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1. INTRODUCTION

Censored sampling arises in a life-testing experiment whenever the experimenter does
not observe the failure times of all units placed on a life-test. In medical or industrial
applications, researchers have to treat the censored data because they usually do not
have sufficient time to observe the lifetime of all subjects in the study. Furthermore,
subjects/items may fail by cause other than the ones under study. There are numerous
schemes of censoring. Here we consider a progressively type-II right-censored sampling.
The ordered failure times arising from a progressively type-II right-censored sampling
are called progressively type-II right-censored order statistics. The method allows to
save time and cost to the experimenter and is useful when the items being tested are
very expensive.

Suppose that X1, . . . , Xn is an independent and identically distributed (i.i.d.) random
lifetimes of n items. A progressive type-II right-censored sample may be obtained as fol-
lows: at the time of the first failure, noted as X1:m:n , R1 units are randomly removed
from n− 1 surviving units. Similarly at the time of the second failure, noted as X2:m:n ,
R2 units from the n−R1−2 units are randomly removed. This process continuous un-
til, at the time of the mt h observed failure, the remaining n−m−R1−R2− . . .−Rm−1
units are all removed from the experiment. Viveros and Balakrishnan (1994) derived
explicit expressions for the best linear unbiased estimates (BLUE) of the parameters of
both one and two parameter exponential distributions based on progressively type-II
right-censored samples. Balakrishnan and Sandhu (1996), Aggarwala and Balakrishnan
(1996) and Aggarwala and Balakrishnan (1998) discussed several mathematical results as
well as efficient inference procedures using progressive type-II censoring scheme. Singh
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et al. (2015) discussed the one- and two sample prediction problems based on type-I hy-
brid censored sample for Lindley distribution. Chacko and Mohan (2017) considered
the Bayesian estimation of parameters of a Kumaraswamy-exponential distribution un-
der progressive type-II censoring. Sharma (2018) developed estimation procedure for
sample prediction problems based on type-II hybrid censored sample for Weibull distri-
bution. Note that, in usual progressive type-II censoring, the scheme R1, R2, . . . , Rm are
all pre-fixed. However, in some practical situations, these numbers may occur at ran-
dom. For example, in some reliability experiments, an experimenter may decide that it
is inappropriate or too dangerous to carry on the testing on some of the tested units even
though these units have not failed. In such cases, the pattern of removal at each failure
is random. This leads to progressive censoring with random removals. In this paper we
assume that the random removal Ri follows a binomial distribution with parameter p.
It means that each unit leaves with equal probability p and the probability of Ri units
leaving after the i t h failure occurs is

P (R1 = r1) =
�

n−m
r1

�

p r1 (1− p)n−m−r1 (1)

and, for i = 2,3, . . . , m− 1,

P
�

Ri = ri |Ri−1 = ri−1, . . . , R1 = r1

�

=





n−m−
i−1
∑

j=1
r j

ri



 p ri (1− p)
n−m−

i−1
∑

j=1
r j

, (2)

where 0≤ ri ≤ n−m−
i−1
∑

j=1
r j . Furthermore, we assume that Ri is independent of Xi for

all i . The schematic representation of the progressive type-II censoring with binomial
removals is illustrated given below.

Process The number in life testing Failures Binomial removals Remains

1 n 1 R1 ∼ B (n−m, p) n− 1−R1
2 n− 1−R1 1 R2 ∼ B (n−m−R1, p) n− 2−R1 −R2
. . . . . . . . . . . . . . .

m− 1 n− (m− 2)−
m−2
∑

j=1
R j 1 Rm−1 ∼ B

�

n−m−
m−2
∑

j=1
R j , p

�

n− (m− 1)−
m−1
∑

j=1
R j

m n− (m− 1)−
m−1
∑

j=1
R j 1 Rm = n−m−

m−1
∑

j=1
R j 0

The joint distribution of X = (X1:m:n ,X2:m:n , . . . ,Xm:m:n) and R= (R1, R2, ..., Rm) is
obtained as

fX ,R (x1:m:n , x2:m:n , . . . , xm:m:n , r |p) = fX (x1:m:n , x2:m:n , . . . , xm:m:n) P (R| p) , (3)



Statistical Inference for the Gompertz Distribution 253

where

fX (x1:m:n , x2:m:n , . . . , xm:m:n) =C
m
∏

i=1

fXi :m:n
(xi :m:n)

¦

1− FXi :m:n
(xi :m:n)

©ri ,

r = (r1, r2, . . . , rm), C is a constant defined as

C = n(n− r1−1)(n− r1− r2−2) . . . (n− r1− r2) . . . (n− r1− r2− . . . rm−1−m+1), (4)

and P (R|p) is the joint probability distribution of R= (R1, R2, . . . , Rm) defined as

P (R| p) = P (Rm = rm |Rm−1 = rm−1, . . . , R1 = r1)× . . .
× P (R2 = r2|R1 = r1)P (R1 = r1).

Therefore from (1) and (2), we have

P (R| p) =
(n−m)!

�

n−m−
m−1
∑

j=1
r j

�

!
m−1
∏

j=1
r j

p
m−1
∑

j=1
r j
(1− p)

(m−1)(n−m)−
m−1
∑

j=1
(m− j )r j

. (5)

Several authors considered statistical inference on different lifetime distributions un-
der progressive censoring with random removals. Yuen and Tse (1996) considered para-
metric estimation for Weibull distribution under progressive censoring with random
removals. Tse et al. (2000) considered statistical analysis for Weibull distributed life-
time data under type-II progressive censoring with binomial removals. Wu and Chang
(2003) discussed inference in the Pareto distribution based on progressive type-II censor-
ing with random removals. Wu et al. (2004) derived the estimated expected test time for
Pareto distribution under progressive censoring data. Amin (2008) discussed Bayesian
inference procedures of the Pareto distribution under progressive censoring with bino-
mial removals. Al-Zahrani (2012) derived the maximum likelihood estimators of the
generalized Pareto distribution under progressive censoring with binomial removals.
Azimi and Yaghmaei (2013) considered the Bayesian estimation based on Rayleigh dis-
tribution under progressive type-II censored data with binomial removals. Feroze and
El-Batal (2013) derived the maximum likelihood estimators of the Kumaraswamy dis-
tribution under progressive type-II censored data with random removals. Azimi et al.
(2014) discussed statistical inference procedures of the Pareto distribution using progres-
sive type-II censoring data with binomial removals.

In this paper, we consider progressive type-II censored sample taken from a Gom-
pertz distribution with probability density function (pdf) given by

f (x|α,β) = αβeβx e−α(e
βx−1), x > 0 (6)

and cumulative distribution function (cdf) given by

F (x|α,β) = 1− e−α(e
βx−1), x > 0. (7)
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The Gompertz model was formulated by Gompertz (1825) to fit mortality tables. It
has been used as a growth model, especially in epidemiological and biomedical studies,
and also can be used to fit tumor growth. Pollard and Valkovics (1992) studied the Gom-
pertz distribution and its applications. The parameters of the Gompertz distribution
have been estimated by Chen (1997). The pdf of the Gompertz distribution is unimodal.
It has positive skewness and an increasing hazard rate function. Through out the paper
we use the notation Gomp (α,β) to denote Gompertz distribution with pdf defined in
(6). Shanubhogue and Jain (2013) derived the minimum variance unbiased estimators
of the Gompertz distribution under progressive type-II censored data with binomial re-
movals. Mohan and Chacko (2016) discussed the Bayesian estimation of parameters of
Gompertz distribution under progressive type-II censoring.

Progressive type-II censored order statistics have found applications in many epi-
demiological studies and can be effectively used for estimating parameters of variable
of interest. For example, consider the study of survival times of breast cancer patients
undergo treatment for a particular group. Suppose n patients diagonalised breast can-
cer are considered initially for the study. After observing the survival time of the first
patient, R1 patients are randomly withdraw from the study due to any of the reasons
such as death due to cause other than cancer, patient lost to follow-up etc. At the time of
the second failure R2 of the remaining patients are randomly withdraw from the study
due any of the reasons mentioned above. Finally at the time of observing the survival
time of m t h patient all the remaining survival patients are censored or removed from
the study. Once the data on progressive type-II censoring is available under the assump-
tion that withdrawal after each failure follows a binomial distribution with probability
p then the procedure suggested in this paper can be used to estimate the parameters of
the variable X when X follows a Gompertz distribution. An advantage of the proposed
method is that we can also get an estimate for the removal probability p together with
the estimates for the variable of interest.

This paper is organised as follows. In Section 2, maximum likelihood estimates of
α, β and p are obtained. The asymptotic variance-covariance matrix of the estimates is
obtained in this section. In Section 3, Bayes estimates for α, β and p are obtained for
different loss functions such as squared error, LINEX and general entropy. In Section
4, a simulation study is performed for analysing the properties of different estimators
developed in this paper. In Section 5, we illustrate the estimation procedure using a real
data. Finally, in Section 6, we present some concluding remarks.

2. MAXIMUM LIKELIHOOD ESTIMATION

Let X1:m:n , X2:m:n , ..., Xm:m:n , 1 ≤ m ≤ n be a progressively type-II censored sample
observed from a life test involving n units taken from a Gomp(α, β) distribution and
(R1, R2, ..., Rm) being the censoring scheme with probability distribution defined in (5).
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Then the joint pdf of X1:m:n , X2:m:n , ..., Xm:m:n is given by

f(X1:m:n ,X2:m:n ,...,Xm:m:n )
(x1:m:n , x2:m:n , ..., xm:m:n) = Cαmβm

m
∏

i=1

eβxi :m:n

×
h

e−α(e
βxi :m:n−1)

iri+1
, (8)

where C is as given in (4).

Then from (3) the likelihood function of α, β and p is given by

L (α,β, p|x, r ) ∝ αmβm
m
∏

i=1

eβxi :m:n

h

e−α(e
βxi :m:n−1)

iri+1
p

m−1
∑

j=1
r j

× (1− p)
(m−1)(n−m)−

m−1
∑

j=1
(m− j )r j

, (9)

where x = (x1:m:n , x2:m:n , ..., xm:m:n) and r = (r1, r2, ..., rm).
Thus the log-likelihood function is given by

ln L (α,β, p|x, r ) = m logα+m logβ+β
m
∑

i=1

xi :m:n

− α
m
∑

i=1

(ri + 1)
�

eβxi :m:n − 1
�

+

 

m−1
∑

j=1

r j

!

ln p

+

 

(m− 1) (n−m)−
m−1
∑

j=1

(m− j ) r j

!

ln (1− p) . (10)

Thus we have

∂ ln L
∂ α

=
m
α
−

m
∑

i=1

(ri + 1)
�

eβxi :m:n − 1
�

, (11)

∂ ln L
∂ β

=
m
β
+

m
∑

i=1

xi :m:n −α
m
∑

i=1

(ri + 1) xi :m:n eβxi :m:n (12)

and

∂ ln L
∂ p

=

m−1
∑

j=1
r j

p
−
(m− 1) (n−m)−

m−1
∑

j=1
(m− j ) r j

1− p
. (13)

The maximum likelihood estimators of the parameters α, β and p respectively can
then be obtained as the solution of the following normal equations

∂ ln L
∂ α

= 0, (14)
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∂ ln L
∂ β

= 0 (15)

and
∂ ln L
∂ p

= 0. (16)

Thus from (11) and (14), we have

α̂=
m

m
∑

i=1
(ri + 1)

�

e β̂xi :m:n − 1
�

. (17)

On substituting (17) into (15), we get

m
β
+

m
∑

i=1

xi :m:n −









m
m
∑

i=1
(ri + 1)

�

eβxi :m:n − 1
�









m
∑

i=1

(ri + 1) xi :m:n eβxi :m:n = 0. (18)

The maximum likelihood estimator β̂ of β can be obtained as solution of the non-
linear equation of the form g (β) =β, where

g (β) = m

















m
m
∑

i=1
(ri + 1)

�

eβxi :m:n − 1
�









m
∑

i=1

(ri + 1) xi :m:n eβxi :m:n −
m
∑

i=1

xi :m:n









−1

. (19)

Let β̂ be the ML estimator of β by solving the non linear equation g (β) = β and
then by using equation (17), the ML estimator of α will be given by

α̂=
m

m
∑

i=1
(ri + 1)

�

e β̂xi :m:n − 1
�

. (20)

Also from (13) and (16), we have ML estimator of p is given by

p̂ =

m−1
∑

j=1
r j

(m− 1) (n−m)−
m−1
∑

j=1
(m− j ) r j +

m−1
∑

j=1
r j

. (21)
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2.1. Interval estimation

In this section, we obtain the appropriate confidence intervals of the parameters based
on asymptotic distributions of the MLE of the parameters α,β and p. The elements of
the Fisher information matrix for the parameters of the Gompertz distribution based
on progressive censored samples have been derived explicitly. The Fisher information
matrix can be defined as

I =−E









∂ 2 ln L
∂ α2

∂ 2 ln L
∂ α∂ β

∂ 2 ln L
∂ α∂ p

∂ 2 ln L
∂ β∂ α

∂ 2 ln L
∂ β2

∂ 2 ln L
∂ β∂ p

∂ 2 ln L
∂ p∂ α

∂ 2 ln L
∂ p∂ β

∂ 2 ln L
∂ p2









.

Unfortunately, the exact mathematical expressions for the above expectations are
difficult to obtain. Therefore, we give the approximate (observed) asymptotic distri-
butions of the MLE of the parameters α, β and p, which is obtained by dropping the
expectation operator E and it can be written as

I = −









∂ 2 ln L
∂ α2

∂ 2 ln L
∂ α∂ β

∂ 2 ln L
∂ α∂ p

∂ 2 ln L
∂ β∂ α

∂ 2 ln L
∂ β2

∂ 2 ln L
∂ β∂ p

∂ 2 ln L
∂ p∂ α

∂ 2 ln L
∂ p∂ β

∂ 2 ln L
∂ p2









=





Iαα Iαβ Iα p
Iβα Iββ Iβp
Ipα Ipβ Ip p



 ,

where

Iαα =
m
α2

, Iαβ = Iβα =
m
∑

i=1

(r i + 1)xi :m:n eβxi :m:n ,

Iββ =
m
β2
+α

m
∑

i=1

(ri + 1)x2
i :m:n eβxi :m:n ,

Ip p =
∑

_i = 1m−1 ri

p2
+
(m− 1)(n−m)−

∑

_i = 1m−1(m− i)ri

(1− p)2
,

and
Iα p = Ipα = Iβp = Ipβ = 0.

Using these results, we can obtain the Fisher information matrix, which can fur-
ther be used to derive the elements of the approximate variance-covariance matrix. The
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variance-covariance matrix may be approximated as

V =





Vαα Vαβ 0
Vβα Vββ 0

0 0 Vp p



=





Iαα Iαβ 0
Iβα Iββ 0
0 0 Ip p





−1

.

Thus the asymptotic distribution of the ML estimator (α̂, β̂, p̂) is given as





α̂

β̂
p̂



≈N









α
β
p



 ,





Vαα Vαβ 0
Vβα Vββ 0

0 0 Vp p







 . (22)

That is, the asymptotic distribution of the maximum likelihood can be written as
follows (Miller, 1981,see, ),

h

(α̂−α) ,
�

β̂−β
�

,
�

p̂ − p
�

i

∼N3 (0,V ) . (23)

Since V involves the parameters α,β and p, we replace the parameters by the corre-
sponding MLE’s in order to obtain an estimate of V , which is denoted by V̂ . By using
(23), approximate 100 (1−ϑ)% confidence intervals for α, β and p are determined, re-
spectively, as

α̂±Zϑ/2
q

V̂αα, β̂±Zϑ/2
Ç

V̂ββ and p̂ ±Zϑ/2
Ç

V̂p p , (24)

where Zϑ is the upper 100 ϑ t h percentile of the standard normal distribution.

3. BAYESIAN ESTIMATION

In this section, we consider the Bayes estimators of the parameters α and β of Gom-
pertz distribution and the binomial removal probability p using progressively type-II
censored data with binomial removals. The Bayes estimates are obtained using symmet-
ric as well as asymmetric loss functions. A symmetric loss function is the squared error
which is defined as

L1

�

d (µ) , d̂ (µ)
�

=
�

d̂ (µ)− d (µ)
�2

, (25)

where d̂ (µ) is an estimate of d (µ). An asymmetric loss function is the LINEX loss
function which is defined as

L2

�

d (µ) , d̂ (µ)
�

= e
h
�

d̂ (µ)−d (µ)
�

− h
�

d̂ (µ)− d (µ)
�

− 1, h 6= 0. (26)
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The Bayes estimate of d (µ) for the loss function L2 can be obtained as

d̂LB (µ) =−
1
h

log
¦

Eµ
�

e−hµ
�

�

�x
�©

, (27)

provided Eµ (·) exists. Another asymmetric loss function is the general entropy loss
function given by

L3

�

d (µ) , d̂ (µ)
�

=

 

d̂ (µ)
d (µ)

!q

− q log

 

d̂ (µ)
d (µ)

!

− 1, q 6= 0. (28)

In this case, Bayes estimate of d (µ) is obtained as

d̂EB (µ) =
�

Eµ
�

µ−q �
�x
�

�− 1
q . (29)

We assume that the prior distributions for α and β follow independent gamma dis-
tributions of the form

π1 (α)∝ αa1−1e−b1α,α > 0, a1 > 0, b1 > 0 (30)

and
π2 (β)∝βa2−1e−b2β,β> 0, a2 > 0, b2 > 0. (31)

Here a1, b1, a2 and b2 are chosen to reflect prior knowledge about α and β. Inde-
pendently from parameters α and β, p has a beta prior distribution with parameters a
and b of the form

π3 (p)∝ pa−1(1− p)b−1, 0< p < 1, a > 0, b > 0. (32)

Based on the priors π1 (α), π2 (β) and π3 (p), the joint prior pdf of (α,β, p) is

π (α,β, p) ∝ π1 (α)π2 (β)π3 (p)

∝ αa1−1e−b1αβa2−1e−b2β pa−1 (1− p)b−1 ; α,β> 0, 0< p < 1.
(33)

Thus the posterior density of (α,β, p) is given by

π∗ (α,β, p|x, r ) =
L (α,β, p|x, r )π (α,β, p)

∞
∫

0

∞
∫

0

1
∫

0
L (α,β, p|x, r )π (α,β, p)d p dβdα

. (34)

It is not possible to compute the integral in the denominator of (34) explicitly, there-
fore we cannot obtain the posterior density in a closed form. Thus it is not possible to
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obtain the Bayes estimates of α and β explicitly. Hence we propose the MCMC tech-
nique to generate sample from the posterior distribution and then compute the Bayes
estimates under different loss functions. We use Gibbs sampling procedure to generate
sample from the posterior density. The joint posterior density of α, β and p given in
(34) can be written as

π∗ (α,β, p|x1, x2, ..., xm)∝ αm+a1−1βm+a2−1 pa−1 (1− p)b−1

× e
−α

�

b1+
m
∑

i=1
(ri+1)(eβxi :m:n−1)

�

e
β
�

−b2+
m
∑

i=1
xi :m:n

�

× p
m−1
∑

j=1
r j
(1− p)

(m−1)(n−m)−
m−1
∑

j=1
(m− j )r j

. (35)

Then the conditional density of α, given β, p and the data is given by

π∗1 (α|β, p, x1, x2, ..., xm)∝ αm+a1−1 e
−α

�

b1+
m
∑

i=1
(ri+1)(eβxi :m:n−1)

�

. (36)

Again the conditional density of β, given α, p and the data is given by

π∗2 (β|α, p, x1, x2, ..., xm)∝ βm+a2−1e
β
�

−b2+
m
∑

i=1
xi :m:n

�

e
−α

� m
∑

i=1
(ri+1)(eβxi :m:n )

�

. (37)

Similarly, the conditional density of p, given α, β and the data is given by

π∗3 (p|α,β, x1, x2, ..., xm)∝ p
a+

m−1
∑

j=1
r j−1
(1− p)

b+(m−1)(n−m)−
m−1
∑

j=1
(m− j )r j−1

. (38)

From (36) we can see that the conditional distribution of α given β, p and data

follows Gamma
�

m+ a1, b1+
m
∑

i=1
(ri + 1)

�

eβxi :m:n − 1
�

�

. Similarly, from (38) we can see

that the conditional distribution of p given α, β and data follows

Beta

 

a+
m−1
∑

j=1

r j , b + (m− 1) (n−m)−
m−1
∑

j=1

(m− j ) r j

!

.

Therefore one can easily generate samples from the posterior distributions of α and
p. But it is not possible to generate random variables from the posterior distribution
of β given in (37) using standard random number generation methods. Hence we use
Metropolis-Hastings (M-H) algorithm to generate sample from (37). Since plot of (37) is
similar to a normal plot we take normal proposal density forβ for the M-H algorithm.
For updating β we have used MCMC method.

By setting initial values α(0), β(0) and p (0), let α( j ), β( j ) and p ( j ), j = 1, ...,N be the
observations generated from (36), (37) and (38) respectively. Then, by taking the first
M iterations as burn-in period, the Bayes estimates of α, β and p against different loss
functions are as given below.



Statistical Inference for the Gompertz Distribution 261

The Bayes estimates ψ̂SB , ψ̂LB and ψ̂EB of ψ under SB, LB and EB functions, respec-
tively, are obtained as follows

ψ̂SB =
1

N −M

N
∑

j=M+1

ψ( j ), (39)

ψ̂LB =−
1
h

log

 

1
N −M

N
∑

j=M+1

e−hψ( j )
!

, (40)

and

ψ̂EB =

(

1
N −M

N
∑

j=M+1

�

ψ( j )
�−q

)− 1
q

, (41)

where ψ stands for α, β or p.

4. SIMULATION STUDY

In this section, a simulation is performed to study the behaviour of different estimators
for the parameters α,β and p. The performance of all estimators are compared numer-
ically in terms of their bias and MSE values for different combinations of n, m, α, β
and p. First we obtain the MLE’s of α,β and p using 1000 generated samples. The bias
and MSE for the MLE’s of α, β and p for p = 0.25,0.5 and 0.75 are given in Table 1.
For the simulation studies for Bayes estimators we took hyperparameters for the prior
distributions of α, β and p in such a way that mean of the prior distribution is 1. That
is a1 = 3, a2 = 3, b1 = 3, b2 = 3, a = 3 and b = 3. We have obtained the Bayes estimates
for α, β and p using MCMC method. For the MCMC method we do the following.

1. For a given n generate m progressive type-II censored sample from Gomp(α,β).

2. Calculate estimators of the parameters α, β and p using MCMC method as de-
scribe below.

(a) Start with initial guess
�

α(0),β(0), p (0)
�

.

(b) Set j = 1.

(c) Generate α( j ) from Gamma
�

m+ a1, b1+
m
∑

i=1
(ri + 1)

�

eβ
( j−1)xi :m:n − 1

�

�

.

(d) Generate p ( j ) from Beta
�

a+
m−1
∑

j=1
r j , b + (m− 1) (n−m)−

m−1
∑

j=1
(m− j ) r j

�

.

(e) Using Metropolis-Hastings algorithm, generateβ( j ) from (38) with the nor-
mal proposal distribution.

(f) Set j = j + 1.
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(g) Repeat the steps from (c) to (f) for N=50,000 times.
(h) Calculate the Bayes estimators of the parameters α,β and p under different

functions by taking M = 5000.

3. Repeat the steps 1 and 2 for 1000 times.

4. Calculate the bias and MSE of all estimators.

The bias and MSE for the Bayes estimates under different loss functions of α for
p = 0.25,0.5 and 0.75 are given in Table 2. The bias and MSE for the estimates under
different loss functions ofβ for p = 0.25,0.5 and 0.75 are given in Table 3. The bias and
MSE for the estimates under different loss functions of p for different choices of p =
0.25,0.5 and 0.75 are given in Table 4. For evaluating Bayes estimators under LINEX
loss function L2 we take h=1 and entropy loss function L3 we take q =1.

From the tables, it is observed that MSE’s of Bayes estimators and MLE’s decrease
as n increases. We can also see that the Bayes estimators have smaller MSE than MLE’s.
From Table 2, one can see that the bias and MSE of Bayes estimators of α under entropy
loss functions(α̂EB ) for different choices of p = 0.25,0.5 and 0.75 are smaller than bias
and MSE of other estimators of α. From Table 3, one can see that the bias and MSE of
Bayes estimators of β under squared error loss functions(β̂SB ) for different choices of
p = 0.25,0.5 and 0.75 are smaller than bias and MSE of other estimators of β. From
Table 4, one can see that the bias and MSE of Bayes estimators of p under entropy loss
functions(α̂EB ) for different choices of p = 0.25 and 0.5 are smaller than bias and MSE of
other estimators of p and under squared error loss function( p̂SB ) for p = 0.75 is smaller
than bias and MSE of other estimators of p.

5. ILLUSTRATION USING REAL-LIFE DATA

In this section, we consider a real data obtained from the public use files of the Na-
tional Cancer Institute’s Surveillance Epidemiology and End Results (SEER) Program
Research Data (1973-2014). The data consists of survival times in years a group of breast
cancer patients who were diagonised the disease at the age of 40 and received 10 years of
follow-up. Follow-up of these patients continue through the end of 2014. The data set
consisting of survival times (in years) for 59 patients are given below:

0.417, 0.583, 0.667, 0.667, 0.667, 0.833, 0.917, 0.917, 0.917, 0.917, 1.167, 1.167, 1.167,
1.250, 1.417, 1.417, 1.500, 1.583, 1.917, 2.000, 2.250, 2.250, 2.333, 2.583, 2.667, 2.667,
3.083, 3.167, 3.250, 3.333, 3.417, 3.500, 4.083, 4.083, 4.167, 4.250, 4.250, 4.250, 4.500,
4.667, 4.667, 4.667, 4.750, 4.917, 5.000, 5.167, 5.167, 5.250, 5.333, 5.583, 5.917, 6.000,
6.000, 6.083, 6.083, 6.417, 6.417, 6.500, 6.750.

To check for the goodness of fit we use the Anderson-Darling test (see, Stephens,
1974). It is a modification of the Kolmogorov-Smirnov (K-S) test and gives more weight
to the tails than does the K-S test. The K-S test is distribution free in the sense that the
critical values do not depend on the specific distribution being tested. The Anderson-
Darling test makes use of the specific distribution in calculating critical values. We have
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computed the Anderson-Darling statistic for the data using “DistributionFitTest” func-
tion in Mathematica and is obtained as 0.897136. The corresponding p-value is 0.415185.
Since the p-value is quite high, we cannot reject the null hypothesis that the data are
coming from the Gompertz distribution.

From the data set we generated progressive type-II censored observation with bino-
mial removals for different values of p ( p=0.25, 0.5, 0.75) and m (m=25, 30, 35) and are
given in Table 5. We have obtained the MLE’s of α, β and p and are given in Table 6
and the Bayes estimates of α,β and p under squared error, LINEX and general entropy
loss functions are given in Table 7.

6. CONCLUSION

In this paper, we have considered progressive type-II censored sample taken from
Gomp(α,β) with binomial removals. The maximum likelihood estimators of the pa-
rameters α, β and p have been obtained. The Bayes estimates have also been obtained
using different loss functions such as squared error, LINEX and general entropy. To
evaluate the Bayes estimates MCMC method has been applied. Based on the simulation
study it is observed that, the Bayes estimators perform much better than the MLE’s.
Among the Bayes estimates of α, estimator under entropy loss function possess mini-
mum bias and MSE. Among the Bayes estimates of β, estimator under squared error
loss function possess minimum bias and MSE. Also among the Bayes estimates of p,
estimator under entropy loss functions possess minimum bias and MSE for small values
of p and squared error loss function possess minimum bias and MSE for large value of
p. A real data on survival times of breast cancer patients has been used to illustrate the
estimation procedures developed in this paper.
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APPENDIX

A. TABLES

TABLE 1
Bias and MSE of the MLE’s α̂, β̂ and p̂ for different choices n, m, α, β and p=0.25, 0.5 and 0.75.

p n m α β α̂ β̂ p̂
Bias MSE Bias MSE Bias MSE

0.25 25 15 0.5 1 -0.354 0.167 0.688 0.704 0.015 0.007
1 1.5 -0.231 0.212 0.403 0.492 0.016 0.007
1 2 0.146 0.347 0.070 0.294 0.019 0.007

20 0.5 1 -0.325 0.141 0.503 0.426 0.010 0.004
1 1.5 -0.140 0.210 0.427 0.491 0.018 0.005
1 2 0.115 0.230 0.031 0.264 0.006 0.003

30 20 0.5 1 -0.327 0.137 0.482 0.375 0.022 0.006
1 1.5 -0.093 0.204 0.468 0.543 0.025 0.007
1 2 0.149 0.518 0.088 0.311 0.015 0.005

25 0.5 1 -0.258 0.121 0.447 0.342 0.011 0.005
1 1.5 -0.256 0.197 0.282 0.307 0.020 0.005
1 2 0.118 0.292 0.025 0.245 0.023 0.004

0.5 25 15 0.5 1 -0.331 0.159 0.607 0.534 0.001 0.013
1 1.5 -0.147 0.261 0.301 0.427 0.037 0.015
1 2 0.221 0.525 0.063 0.299 0.043 0.017

20 0.5 1 -0.330 0.158 0.557 0.499 0.036 0.010
1 1.5 -0.176 0.208 0.387 0.406 -0.006 0.008
1 2 0.117 0.412 0.059 0.298 0.013 0.009

30 20 0.5 1 -0.312 0.154 0.497 0.433 0.018 0.013
1 1.5 -0.155 0.166 0.344 0.394 0.050 0.022
1 2 0.318 0.648 -0.074 0.295 0.037 0.012

25 0.5 1 -0.339 0.153 0.517 0.372 0.006 0.028
1 1.5 -0.167 0.165 0.321 0.359 0.009 0.007
1 2 0.209 0.477 -0.088 0.260 0.024 0.010

0.75 25 15 0.5 1 -0.327 0.163 0.553 0.511 -0.001 0.012
1 1.5 -0.204 0.267 0.516 0.607 0.017 0.014
1 2 0.124 0.322 0.029 0.296 0.004 0.012

20 0.5 1 -0.351 0.157 0.579 0.497 0.010 0.008
1 1.5 -0.186 0.253 0.405 0.453 -0.008 0.008
1 2 0.024 0.244 0.101 0.274 0.008 0.007

30 20 0.5 1 -0.352 0.170 0.567 0.555 0.029 0.023
1 1.5 -0.125 0.213 0.272 0.276 0.015 0.016
1 2 0.138 0.357 0.018 0.249 0.023 0.014

25 0.5 1 -0.261 0.118 0.397 0.276 0.027 0.012
1 1.5 -0.229 0.172 0.315 0.358 0.031 0.008
1 2 0.105 0.263 0.062 0.329 0.011 0.010
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TABLE 2
Bias and MSE of the Bayes estimates under squared error loss function α̂SB , LINEX loss function α̂LB

and entropy loss function α̂EB for different choices n, m, α, β and p=0.25, 0.5 and 0.75.

p n m α β α̂SB α̂LB α̂EB
Bias MSE Bias MSE Bias MSE

0.25 25 15 0.5 1 0.298 0.118 0.197 0.065 0.098 0.036
1 1.5 0.250 0.096 0.114 0.040 0.006 0.025
1 2 0.384 0.178 0.225 0.081 0.154 0.054

20 0.5 1 0.314 0.117 0.122 0.046 0.125 0.033
1 1.5 0.201 0.086 0.096 0.034 0.030 0.028
1 2 0.350 0.158 0.222 0.075 0.142 0.045

30 20 0.5 1 0.319 0.131 0.225 0.074 0.127 0.038
1 1.5 0.212 0.096 0.133 0.052 0.056 0.038
1 2 0.357 0.172 0.228 0.082 0.153 0.053

25 0.5 1 0.264 0.101 0.225 0.072 0.118 0.037
1 1.5 0.201 0.085 0.117 0.039 0.033 0.027
1 2 0.350 0.151 0.218 0.075 0.148 0.050

0.5 25 15 0.5 1 0.315 0.129 0.247 0.081 0.121 0.040
1 1.5 0.197 0.083 0.091 0.044 0.025 0.033
1 2 0.385 0.181 0.259 0.094 0.193 0.059

20 0.5 1 0.297 0.120 0.227 0.077 0.132 0.038
1 1.5 0.223 0.079 0.106 0.035 0.015 0.024
1 2 0.369 0.164 0.242 0.081 0.167 0.051

30 20 0.5 1 0.285 0.117 0.216 0.076 0.111 0.041
1 1.5 0.206 0.084 0.098 0.043 0.017 0.034
1 2 0.397 0.189 0.266 0.097 0.162 0.067

25 0.5 1 0.291 0.112 0.225 0.073 0.127 0.039
1 1.5 0.205 0.084 0.095 0.042 0.010 0.034
1 2 0.348 0.171 0.231 0.094 0.194 0.063

0.75 25 15 0.5 1 0.298 0.118 0.228 0.075 0.121 0.038
1 1.5 0.250 0.096 0.093 0.046 0.046 0.034
1 2 0.384 0.178 0.253 0.089 0.179 0.057

20 0.5 1 0.314 0.117 0.237 0.071 0.121 0.029
1 1.5 0.201 0.086 0.129 0.043 0.039 0.028
1 2 0.350 0.158 0.219 0.077 0.136 0.047

30 20 0.5 1 0.319 0.131 0.247 0.085 0.140 0.043
1 1.5 0.212 0.096 0.104 0.052 0.023 0.042
1 2 0.357 0.172 0.238 0.093 0.169 0.065

25 0.5 1 0.264 0.101 0.201 0.065 0.102 0.036
1 1.5 0.201 0.085 0.090 0.044 0.003 0.036
1 2 0.350 0.151 0.224 0.073 0.148 0.044
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TABLE 3
Bias and MSE of the Bayes estimates under squared error loss function β̂SB , LINEX loss function β̂LB

and entropy loss function β̂EB for different choices of n, m, α, β and p=0.25, 0.5 and 0.75.

p n m α β β̂SB β̂LB β̂EB
Bias MSE Bias MSE Bias MSE

0.25 25 15 0.5 1 -0.117 0.037 -0.140 0.042 -0.183 0.056
1 1.5 -0.084 0.042 -0.167 0.055 -0.208 0.070
1 2 -0.309 0.130 -0.422 0.203 -0.454 0.231

20 0.5 1 -0.116 0.030 -0.151 0.036 -0.200 0.054
1 1.5 -0.060 0.039 -0.136 0.046 -0.172 0.057
1 2 -0.262 0.107 -0.370 0.165 -0.396 0.184

30 20 0.5 1 -0.107 0.036 -0.136 0.040 -0.174 0.051
1 1.5 -0.094 0.045 -0.153 0.057 -0.186 0.068
1 2 -0.281 0.115 -0.386 0.176 -0.413 0.197

25 0.5 1 -0.118 0.030 -0.150 0.036 -0.194 0.051
1 1.5 -0.074 0.040 -0.148 0.049 -0.184 0.061
1 2 -0.264 0.113 -0.365 0.165 -0.388 0.182

0.5 25 15 0.5 1 -0.135 0.038 -0.167 0.045 -0.213 0.062
1 1.5 -0.095 0.047 -0.168 0.058 -0.204 0.071
1 2 -0.337 0.140 -0.444 0.217 -0.477 0.247

20 0.5 1 -0.127 0.035 -0.166 0.043 -0.213 0.062
1 1.5 -0.083 0.047 -0.141 0.055 -0.180 0.068
1 2 -0.293 0.125 -0.396 0.186 -0.423 0.207

30 20 0.5 1 -0.115 0.038 -0.142 0.042 -0.179 0.053
1 1.5 -0.055 0.040 -0.141 0.047 -0.182 0.061
1 2 -0.314 0.127 -0.414 0.192 -0.441 0.215

25 0.5 1 -0.117 0.030 -0.147 0.035 -0.188 0.049
1 1.5 -0.072 0.034 -0.141 0.042 -0.173 0.053
1 2 -0.259 0.120 -0.361 0.169 -0.383 0.185

0.75 25 15 0.5 1 -0.124 0.034 -0.158 0.041 -0.205 0.058
1 1.5 -0.073 0.038 -0.148 0.047 -0.186 0.059
1 2 -0.296 0.127 -0.410 0.194 -0.441 0.220

20 0.5 1 -0.116 0.031 -0.146 0.036 -0.187 0.050
1 1.5 -0.063 0.037 -0.146 0.046 -0.184 0.059
1 2 -0.298 0.123 -0.399 0.188 -0.425 0.210

30 20 0.5 1 -0.117 0.031 -0.151 0.037 -0.197 0.053
1 1.5 -0.092 0.046 -0.160 0.055 -0.199 0.067
1 2 -0.300 0.131 -0.402 0.192 -0.428 0.214

25 0.5 1 -0.097 0.026 -0.129 0.030 -0.171 0.043
1 1.5 -0.074 0.042 -0.157 0.053 -0.193 0.066
1 2 -0.256 0.095 -0.357 0.150 -0.381 0.167



Statistical Inference for the Gompertz Distribution 267

TABLE 4
Bias and MSE of the Bayes estimates under squared error loss function p̂SB , LINEX loss function p̂LB

and entropy loss function p̂EB for different choices n, m, α, β and p=0.25, 0.5 and 0.75.

p n m α β p̂SB p̂LB p̂EB
Bias MSE Bias MSE Bias MSE

0.25 25 15 0.5 1 0.038 0.001 0.036 0.001 0.026 0.001
1 1.5 0.101 0.010 0.098 0.010 0.017 0.000
1 2 0.101 0.010 0.098 0.010 0.083 0.007

20 0.5 1 0.008 0.000 0.005 0.000 -0.007 0.000
1 1.5 0.029 0.001 0.027 0.001 0.023 0.001
1 2 0.083 0.007 0.079 0.006 0.055 0.003

30 20 0.5 1 0.090 0.008 0.088 0.008 0.076 0.006
1 1.5 0.083 0.007 0.081 0.006 0.066 0.004
1 2 0.083 0.007 0.081 0.007 0.071 0.005

25 0.5 1 0.015 0.000 0.013 0.000 0.000 0.000
1 1.5 -0.034 0.001 -0.036 0.001 -0.035 0.001
1 2 0.083 0.007 0.188 0.035 0.066 0.004

0.5 25 15 0.5 1 0.167 0.028 0.163 0.026 0.154 0.024
1 1.5 -0.061 0.004 0.037 0.001 -0.033 0.001
1 2 0.081 0.006 0.077 0.006 0.067 0.004

20 0.5 1 0.000 0.000 -0.005 0.000 -0.020 0.000
1 1.5 0.042 0.002 -0.036 0.001 0.022 0.000
1 2 -0.036 0.001 -0.040 0.002 -0.036 0.001

30 20 0.5 1 0.063 0.004 0.063 0.004 0.049 0.002
1 1.5 -0.050 0.002 -0.053 0.003 -0.044 0.002
1 2 0.042 0.002 -0.085 0.007 -0.041 0.002

25 0.5 1 0.071 0.003 0.059 0.003 0.039 0.001
1 1.5 0.020 0.000 0.015 0.000 0.000 0.000
1 2 -0.026 0.001 0.037 0.001 0.022 0.000

0.75 25 15 0.5 1 -0.179 0.011 -0.187 0.011 -0.211 0.011
1 1.5 -0.083 0.007 -0.092 0.008 -0.113 0.013
1 2 -0.100 0.010 -0.105 0.011 -0.118 0.011

20 0.5 1 0.000 0.000 -0.004 0.000 -0.011 0.000
1 1.5 -0.083 0.007 -0.087 0.008 -0.096 0.009
1 2 -0.083 0.007 -0.092 0.008 -0.113 0.010

30 20 0.5 1 -0.131 0.017 -0.136 0.019 -0.150 0.023
1 1.5 -0.179 0.012 -0.187 0.015 -0.202 0.011
1 2 -0.131 0.011 -0.136 0.019 -0.150 0.013

25 0.5 1 -0.058 0.003 -0.062 0.004 -0.070 0.005
1 1.5 -0.066 0.004 -0.071 0.005 -0.083 0.007
1 2 -0.179 0.010 -0.111 0.010 -0.211 0.011
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TABLE 5
Progressive type-II censoring samples with binomial removals

(p=0.25, m=30)
0.417 0.667 0.917 1.417 2.250 3.167 3.250 3.500 4.083 4.167
4.250 4.250 4.500 4.667 4.667 4.667 4.750 4.917 5.167 5.250
5.333 5.583 5.917 6.000 6.000 6.083 6.083 6.417 6.417 6.500

(p=0.25, m=35)
0.417 1.167 1.417 1.583 2.250 2.333 2.667 2.667 3.333 3.417
3.500 4.083 4.167 4.250 4.250 4.500 4.667 4.667 4.667 4.750
4.917 5.000 5.167 5.167 5.250 5.333 5.583 5.917 6.000 6.000
6.083 6.083 6.417 6.417 6.500

(p=0.25, m=40)
0.417 0.917 0.917 1.167 1.583 2.250 2.250 2.333 2.583 2.667
3.083 3.167 3.333 3.417 3.500 4.083 4.083 4.167 4.250 4.250
4.250 4.667 4.667 4.667 4.750 4.917 5.000 5.167 5.167 5.250
5.333 5.583 5.917 6.000 6.000 6.083 6.083 6.417 6.417 6.500

(p=0.5, m=30)
0.417 2.250 3.167 3.417 4.083 4.083 4.167 4.250 4.250 4.250
4.500 4.667 4.667 4.667 4.750 4.917 5.000 5.167 5.167 5.250
5.333 5.583 5.917 6.000 6.000 6.083 6.083 6.417 6.417 6.500

(p=0.5, m=35)
0.417 1.500 2.333 2.667 2.667 3.250 3.333 3.417 3.500 4.083
4.083 4.167 4.250 4.250 4.250 4.500 4.667 4.667 4.667 4.750
4.917 5.000 5.167 5.167 5.250 5.333 5.583 5.917 6.000 6.000
6.083 6.083 6.417 6.417 6.500

(p=0.5, m=40)
0.417 1.167 1.417 1.917 2.250 2.333 2.583 2.667 3.083 3.167
3.250 3.333 3.417 3.500 4.083 4.083 4.167 4.250 4.250 4.250
4.500 4.667 4.667 4.667 4.750 4.917 5.000 5.167 5.167 5.250
5.333 5.583 5.917 6.000 6.000 6.083 6.083 6.417 6.417 6.500

(p=0.75, m=30)
0.417 2.000 2.667 3.417 4.083 4.083 4.167 4.250 4.250 4.250
4.500 4.667 4.667 4.667 4.750 4.917 5.000 5.167 5.167 5.250
5.333 5.583 5.917 6.000 6.000 6.083 6.083 6.417 6.417 6.500

(p=0.75, m=35)
0.417 1.250 2.583 2.667 3.167 3.250 3.333 3.417 3.500 4.083
4.083 4.167 4.250 4.250 4.250 4.500 4.667 4.667 4.667 4.750
4.917 5.000 5.167 5.167 5.250 5.333 5.583 5.917 6.000 6.000
6.083 6.083 6.417 6.417 6.500

(p=0.75, m=40)
0.417 1.417 2.250 2.250 2.333 2.583 2.667 2.667 3.083 3.167
3.250 3.333 3.417 3.500 4.083 4.083 4.167 4.250 4.250 4.250
4.500 4.667 4.667 4.667 4.750 4.917 5.000 5.167 5.167 5.250
5.333 5.583 5.917 6.000 6.000 6.083 6.083 6.417 6.417 6.500
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TABLE 6
Maximum likelihood estimates of α, β and p based on cancer patient data for different choices of

p = 0.25,0.5 and 0.75.

p m α̂ β̂ p̂
0.25 30 0.012 0.829 0.201

35 0.018 0.794 0.270
40 0.033 0.701 0.216

0.5 30 0.003 1.058 0.690
35 0.010 0.887 0.615
40 0.024 0.761 0.487

0.75 30 0.004 1.037 0.644
35 0.010 0.896 0.632
40 0.022 0.776 0.826

TABLE 7
Bayes estimates of α, β and p based on cancer patient data under squared error, LINEX and entropy

loss functions for different choices of p = 0.25,0.5 and 0.75.

p m α̂SB α̂LB α̂EB β̂SB β̂LB β̂EB p̂SB p̂LB p̂EB
0.25 30 0.054 0.046 0.026 0.662 0.653 0.607 0.208 0.207 0.202

35 0.050 0.048 0.032 0.657 0.651 0.631 0.276 0.275 0.269
40 0.105 0.081 0.054 0.588 0.581 0.523 0.226 0.225 0.217

0.5 30 0.021 0.019 0.009 0.837 0.826 0.796 0.659 0.657 0.652
35 0.051 0.039 0.021 0.723 0.714 0.656 0.591 0.589 0.582
40 0.069 0.062 0.040 0.639 0.633 0.600 0.477 0.475 0.465

0.75 30 0.027 0.022 0.011 0.812 0.802 0.758 0.620 0.617 0.612
35 0.043 0.036 0.021 0.729 0.721 0.682 0.605 0.602 0.595
40 0.061 0.055 0.037 0.656 0.650 0.623 0.750 0.747 0.741
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SUMMARY

In this paper, the problem of estimation of parameters for a two-parameter Gompertz distribution
is considered based on a progressively type-II censored sample with binomial removals. Together
with the unknown parameters, the removal probability is also estimated. The maximum likeli-
hood estimators of the parameters and the asymptotic variance-covariance matrix of the estimates
are obtained. Bayes estimators are also obtained using different loss functions such as squared
error, LINEX and general entropy. A simulation study is performed for comparison between
various estimators developed in this paper. A real data set is also used for illustration.

Keywords: Gompertz distribution; Progressive type-II censoring; Binomial removals; Bayes esti-
mates; MCMC method.


