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1. INTRODUCTION

The power function distribution (PFD) is a flexible model, which is used for analysing
different types of data in the area of lifetime, reliability and income distributions etc.
The probability density function of PFD is given by

f (x,β,α) =
α

β

�

β

x

�−(α−1)

; 0< x <β, α,β> 0, (1)

and cumulative distribution function is given by

F (x) =
�

x
β

�α

; 0< x <β, α, β> 0, (2)

where α is the scale parameter and β is the shape parameter. Many authors have dis-
cussed the problem of estimation of parameters of PFD distribution using Bayesian
techniques. Bagchi and Sarkar (1986) discussed Bayes interval estimation for the shape
parameter and the reliability function of the PFD, Meniconi and Barry (1996) discussed
the electrical component reliability using the PFD, Omar and Low (2012) have discussed
Bayesian estimation of generalized PFD under non-informative and informative priors,
Rahman et al. (2012) discussed the Bayesian method to estimate the parameters of PFD,
Zaka and Akhter (2014) discussed Bayesian analysis of PFD using different loss func-
tions. Abdul-Sathar et al. (2015a) have discussed Bayes estimation of Lorenz curve and
Gini-index for PFD and Abdul-Sathar et al. (2015b) have discussed quasi-Bayesian esti-
mation of Lorenz curve and Gini-index in the Power model. However not much work
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is carried out on estimation of entropy functions of PFD using different loss functions.
Hence in this paper we proposed the estimation of parameters and dynamic cumulative
past entropy of two parameter PFD.

A fundamental uncertainty measure of a random variable is known as entropy and
was introduced by Shannon (1948). Let X be a non-negative absolutely continuous ran-
dom variable with probability density function f (x), then the Shannon entropy is de-
fined as

H ( f ) =−
∞
∫

0

f (x) ln [ f (x)]d x. (3)

Frequently, in survival analysis and in life testing one has information about the
current age of the component under consideration. In such cases, the age must be taken
into account when measuring uncertainty. Obviously, the measure H ( f ) defined in (3)
is unsuitable in such situations and must be modified to take the age into account. Given
that a component has survived up to time t , then residual entropy is defined as

H ( f , t ) =−
∞
∫

t

f (x)

F (t )
ln

�

f (x)

F (t )

�

d x. (4)

It is reasonable to presume that in many realistic situations uncertainty is not nec-
essarily related to the future but can also refer to the past. For instance, if at time t, a
system which is observed only at certain preassigned inspection times, is found to be
down; then the uncertainty of the system life relies on the past, that is, on which instant
in (0, t) it has failed. Based on this idea Di Crescenzo and Longobardi (2002) have stud-
ied the past entropy over (0, t). They have discussed the necessity of the past entropy,
its relation with residual entropy and many interesting results. Di Crescenzo and Lon-
gobardi (2004) proposed a measure of discrimination based on past entropy. If X is a
random variable having an absolutely continuous distribution function F with proba-
bility density function f, then dynamic past entropy of the random variable X is defined
as

H (t ) =

t
∫

0

f (x)
F (t )

ln
�

f (x)
F (t )

�

d x. (5)

However, some inefficiencies inherited by (3) motivated various authors to intro-
duce other suitable measures of information. Di Crescenzo and Longobardi (2009) in-
troduced cumulative past entropy (CPE), which is given by

E (t ) =−
∞
∫

0

F (x) ln [F (x)]d x. (6)

Although CPE defined above have wide range of applications, this measure is not appli-
cable for a system which have survived up to some unit of time or failed before some
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specified time instant. When the duration of phenomenon is considered, dynamic cu-
mulative past entropy (DCPE) measure, which is useful to measure information on the
inactivity time [t −X |X ≤ t ], is defined by Di Crescenzo and Longobardi (2009) and is
given by

E (t ) =−
t
∫

0

F (x)
F (t )

ln
�

F (x)
F (t )

�

d x. (7)

For practical purpose we need to develop some inference techniques using (7). Hence in
this paper proposed estimators of DCPE of PFD using MLE and Bayesian methods.

The rest of the article is organized as follows. MLE, asymptotic and bootstrap con-
fidence intervals for DCPE of the PFD are discussed in Section 2. In Section 3, we
discussed the Bayes estimators of the DCPE using the loss functions SELF, ELF and
LLF. We used important sampling procedure and Lindley approximation methods to
simplify the ratio of integrals involved in the proposed Bayes estimators of E (t ). We
also proposed HPD credible intervals of E (t ) in the same section. In Section 4, Monte
Carlo simulation study is discussed for studying the performance of the estimators. In
Section 5, a real life data set is used to illustrate the estimation procedure and a conclu-
sion is given in Section 6.

2. MLE, ASYMPTOTIC AND BOOTSTRAP CONFIDENCE INTERVALS

In this section, we discuss the MLE, asymptotic and bootstrap confidence intervals of
the parameters and DCPE for the PFD. Belzunce et al. (1998) obtained the ML estimates
of the parameters of PFD and is given respectively by

α̂=
n

n
∑

j=1
(X j −X(1))

and β̂=X(n), (8)

where X(n) =Max (X1,X2, ....,Xn) and X(1) =Min (X1,X2, ....,Xn) .
The DCPE for (1) is simplified as

E (t ) = αt

(α+ 1)2
. (9)

Using the invariance property of MLE, the MLE of the DCPE is given by

Ê (t ) = α̂t

(α̂+ 1)2
,

where α̂ is given by (8).



322 E. I. Abdul-Sathar and G. S. Sathyareji

2.1. Asymptotic confidence interval

In this section, we derived the asymptotic confidence interval and coverage probability
of E (t ). In practice, the observed information matrix is used as a consistent estimator
of the Fisher information matrix. The Fisher information matrix of φ= (α,β) is given
by

I (φ) = E





− ∂ 2 ln[L(α,β)]
∂ α2 − ∂ 2 ln[L(α,β)]

∂ α∂ β

− ∂ 2 ln[L(α,β)]
∂ β∂ α − ∂ 2 ln[L(α,β)]

∂ β2



 .

The likelihood function using (1) can be derived as

L(α,β) =
αn

βnα

n
∏

i=1

x (α−1)
i . (10)

Differentiating twice the logarithm of (10) with respect to α and β respectively, we get

∂ 2 ln[L(α,β)]
∂ α2

=−n/α2,

∂ 2 ln[L(α,β)]
∂ β2

=−nα/β2

and
∂ 2 ln[L(α,β)]

∂ α∂ β
=
∂ 2 ln[L(α,β)]

∂ β∂ α
=−n/β.

Using the delta method, we derive the asymptotic distribution of Ê (t )ml e . For that, we
have

ˆva r (Ê (t )ml e ) = ˆva r (E (α̂))≈ω′
( ˆ(α)[I ˆ(α)]−1ω( ˆ(α)),

where

ω(α̂) =
�

∂ (E (α̂))
∂ (α)

�

(α)=(α̂)

= [ωα],

with

ωα =
t (1− α̂)
(α̂+ 1)3

.

Thus Ê (t )ml e−E (t )
Ç

ˆva r (Ê (t ))
is asymptotically distributed as N (0,1). Hence 100(1−ξ )0/0 confidence

interval for Ê (t ) is given as Ê (t )ml e ± zξ /2

È

V̂ a r
�

Ê (t )ml e

�

. Also, the coverage proba-
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bility for E (t )ml e is defined as

C PE (t )ml e
= P









�

�

�

�

�

�

�

�

�

Ê (t )ml e −E (t )ml e

�

È

V̂ a r
�

Ê (t )ml e

�

�

�

�

�

�

�

�

�

≤ zξ /2









,

where zξ /2 is the sample (ξ /2)t h percentile of standard normal distribution.

2.2. Bootstrap confidence interval

In this section, we derive the confidence intervals for E (t )ml e based on the percentile
bootstrap method discussed by Davison and Hinkley (1997). The percentile bootstrap
confidence interval can be derived using the follows steps.

1. Compute the MLE α̂(0) of α using the sample.

2. Generate a bootstrap sample using α̂(ω−1) and obtain the MLE α̂(ω) using the boot-
strap sample.

3. Obtain the MLE of DCPE Ê (t )ω = E (α̂ω)

4. Putω =ω+ 1.

5. Repeat 2-4, N times to have Ê (t )w for w = 1,2, ....,N .

6. Arrange Ê (t )ω for ω = 1,2, ....,N in ascending order as Ê (t )(1) ≤ Ê (t )(2).... ≤

Ê (t )(N ) respectively.

Then the 100(1− ξ ) percentile bootstrap CI for DCPE is given by

(Ê (t )(N (ξ /2), Ê (t )(N (1−ξ /2)).

3. BAYES ESTIMATION

In this section, we discuss the Bayesian estimation of E (t ) for PFD using different loss
functions. In Bayes estimation, the unknown parameter is treated as a random variable
and assumes a prior distribution. Here we use the independent gamma priors for the
parameters α and β of PFD and is given respectively as

g1(α) =
b a1

1

Γ (a1)
αa1−1e−b1α,α > 0,a1, b1 > 0 (11)
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and

g2(β) =
b2

a2

Γ (a2)
βa2−1e−b2β,β> 0,a2, b2 > 0. (12)

It is noted that the non-informative priors on the shape and scale parameters are the
special cases of independent gamma priors. Then the joint prior of α and β is obtained
as

g (α,β)∝ αa1−1βa2−1e−(b1α+b2β). (13)

Using (10) and (13), the joint posterior distribution can be written as

Π(α,β) = Kαλ1−1e−γ1αβλ2−1e−γ2βe
−

n
∑

i=1
ln(xi ), (14)

where λ1 = n+ a1, γ1 = b1−
n
∑

i=1
ln(xi ), λ2 = a2− nα, γ2 = b2 and K is the normalizing

constant and is given by

K−1 =

∞
∫

0

∞
∫

0

αλ1−1e−γ1αβλ2−1e−γ2βe
−

n
∑

i=1
ln(xi )dαdβ.

In Bayesian approach, to arrive at the best estimator, one has to choose a loss func-
tion corresponding to each of the possible estimates. We consider symmetric as well
as asymmetric loss functions. Here we use the squared error loss function (SELF), en-
tropy loss function (ELF) and Linex loss function (LLF) for estimating the parameters.
Symmetric loss function is the squared error loss (SEL) function which is defined as

L1[d (φ), ˆd (φ)] = [d (φ)− ˆd (φ)]2

with ˆd (φ) being an estimate of d (φ). Here d (φ) denotes some parametric function of
φ. For this situation, the Bayesian estimate, say ˆd (φ), is given by the posterior mean of
d (φ).

One of the most commonly used asymmetric loss function is the Linex loss (LL)
function which is defined by

L2[d (φ), ˆd (φ)] = exp[h(d (φ)− ˆd (φ))]− h(d (φ)− ˆd (φ))− 1, h 6= 0.

Bayes estimate of d (φ) for LL function is obtained as

ˆd (φ) =− 1
h

log(Eφ(exp(−hφ)/X )),

provided the above expectation exists.



Estimation of Dynamic Cumulative Past Entropy 325

In many practical situations, it appears to be more realistic to express the loss in
terms of the ratio ˆd (φ)/d (φ). In this case, a useful asymmetric loss function is the
general entropy loss (EL) function proposed by Calabria and Pulcini (1996) and is given
by

L3[d (φ), ˆd (φ)]∝





[ ˆd (φ)]
d (φ)





c

− c

 

log

 

[ ˆd (φ)]
d (φ)

!!

− 1, c 6= 0.

Bayes estimate of d (φ) using EL function is obtained as

d̂E (φ) = [Eφ(φ
−c )/X ]−1/c ,

provided the above expectation exists.
The Bayes estimators of E (t ), under SEL, LL, and EL are the posterior expectation

of E (t ) and is given respectively as

E (t )s e l f =

∞
∫

0

∞
∫

0
E (t )Π(α,β)g (α,β)dαdβ

∞
∫

0

∞
∫

0
Π(α,β)g (α,β)dαdβ

, (15)

E (t )e l f =

∞
∫

0

∞
∫

0
E (t )−c

Π(α,β)g (α,β)dαdβ

∞
∫

0

∞
∫

0
Π(α,β)g (α,β)dαdβ

(16)

and

E (t )l l f =−
1
h

log











∞
∫

0

∞
∫

0
e−hE (t )Π(α,β)g (α,β)dαdβ

∞
∫

0

∞
∫

0
Π(α,β)g (α,β)dαdβ











, (17)

where Π(α,β) is given by (14) and g (α,β) is given by (13). It can be see that Bayes
estimators are in the form of ratio of integrals, which cannot be simplified to closed
forms. So, we use two approximation methods, namely, the Lindley approximation and
importance sampling methods to solve the above ratio of integrals.

3.1. Lindley’s approximation method

A number of approximate methods are available to solve the ratio of integrals. One of
the simplest method is Lindley’s approximation method proposed by Lindley (1980).
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The Bayes estimates under SEL, EL and LL given in (15) to (17) using Lindley approxi-
mation can be written respectively as

Ê (t )s e l f = E (t )+
1
2
[H +R30H12+R21G12+R12G21+R03H21], (18)

Ê (t )e l f = [E (t )]
−c +

1
2
[H +R30H12+R21G12+R12G21+R03H21] (19)

and

Ê (t )l l f = e−h[E (t )]+
1
2
[H +R30H12+R21G12+R12G21+R03H21], (20)

where H =
∑2

i=1
∑2

j=1δi j νi j , Ri j =
∂ i+ j ln[Π(α,β)]
∂ (α)i∂ (β) j , i , j = 0,1,2,3 and i + j = 3, δi =

∂ E (t )
∂ αi

, δ j =
∂ E (t )
∂ β j

, δi j =
∂ E (t )
∂ αi∂ β j

and i 6= j , Hi j = (δi νi i +δ j νi j )νi i ,

Gi j = 3δi νi i νi j +δ j (νi i ν j j + 2ν2
i j ) and νi j is the (i , j )th element in the inverse of matrix

E (t ) = {−E (t )i j } with E (t )i j =
∂ 2E (t )
∂ αi∂ β j

.

3.2. Importance sampling procedure

In this section, we discuss the importance sampling procedure to derive the ratio of inte-
grals for finding the Bayes estimator of E (t ). We also derive the HPD credible intervals
of E (t ). The joint posterior distribution given in (14) can be written as

Π(α,β) ∝ αλ1−1e−αγ1βλ2−1e−βγ2 e
−[(a2−nα) ln b2−

n
∑

i=1
ln(xi )]

∝ f (α;λ1,γ1) f (β|α;λ2,γ2) h (α,β) , (21)

where

h (α,β) = Γ (a2− nα) ∗ e
−[(a2−nα) ln b2−

n
∑

i=1
ln(xi )] (22)

and
f (α;λ1,γ1)∝ αλ1−1e−αγ1 . (23)

f (β;λ2,γ2)∝βλ2−1e−βγ2 (24)

The following steps are used in the important sampling procedure.

1. Generate β1 from f (β;λ2,γ2)

2. For the generated value of β1, generate α1 from f (β|α;λ1,γ1)

3. Repeat 1−2, n times, to obtain the importance sample (α1,β1), (α2,β2), ..., (αn ,βn).
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Using important sampling procedure, the Bayes estimators of the E (t ) given in (15)
to (17) are given respectively by

Ê (t )s e l f =

n
∑

j=1
E (t )h

�

α j ,β j

�

n
∑

j=1
h
�

α j ,β j

�

, (25)

Ê (t )l l f =−
1
h

log









n
∑

j=1
e−h[EX (t )]h

�

α j ,β j

�

n
∑

j=1
h
�

α j ,β j

�









(26)

and

Ê (t )e l f =

n
∑

j=1
E (t )−c h

�

α j ,β j

�

n
∑

j=1
h
�

α j ,β j

�

, (27)

where h
�

α j ,β j

�

is given by (22).

3.3. HPD credible interval estimation

In this subsection, we construct the HPD intervals of E (t ) using the procedure discussed
by Chen and Shao (1999). Define E (t )(s) = E (α(s),β(s)) where α(s) and β(s) for s =
1,2, ..., M are posterior samples generated respectively using (23) and (24) for α and β.
Let E (t )(s) be the ordered values of E (t ). Define

δi =
h(α(s),β(s))

∑M
i=1 h(α(s),β(s))

.

Therefore, when the q t h rate of E (t ) can be estimated as

Ê (t ) =
¨

E (t )(1) if q = 0
E (t )(i) if

∑i−1
j=1δ j < q <

∑i
j=1δ j

The 100 × (1− ξ ) 0/0 where 0 < ξ < 1, confidence interval for E (t ) is given by

(Ê (t ) j/M , Ê (t )( j+[(1−ξ )M ])/M ), j = 1,2, ..., M , where [.] is the greatest integer function.
Then the desired HPD interval for E (t ) is the interval with smallest width.
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4. SIMULATION STUDY

In this section, we conduct a simulation to study the performance of the estimators
developed in the previous sections. We have generated sample of sizes: n = 20, 40,
70, 100, 150 and 200 from (1) with α = (1.5, 7, by = 0.5). We fix (t , c , h) = (3,1,2).
The results of the simulation study are presented in Tables 1-5. The MSE of E (t ) using
Lindley approximation method and important sampling procedures are summarized in
Table 2-5. In Figures 1-4, we plot the MSE of Bayes estimates of E (t ) against t .

From Tables 1-5, the following conclusions are made: 1) In most of the cases, the bias
and MSE of all estimators decreases as n increases; 2) Bayes estimators perform better
in terms of MSE compared to the MLE; 3) The perform of the estimators are more and
less same for different loss functions.

Figure 1 – When c = 1 and h = 1, the
MSE of E (t ) using Lindley approxima-
tion method.

Figure 2 – When c = 1 and h = 1, the
MSE of E (t ) using important sampling
procedure.

Figure 3 – When c = 2 and h = 2, the
MSE of E (t ) using Lindley approxima-
tion method.

Figure 4 – When c = 2 and h = 2, the
MSE of E (t ) using important sampling
procedure.
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TABLE 1
The bias and MSE for MLE and AIL and CP for CI for E (t ).

n α E (t ) E (t )ml e Confidence interval HPD
Bootstrap Asymptotic

Bias MSE AIL CP AIL CP AIL CP
20 1.5 0.72 0.58 0.43 0.49 0.99 0.14 0.99 0.63 0.99
20 2 0.67 0.29 0.08 0.33 0.96 0.12 0.94 0.59 0.99
40 2.5 0.61 0.27 0.07 0.60 0.99 0.14 0.99 0.56 0.99
40 3 0.56 0.23 0.06 0.55 0.99 0.19 0.96 0.48 0.98
70 3.5 0.52 0.11 0.01 0.62 0.99 0.18 0.96 0.34 0.91
70 4 0.48 0.07 0.00 0.48 0.94 0.12 0.94 0.33 0.90
100 4.5 0.45 0.02 0.00 0.10 0.97 0.19 0.96 0.32 0.91
100 5 0.42 0.02 0.00 0.75 0.99 0.16 0.95 0.31 0.97
150 5.5 0.39 0.01 0.00 0.43 0.95 0.16 0.96 0.30 0.92
150 6 0.37 0.02 0.00 0.37 0.95 0.17 0.96 0.30 0.91
200 6.5 0.35 -0.02 0.00 0.57 0.94 0.11 0.94 0.29 0.90
200 7 0.33 -0.01 0.00 0.48 0.96 0.19 0.96 0.26 0.93

TABLE 2
The bias and MSE of Lindley approximation method for Bayes estimators of E (t ) using c = 1 and

h = 1.

n α E (t ) E (t )s e l f E (t )e l f E (t )l l f
Bias MSE Bias MSE Bias MSE

20 1.5 0.72 -0.71 0.51 -0.71 0.50 0.64 0.42
20 2 0.67 -0.65 0.42 -0.66 0.44 0.64 0.40
40 2.5 0.61 -0.41 0.21 -0.61 0.37 0.60 0.36
40 3 0.56 -0.33 0.11 -0.56 0.32 0.59 0.36
70 3.5 0.52 -0.33 0.11 -0.52 0.27 0.56 0.32
70 4 0.48 -0.22 0.05 -0.48 0.23 0.55 0.30
100 4.5 0.44 -0.21 0.05 -0.46 0.19 0.49 0.25
100 5 0.42 -0.21 0.06 -0.47 0.17 0.48 0.23
150 5.5 0.39 -0.13 0.03 -0.39 0.15 0.41 0.18
150 6 0.37 -0.13 0.03 -0.37 0.13 0.38 0.14
200 6.5 0.35 -0.08 0.00 -0.35 0.12 0.29 0.09
200 7 0.33 -0.02 0.00 -0.33 0.12 0.27 0.07
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TABLE 3
The bias and MSE of important sampling procedure for Bayes estimators of E (t ) using c = 1 and

h = 1.

n α E (t ) E (t )s e l f E (t )e l f E (t )l l f
Bias MSE Bias MSE Bias MSE

20 1.5 0.72 0.21 0.46 0.67 0.45 0.72 0.52
20 2 0.67 0.13 0.35 0.65 0.43 0.66 0.44
40 2.5 0.61 0.11 0.33 0.63 0.39 0.61 0.37
40 3 0.56 0.09 0.36 0.61 0.37 0.56 0.32
70 3.5 0.52 0.08 0.28 0.58 0.33 0.52 0.27
70 4 0.48 0.07 0.26 0.55 0.30 0.48 0.23
100 4.5 0.45 0.06 0.24 0.51 0.26 0.45 0.19
100 5 0.42 0.04 0.22 0.48 0.23 0.42 0.17
150 5.5 0.39 0.04 0.21 0.43 0.18 0.39 0.15
150 6 0.37 0.05 0.19 0.38 0.15 0.37 0.13
200 5.5 0.35 0.04 0.19 0.31 0.09 0.34 0.11
200 7 0.33 0.01 0.14 0.27 0.07 0.33 0.11

TABLE 4
The bias and MSE Lindley approximation method for Bayes estimators of E (t ) using c = 2 and

h = 2.

n α E (t ) E (t )s e l f E (t )e l f E (t )l l f
Bias MSE Bias MSE Bias MSE

20 1.5 0.72 -0.71 0.50 0.49 0.39 0.64 0.41
20 2 0.67 -0.65 0.42 0.45 0.21 0.62 0.38
40 2.5 0.61 -0.34 0.15 0.42 0.18 0.59 0.35
40 3 0.56 -0.33 0.11 0.37 0.16 0.58 0.34
70 3.5 0.52 -0.33 0.11 -0.35 0.13 0.54 0.29
70 4 0.48 -0.26 0.07 -0.34 0.12 0.54 0.29
100 4.5 0.45 -0.23 0.06 -0.31 0.09 0.47 0.22
100 5 0.42 -0.17 0.05 -0.29 0.09 0.47 0.22
150 5.5 0.39 -0.22 0.05 -0.28 0.09 0.39 0.15
150 6 0.37 -0.05 0.00 -0.26 0.07 0.37 0.14
200 6.5 0.35 -0.07 0.00 -0.22 0.06 0.26 0.07
200 7 0.33 -0.01 0.00 -0.19 0.05 0.25 0.06
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TABLE 5
The bias and MSE of important sampling procedure for Bayes estimators of E (t ) using c = 2 and

h = 2.

n α E (t ) E (t )s e l f E (t )e l f E (t )l l f
Bias MSE Bias MSE Bias MSE

20 1.5 0.72 0.49 0.24 0.67 0.39 0.55 0.30
20 2 0.67 0.44 0.18 0.65 0.39 0.34 0.22
40 2.5 0.61 0.33 0.11 0.63 0.39 0.49 0.22
40 3 0.56 0.32 0.09 0.61 0.37 0.46 0.21
70 3.5 0.52 0.29 0.08 0.57 0.33 0.37 0.14
70 4 0.48 0.26 0.07 0.55 0.30 0.32 0.10
100 4.5 0.44 0.26 0.07 0.50 0.25 0.19 0.09
100 5 0.42 0.24 0.06 0.48 0.23 0.19 0.08
150 6.5 0.39 0.21 0.03 0.42 0.17 0.16 0.05
150 6 0.37 0.07 0.00 0.38 0.14 0.14 0.04
200 6.5 0.35 0.04 0.00 0.29 0.09 0.14 0.02
200 7 0.33 0.07 0.00 0.26 0.07 0.02 0.00

TABLE 6
The test of the fitted PFD models to data sets.

Statistic P-value
Anderson-Darling 1.27 0.24
Cramer- Von Mises 0.08 0.71
Kolmogrov-Smirnov 0.15 0.60
Watson U 2 0.06 0.58
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5. REAL DATA ANALYSIS

In this section, we considered the real data-set obtained from Huss and Holme (2007)
representing the degrees of metabolites in the metabolic network of the bacterium Es-
cherichia Coli. For this model, using MLE, the estimated parameters are α = 1.4258,
β = 3.37, and E (t ) =1.45378. Table 6 shows the test values by fitting PFD to the data
set. Table 7 shows the value of E (t ) under different loss functions using Lindley approx-
imation and important sampling procedure based on real data set. Table 8 provided the
CIs and HPD intervals for E (t ) based on real data set.

TABLE 7
The Lindley approximation and importance sampling procedure for E (t ).

Bayes estimate E (t )s e l f E (t )e l f E (t )l l f
Bias MSE Bias MSE Bias MSE

LAM -0.18 0.14 0.65 0.14 0.53 0.22
ISP -0.22 0.03 0.26 0.20 0.67 0.41

TABLE 8
The bias and MSE for MLE and AIL and CP for CI for E (t ).

Estimate Confidence interval HPD
Bootstrap Asymptotic

Bias MSE AIL CP AIL CP AIL CP
-0.13 0.02 1.16 0.99 0.19 0.97 0.14 0.95

Figure 5 shows the MLE and Bayes estimates of E (t ) under different loss functions
with varying values of t . From Figure (5), we can conclude that in general the uncertan-
ity values of the degree of metabolites increases as t increases.

Figure 5 – MLE and Bayes estimates of E (t ) under different loss functions for the real data.
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6. CONCLUSION

In this paper, we proposed the estimation of E (t ) for a two parameter power func-
tion distribution using MLE and Bayesian estimation techniques. The Bayes estimates
are simplified using Lindley approximation method and the important sampling proce-
dures. Monte Carlo simulation is used to compare the Bayes estimates of E (t ) under
different loss functions. A real data set is also used to illustrate the estimation proce-
dures.
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SUMMARY

In this paper, we proposed MLE and Bayes estimators of parameters and DCPE for the two pa-
rameter power function distribution. Bayes estimators under different loss functions are obtained
using Lindley approximation method and important sampling procedures. A real life data set and
a Monte Carlo simulation are used to study the performance of the estimators derived in the arti-
cle.
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