1,X2)≤M RQ (Y1,Y2).

THEOREM 7.

(X1, X2)≤H Q (Y1, Y2)⇒ (X1, X2)≤M RQ (Y1, Y2) .

PROOF. (X1, X2)≤H Q (Y1, Y2) implies H1(u1) ≥ K1(u1) and also H21(u1, u2) ≥
K21(u1, u2). Therefore, (1− u1)q1(u1) ≤ (1− u1)s1(u1) and (1− u2)q21( u2| u1) ≤ (1−
u2)s21( u2| u1), where s1 and s21 are the quantile density functions of Y1 and (Y2 |Y1 > x1 ).
Thus,

1
1− u1

∫ 1

u1

(1− p)q1(p)d p ≤ 1
1− u1

∫ 1

u1

(1− p)s1(p)d p

and
1

1− u2

∫ 1

u2

(1− p)q21(p |u1 )d p ≤ 1
1− u2

∫ 1

u2

(1− p)s21(p |u1 )d p,

which implies
(X1, X2)≤M RQ (Y1, Y2) .

2
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EXAMPLE 8. For the random vectors defined in Example 6, it is shown that
(X1,X2)≤H Q (Y1,Y2). Now,

M1 (u1) = (1− u1)
−1
∫ 1

u1

(H1 (t ))
−1d t = (1− u1)

−1
∫ 1

u1

d t

2(1− t )
1
2

< (1− u1)
−1
∫ 1

u1

d t

2(t (1− t ))
1
2

=N1 (u1)

and

M21 (u1, u2) = (1− u2)
−1
∫ 1

u2

(H21 (u1, t ))−1d t = (1− u2)
−1
∫ 1

u2

d t

2((1− u1) (1− t ))
1
2

< (1− u2)
−1
∫ 1

u2

d t

2((1− u1) t (1− t ))
1
2

=N21 (u1, u2) ,

which implies that (X1,X2)≤M RQ (Y1,Y2). This verifies Theorem 7.

The following result is useful from a modelling perspective, as it permits the analyst
to commence with a simple functional form for the mean residual quantile function
and then to improve it by adding appropriate forms until the desired accuracy is reached
without changing the model and the inference procedures associated with it sequentially.

THEOREM 9. The sum of the mean residual quantile functions of two nonnegative ran-
dom vectors (X1,X2) and (Y1,Y2) is again the mean residual quantile function of a bivariate
random vector if and only if its quantile function has components as the sum of the quantile
functions of (X1,X2) and (Y1,Y2) .

PROOF. We first observe that the sum of two quantile (quantile density) functions
is again a quantile (quantile density) function. Assume first that the quantile functions
of (X1,X2) and (Y1,Y2) are the vectors (Q1 (u1) , Q21 (u2 |u1 )) and (S1 (u1) , S21 (u2 |u1 )),
respectively. Further let, Q∗(u1) = Q1(u1) + S1(u1) and Q∗21 (u2 |u1 ) = Q21 (u2 |u1 ) +
S21 (u2 |u1 ). Then

1
1− u1

∫ 1

u1

(1− p)q∗1 (p)d p =
1

1− u1

∫ 1

u1

(1− p)q1(p)d p +
1

1− u1

∫ 1

u1

(1− p)s1(p)d p (9)

= M1(u1)+N1(u1), s1 =
d S1

d p
.

The left side is a mean residual quantile function since q∗ is a quantile density function.
By the same argument M21 (u1, u2) + N21 (u1, u2) is mean residual quantile function.
Conversely if (9) is true for some q∗, then differentiation gives q∗(u1) = q1(u1) + s1(u1)
and similarly, q∗21 (u2 |u1 ) = q21 (u2 |u1 )+ s21 (u2 |u1 ) . This completes the proof. 2
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EXAMPLE 10. The mean residal quantile function of the bivariate qantile function
given as Model 5 of Table 1 is the vector

�

1
λ1

,
− log (1− u1+ u1u2)

λ2u1 (1− u2)

�

,

whose marginal mean residual quantile functions are constants. Therefore the distribution
has limited application in analyzing bivarate data with monotonic mean residual functions,
which are common in real life situations. In view of Theorem 9, one can improve this mean
residual function to expalin more variety of bivariate data by adding one or more mean
residual quantile functions. For instance, we obtain a new mean residual quantile function
from the above as

�

1
λ1
+(1− u1)

− 1
p , − log(1−u1+u1 u2)

λ2 u1(1−u2)
+((1− u1) (1− u2))

− 1
p

�

, p > 0 ,

which has nondecreasing marginal mean residual quantile functions, and is capable of ex-
palining residual lifes of wide range of data sets. Notice that the quantile function of the
added mean residual function is provided as Model 4 of Table 1. We now have a new bivari-
ate quantile function with

Q1 (u1) =
−1
λ1

log (1− u1)+ (1− u1)
− 1

p − 1

and

Q21 (u2 |u1 ) =
1
λ2

log
�

1− u1+ u1u2

(1− u1) (1− u2)

�

+(1− u1)
− 1

p

�

(1− u2)
− 1

p − 1
�

,

with λ1,λ2, p > 0. The distributions obtained by this method may have properties different
from the individual quantile functions, which are to be further exposed.

5. NEW QUANTILE FUNCTION MODELS

Most of the quantile function models in the univariate case (except those obtained by
inverting standard distribution functions) have the property of assuming simple math-
ematical form and the ability to subsume many useful distributions either exactly or
approximately. This renders such quantile functions to represent a wide variety of data
situations, there by contributing to their roles in modelling problems. For details see
Nair et al. (2013). In the present section we propose some models that are generalizations
of univariate models of the above nature.
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5.1. Bivariate linear hazard quantile function model

We assume that (X1,X2) has a bivariate hazard quantile function of the form

(H1(u1), H21(u2 |u1) ) = (a+ b u1, a+ b u1+ c u2) ,

a > 0, a + b > 0, a + c > 0, a + b + c > 0. Notice that the marginal hazard quantile
functions of X1 and X2 are respectively H1(u1) = a+ b u1 and H2(u2) = a+ c u2 giving
the quantile functions

Q1(u1) =
1

a+ b
log

�

a+ b u1

a(1− u1)

�

(10)

and

Q2(u2) =
1

a+ c
log

�

a+ c u2

a(1− u2)

�

.

Also

Q21 (u2 |u1 ) =
1

a+ b u1+ c
log

�

a+ b u1+ c u2

(a+ b u1)(1− u2)

�

. (11)

From (10) and (11) we find after some algebra, the joint survival function of (X1,X2) in
closed form as

F̄ (x1, x2) =
(a+ b u1+ c)(1− u1)e

−(a+b u1+c)x2

(a+ b u1)+ c e−(a+b u1+c)x2
, (12)

where u1 is replaced by

u1 =
a
�

1− e−(a+b )x1
�

a+ b e−(a+b )x1
, x1, x2 > 0.

Though in closed form, the distribution function is more difficult to work with than
the quantile function (Q1 (u1) , Q21 (u2 |u1 )) obtained in (10) and (11). The marginal
distributions of X1 and X2 are the linear hazard quantile function distributions discussed
in Nair et al. (2013) and Midhu et al. (2014). There are several special cases of the above
bivariate model.

1. When b = c = 0 it becomes the bivariate exponential distribution with indepen-
dent exponential marginals with parameter a .

2. Taking a = b = c > 0 , Qi (ui ) =
1
2a log 1−ui

1+ui
, the quantile function of half-logistic

distribution. Thus (10) and (11) give a bivariate half-logistic distribution with
survival function (12) and ui =

1−e−2axi

1+e−2axi
, i = 1, 2; xi > 0.
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3. If we set a = λ
1−p , b = c = −pλ

1−p , 0< p < 1; λ > 0,

Qi (ui ) =
1
λ

log
1− p ui

1− ui
, i = 1, 2.

and
Q21 (u2 |u1 ) =

1− p
λ(1− p − p u1)

log
1− p u1− p u2

(1− p u1)(1− u2)
,

showing that Qi represents the exponential geometric distribution of Adamidis
and Loukas (1998). Thus the distribution is bivariate exponential geometric dis-
tribution with parameters λ, p and a with marginals

ui = (1− p)e−λxi
�

1− pe−λxi
�−1

, xi > 0.

Differentiating Q21 (u2 |u1 ),

q21 (u2 |u1 ) =
1− p

λ(1− p u1− p u2)(1− p u1)(1− u2)
.

Thus the mean residual quantile function has a closed form with components
�

1− p
λp(1− p u1)

log
1− p u1

1− p
,

1− p
λp(1− p u1)

log
1− p u1− p u2

1− p − p u1

�

,

using (7) and (8).

Other reliability aspects, distribution theory and applications will be discussed in a sep-
arate work.

5.2. Bivariate linear mean residual quantile function model

Similar to the previous distribution, here we assume a linear form for the bivariate mean
residual quantile function and propose the bivariate distribution corresponding to it.
Our assumption is

(M1(u1), M21(u2 |u1) ) = (a1+ b1u1, a2+ b2u1+ c u2+ d u1u2) . (13)

Direct calculations from the preceding formulas yield

Q1(u1) =−(a1+ b1) log(1− u1)− 2b1u1, (14)

0≤ u1 ≤ 1, a1 > 0, (a1+ b1)> 0 and

Q21 (u2 |u1 ) =−(a2+ c +(b2+ d )u1) log(1− u2)− 2(c + d u1)u2, (15)
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0≤ u2 ≤ 1, a2+ c > 0, a2 > 0, a2+ b2 ≥ c + d . The quantile function of X2 is obtained
from (15) as

Q2(u2) =−(a2+ c) log(1− u2)− 2c u2. (16)

Equations (14) and (16) represent the linear mean residual quantile distribution studied
in Midhu et al. (2013). Neither marginals of X1 and X2 nor the joint distribution of
(X1,X2) have a closed form distribution function to study theoretically the reliability
aspects. In view of this there are not many special cases of the model that give standard
bivariate distributions except exponential and uniform. When b1 = c = d = 0, we have

F̄ (x1, x2) = exp
�

−
x1

a1
−

x2

a2+ b2(1− e−x1)

�

, x1, x2 > 0, a1, a2, b2 ≥ 0,

with exponential marginals having means a1 and a2 . Further when b2 = 0 the marginals
become independent. Bivariate uniform distribution results when a1 > 0 , a2 > 0 ,
a1+ b1 = 0 , a1+ c = 0 , b2+ d = 0 , b2 > 0 .

The quantile density functions

q1(u1) = (a1+ b1)(1− u1)
−1− 2b1

and

q21 (u2 |u1 ) =
a2+ c +(b2+ d )u1

1− u2
− 2(c + d u1)

provide us the hazard quantile functions

H1(u1) = (a1− b1+ 2b1u1)
−1

and
H21(u1, u2) = (a2− c +(b2− d )u1+ 2u2(c + d u1))

−1.

Notice that H1 is reciprocal linear and H21 is reciprocal bilinear, giving simple forms.

Similar considerations can provide other models as well. For example a wider class of
distributions which includes Weibull, Pareto, beta, etc. can be generated if we consider
H1(u1) = (1− u1)

α−1(− log(1− u1))
β and H21(u1, u2) = (1− u1)

αu2
θ(1− u2)

φ, where
α, β, θ are such that H1 and H21 are well defined.

6. MODELLING LIFETIME DATA

In this section we demonstrate the usefulness of the bivariate quantile function approach
and various results derived therefrom in the analysis of lifetime data. The data is on
the distribution of the survival times of incubation of individuals known to have sexu-
ally transmitted diseases who were later determined to have had sex with an individual
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possessing the disease verified in a clinic after the time of their encounter (Klein and
Moeschberger, 1997, p. 146). The observations were recorded in a 42 month period for
25 individuals as the time in months from the first encounter X1 and the time in months
from the first encounter till the confirmation of disease X2.

We made an attempt to fit the data to bivariate linear mean residual quantile func-
tion model discussed in the last section. We consider the estimation of the parameters
by the method of L-moments. The merits of this method over the usual method of
moments, maximum likelihood estimation, etc. are well documented in Hosking and
Wallis (1997). The first two L-moments of X1 are

L1, (X1)
= E(X1) =

∫ 1

0
Q1(u1)d u1 =a1

and

L2, (X1)
=
∫ 1

0
(2u1− 1)Q1(u1)d u1 =

1
6
(3a1+ b1) .

Similarly,

L1, (X2)
= a2, L2, (X2)

=
1
6
(3a2+ c) ,

L1, (X2|X1 )
= a2+ b2u1

and
L2, (X2|X1 )

=
1
6
(3a2+ c +(3b2+ d )u1) .

In general terms, the method of L-moments consisting of solving for the parameters
from the equations

Lr = lr , r = 1, 2, ...

where lr is the r t h sample L-moment, which has the formula

lr =
1
n

r−1
∑

j=0

pr j

�

n
∑

r=1

(r − 1)( j )
(n− 1)( j )

�

with pi j =
(−1)i−1− j (i+ j−1)!
( j !)2(i− j−1)!

and n, the sample size.

In the case of conditional moments where u1 is given, we choose u1 to be û1 obtained
from Q1(û1) = x1(1), where x1(r ) is the r t h order statistic of the x1,i values in the sample
�

x1, i , x2, i

�

, i = 1, 2, ..., n . The choice of x1(1) is motivated by the fact that we can make
use of the maximum number of sample values of X2 while considering the event X1 > x1.
In this way, the method gives the estimates of the parameters as

â1 = l1, (X1)
, b̂1 = 6l2, (X1)

− 3l1, (X1)
, â2 = l1, (X2)

, ĉ = 6l2, (X2)
− 3l1, (X2)
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b̂2 =
1
û1

�

l1, (X2|X1)
− l1, (X2)

�

, d̂ =
1
û1

�

6(l2, (X2|X1)
− l2, (X2)

)− 3(l1, (X2|X1)
− l1, (X2)

)
�

It is straightforward to find the estimates of a1, b1,a2 and c as â1 = 15.64, b̂1 =−13.3, â2 =
1.132, ĉ =−1.063. Since x(1) = 2, to find û1 we solve

−(â1+ b̂1) log(1− û1)− 2b̂1 û1 = 2

to find û1 = 0.06890. From this b̂2 =−0.08344, d̂ = 0.829881.
The goodness of fit for the proposed distributions of X1 and X2 were ascertained by

Q-Q plots, which have been obtained by plotting the points
�

x1(r ), Q1(ur )
�

(Figure 1)

and
�

x2(r ), Q21(ur |û1 )
�

(Figure 2), where ur =
r−0.5

n , r = 1, 2, ..., 25. The value û1

can be replaced by any ûi , which satisfies Q1(ûi ) = x1(i) to draw Figure 2. The figures
indicate that the model explains the data satisfactorily.
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Figure 1 – Q-Q Plot obtained by plotting (x1(r ),Q1(ur )).
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Figure 2 – Q-Q Plot obtained by plotting (x2(r ),Q21(ur )|û1).

7. CONCLUSION

In the present work we have suggested an alternative methodology for analysing bivari-
ate lifetime data through quantile functions. The basic reliability functions are defined
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in terms of bivariate quantile functions and their properties are studied. We have illus-
trated how new quantile functions can be generated and used in real life data.
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SUMMARY

In this paper we propose a new definition of bivariate quantile function suited for reliability mod-
elling and illustrate its applications. The bivariate hazard and mean residual quantile functions
are defined and their properties are studied. Examples of generating new quantile functions and
application of the results to model data are provided.

Keywords: Bivariate quantile functions; Hazard and mean residual quantile functions; Bivariate
linear hazard (mean residual) quantile function distribution.


