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1. INTRODUCTION

The Poisson process is one of the most popular counting processes, which is based on
the postulates viz. stationary and independent increments and the number of events
in any interval of length ‘t’ is Poisson distributed with mean ‘A¢’, where A is the mean
number of occurrences per unit time (Ross, 1995). Another important characteristic of
the Poisson process is that the inter-arrival times are exponentially distributed. It has
found extensive applications in queuing theory (Kingman, 1963), modeling scoring in
a hockey game (DeJardine, 2013), modeling vehicles involved in road toll (Vong, 2013)
etc.

However, the Poisson count model suffers from a major drawback of being valid
only when the underlying data is equi-dispersed, i.e. when the mean and variance of the
count data are the same (McShane et al., 2008). This limitation has been addressed by
many statisticians and over the years, count models have been developed which allow
modeling of over-dispersed data (variance greater than the mean) and under-dispersed
data (mean greater than the variance). A heterogeneous gamma Poisson or the negative
binomial count model is the oldest model which addressed the issue of over-dispersion.
Out of the several models developed for handling under-dispersed data, the one proposed
by Winkelmann (1995) is based on gamma distributed inter-arrival times, which beau-
tifully explores the Poisson-exponential connection. McShane et al. (2008) proposed a
count model assuming Weibull distributed inter-arrival times, which handles both over-
dispersed and under-dispersed data. Also, this model nests the Poisson model and the
negative binomial count model as special cases.

The inter-arrival time of the Poisson count model is exponentially distributed, and
so, has a constant hazard function. But in real-life, the hazard may not remain con-
stant over time. In such a case, the Poisson model will not be appropriate. The hazard
function which expresses the instantaneous exit probability, conditional on survival,
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captures the underlying time dependence of the count model (Jose and Abraham, 2013).
Winkelmann (1995) carried out an extensive analysis of the timing model hazard func-
tion and the dispersion in the equivalent count model and found that a decreasing haz-
ard function (corresponding to negative duration dependence of the inter-arrival time
distribution) leads to an over-dispersed count model, an increasing hazard function (cor-
responding to positive duration dependence) leads to an under-dispersed count model
and a constant hazard function (corresponding to no duration dependence) leads to an
equi-dispersed count model (Jose and Abraham, 2011). Thus, a new count model can
be derived by assuming some other inter-arrival time distribution, which possesses a
non-constant hazard function.

In this paper, a new generalized count model is developed assuming the generalized
exponential (GE) distribution as the inter-arrival time distribution, of which the expo-
nential distribution is a special case. A corresponding count model is formulated which
nests the traditional Poisson count model. The advantage of using the GE distribution
over the exponential distribution is that the hazard function is non-constant and hence,
the distribution is duration dependent. This allows the corresponding count model to
account for over-dispersed and under-dispersed data. Some properties of the new pro-
posed model are explored and simulation from the model is carried out. Finally, the
application of the new model is illustrated with the help of two real-life data sets.

2. GENERALIZED EXPONENTIAL DISTRIBUTION

The three-parameter generalized exponential (GE) distribution (the parameters being
location, scale and shape parameter) was proposed by Gupta and Kundu (1999), as an
alternative to the gamma and Weibull distribution. The gamma distribution has the lim-
itation of not having a closed form of the cumulative distribution function (and hence,
the survival functions and the hazard function). The Weibull distribution, although has
a easily computable form of the cumulative distribution, survival and hazard function,
does not possess the likelihood ratio ordering property. In addition, there does not ex-
ist a UMP test for testing the one-sided hypothesis on the shape parameter when the
other two parameters are known. The GE distribution takes care of these limitations
and have properties similar to those of gamma and Weibull distribution. It has found
use in analyzing lifetime data and in the field of medical science, among numerous other
applications.

The random variable X has a GE distribution with parameters @, A and  if it has
the distribution function

x — a
FGE(x;a,/l,[u):[l—exp{—<T'u)}] x> u,a,A>0. 1)
The density function corresponding to the distribution function (1) is

Jor (oA p) = % [1—eXp {—(%)}]_l eXP{-C}”)} (x> p;0,4>0).
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Here, a, A, u is the shape parameter, scale parameter and location parameter respec-
tively and it is denoted by GE(a, 4, u).

Putting @ = 1 and ¢ = 0 in (2) yields the p.d.f of the exponential distribution with
scale parameter A, which is

f(xw02=%€Xp<%§)- 3)

As discussed in Gupta and Kundu (1999), the hazard function of the GE(«, 4,0) dis-
tribution is given by

(1 — e*3>a_l e~
h(x;a,A,0)= %m.

h(x;a,A,0) is an increasing function if @ < 1, a decreasing function for @ > 1 and con-
stant for @ = 1. The same authors have displayed the use of the GE distribution in
modeling the endurance of deep groove ball bearings.

3. GENERALIZED EXPONENTIAL COUNT MODEL
Let Z, denotes the interval between the (2 — 1)*” and 7'# occurrence of a process {N(t),
¢t >0} and let the sequence Z,,Z,,...,Z, be independently and identically distributed
random variables having the GE(2,1,0) distribution. Then, the sum W, =Z,+7Z,+...+
Z,, represents the waiting time up to the #*? occurrence or the time from the origin of
the process to the 7*” subsequent occurrence.

If Z!s are independently and identically distributed such that Z; ~ GE (2,1,0), then
it can be seen that Z = 377 | Z; has the density function given by (Gupta and Kundu,
1999)

gZ(Z) = i C]- (na + j)exp (—Z) {1 —exp (_Z)}na+j—l
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where the constants C ; are defined as

_ [Fle+D]" _ Gna ~(n), - _ 2 _ [(“)/]2
Co= T(14+na) ’Cj — (na+)) Cj ) = 1’2"“’Cj = ')
(k) _ (k=l}a); i (a); ~(k—1),
C] = (ka)j ! i:OTCj—i ,/€—3,...7l.

Here, (), = %
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Thus, W,, the waiting time up to the 7*” occurrence of the process {N (¢),t > 0}
has the density function given in (4). The distribution function of the waiting time W,
is given by

F() = P(W, <)
= 1=P(W, (1)}
= 1—P{N(t)<n}
= 1=P{N()<(n—1)

Therefore
Fyy(n—=1) = 1=F, (t)
= I—Z;Cj{l—exp(—t)}"ﬁ'/. ()
]:

Finally, the probability law of N (¢) is

p.(t) = P{N(t)=n}
= Eyu(n)—Fypy(n—1)

= 1 —Z Cj {1—exp <_L‘)}(n+1)a+f —1+ Z C]- {1—exp (—t)}”‘H'/
7=0

=0
- i C; {1 —exp (—1)}"*" [1— {1 —exp(—1)}"].

THEOREM 1. If the inter-arrival times are independently and identically distributed
as generalized exponential distribution with parameters a, A=1and yu =0, then the count
model probabilities are given by

P, (1)=P{N(t)=n}= ZC{l—eXP( O 1= {l—exp(=1)}],  (6)

where Cy = [+ C; = Cona C(n)‘]' =1,2,...,C%= [)]
g 1

I(14+na) ’ (na+j) ~j j'Q2a);°
(k) _ {k—1}a); (k—1),
C/ = (ko) i=0 z’ C/ i k= 3,

In particular, when o = 1, the count model probabilities in (6) reduce to

P, ()=P{N(t)=n}= ZC{l—exp( Y exp(—t),
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where
1 Cyn .
=, C=—2-C"
I(1+n) (n+7) "’

o [A+HF o "=, T +4) ey
C ’ Cf - (/e)], ; il C]._l., k

; 7=12,...,

=3,...n,

T ),

which is the probability function of Poisson distribution with unit rate parameter.

3.1.  Characteristics of the generalized exponential count model

1. The model handles both over-dispersed and under-dispersed data

The hazard function of the GE distribution is a decreasing function of time when a < 1
and so, the distribution displays negative duration dependence. This, in turn, causes
over-dispersion in the generalized exponential count model. For & > 1, the hazard func-
tion is an increasing function of time, so that the distribution displays positive duration
dependence and causes under-dispersion in the generalized exponential count model.
There is no duration dependence when @ = 1, which gives the Poisson count model
having equal mean and variance. Figure 1 shows the hazard rate plot of GE(a, A,0) for
different values of @ and A = 1, which supports this result. As a validation of these find-

Hazard Rate
I

Figure 1 - Hazard rate plot of GE(a, 4,0) for different values of @ and A= 1.

ings, Figures 2 and 3 display the probability functions for the generalized exponential
and Poisson count models for different parameter values. In both the cases, the general-
ized exponential and Poisson models are chosen so as to have identical means.

In Figure 2, the probability function for an under-dispersed generalized exponential
model with & = 1.5 and Poisson model with mean 0.566 is displayed, and the variance
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of the model in this case is smaller than the mean. Figure 3 displays the over-dispersed
generalized exponential model with @ = 0.5 and Poisson model with mean 0.655 and
the variance of the model in this case is greater than the mean, as expected.
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Figure 2 - Probability function for the generalized exponential model (@ = 1.5) and Poisson count
model (mean=0.566), displaying under dispersion.
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Figure 3 - Probability function for the generalized exponential model (¢ = 0.5) and Poisson count
model (mean=0.655) displaying over dispersion.
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2. The model is computationally feasible to work with and the probabilities and
moments can be estimated without taking resort to time-consuming simulation
based methods

The summations which appear in the expressions for the count model probabilities, its
mean and variance, are not quite sensitive to the number of terms which are used in sum-
mations to approximate the values. The required number of terms is easily identifiable
through empirical testing. Therefore, the count model probabilities and mean, variance
of the count model can be conveniently estimated.

3. Researchers who deal with data having GE inter arrival times now have a cor-
responding count model to use

Equation (6) shows the count model probabilities when the inter arrival time is GE(a, 1,
0, ¢), and thus, the link between the timing model and its count model is maintained.
Using this link between the timing model and the count model, one can also predict the
next inter arrival time, when only the count data is available.

4. The mean and variance of the generalized exponential count model exist
The mean and variance of the model exist and are given by

Mean = E[N(t)]
2> G {1—exp(—)}"* " [1— {1 —exp (—1)}°]

n=1 j=0

Variance = Var[N(¢)]

>3 72C, (1—exp ()} [1— {1—exp(—1)}]—

n=1 ;=0

2

S5, {1—exp(—)}H [1— {1—exp(—)}7]

n=1 ;=0

Table 1 gives the generalized exponential count model probabilities for different val-
ues of ¢ at t = 1,2. The values are approximated by retaining 10 terms in the summation
of the expression for count model probabilities in (6).

Through simulation of the generalized exponential count model, it has been verified
that for o < 1, the variance of the model exceeds the mean, thus representing over dis-
persion. For @ > 1, the mean exceeds the variance, which represents under dispersion
whereas for o = 1, the mean equals the variance, which corresponds to equidispersion.
Table 2, which displays the mean and variance of the generalized exponential count
model, provides evidence of this intuitive fact.
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TABLE 1
Values of the generalized exponential count model probabilities for different values of & at t =1, 2.
t=1 t=2
ol Pi(t) Py(r) Py(r) Pi(r) Py(r) Pi(r)
0.3 0.1380 0.0928 0.0717 0.0569 0.0385 0.0336
0.6 0.2543 0.1172 0.0615 0.1284 0.0653 0.0444
0.8 03138 0.1126 0.0440 0.1786 0.0764 0.0423
1 0.3382 0.1070 0.0358 0.2287 0.0827 0.0366
1.3 0.4033 0.0768 0.0133 0.3016 0.0849 0.0259
1.7 0.4271 0.0485 0.0042 0.3914 0.0784 0.0139
2 0.4259 0.0326 0.0016 0.4519 0.0696 0.0080
TABLE 2
Values of mean and variance of the generalized exponential count model for different values of a at
t=I, 2.
t=1 t=2
a Mean  Variance Mean Variance
03 05390 0.8648  0.2348  0.4584
0.6 0.6737 0.8239  0.3923  0.6355
0.8 06713 0.7103  0.4587  0.6556
1 0.6599  0.6593  0.5042  0.5042
1.3 0.5971 0.4745 05796 0.5136
1.7 0.5369 0.3710 0.5900  0.4822
2 0.4962  0.3252 0.6152  0.4241
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4. APPLICATION TO REAL DATA SETS

In this section, the application of the generalized exponential count model to two real
data sets is shown. The simulation of the generalized exponential count model prob-
abilities and calculation of its mean and variance are carried out using the R software,
version 3.4.0, through the user-contributed packages viz. reliaR (Kumar and Ligges,
2015) with the help of self-programmed codes. The maxLik package (Toomet and Hen-
ningsen, 2015) is used to obtain the maximum likelihood estimates of the parameters of
the inter-arrival time distribution.

4.1.  Data set-I: Arrival of patients at a clinic

Data set-I is comprised of inter arrival times of patients arriving at a clinic situated at
Adabari Tiniali, Guwahati, Assam, India on a given day. The time period of the collec-
tion of data is from 07:00 PM to 09:00 PM, during which the concerned doctor attends
to the patients. The inter-arrival times are positively skewed, having a long tail towards
the right side of the peak and they are expressed in minutes. The number of patients ar-
riving in the clinic on the randomly selected day is 32. It is further found that the there
is usually very little gap between the arrival of consecutive customers, but in a very
few instances, there is a considerable gap between the successive arrivals. In the data set
considered, inter-arrival time exceeding 10 minutes or more is highly improbable.

The mean of the data set is found to be 0.53845 whereas the variance is found to be
0.57048. Given these information extracted from the data set, the goodness of fit test
of the GE (2,1,0) distribution to the given data set is carried out. Assuming that the
data set is from GE (a,1,0), the m.l.e of @ is found to be & = 0.50987. Now, to test
the hypothesis H,; : GE (2,1,0) with & = 0.50987 is a good fit to the given data, the
Kolmogorov-Smirnov one sample test is used. The p-value of the test is found to be
0.7075 > 0.05. Hence, H,, is accepted at 5% level of significance and it is concluded
that the assumption of GE (,1,0) distributed inter arrival times with @ = 0.50987 is
valid. Therefore, the number of patients arriving in an interval can be estimated using
the over-dispersed generalized exponential count model.

Figure 4 shows the probability of observed counts and predicted generalized expo-
nential model counts of patients arriving in the clinic in a time interval of length 1
minute.

4.2.  Data set-II: Arrival of customers in a departmental store

Data set-II is comprised of inter arrival times of customers arriving at a departmental
store, situated at Adabari Tiniali, Guwahati, Assam, India on a given day. The time
period of the collection of data is from 10:00 AM to 09:00 PM, during which the store
remains operative. The inter-arrival times are positively skewed, having a long tail to-
wards the right of the peak and they are expressed in minutes. The number of customers
arriving in the store on the randomly selected day is 235. Further, it is seen that there
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Figure 4 - Probability of observed counts and predicted generalized exponential model counts of
patients arriving in the clinic.

08
|

(=} Observed count
[ Generalized Exponential model count

Probability
04
L

0.2
I

=] T T
2 3

Number of arrivals within time t=1

Figure 5 - Probability of observed counts and predicted generalized exponential model counts of
customers arriving in the departmental store.

is not much gap between the arrival of the consecutive customers and only in a few
instances, there is a fairly good gap between the successive arrivals. In the data set, inter-
arrival time exceeding 8 minutes of more is highly unlikely.

The mean of the data set is 1.29377 whereas its variance is 1.16099. Given these infor-
mation obtained from the data set, the goodness of fit test of the GE (a, 1,0) distribution
to the given data set is performed. Assuming that the data set is from GE (e, 1,0), the
m.l.e of a is found to be & = 1.52752. Now, to test the hypothesis Hy, : GE (2,1,0) with
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@ = 1.52752 is a good fit to the given data, the Kolmogorov-Smirnov one sample test is
used. The p-value of the test is found to be 0.3536 > 0.05. Hence, Hy, is accepted at 5%
level of significance and it is concluded that the assumption of GE (2, 1,0) distributed
inter arrival times with @ = 1.52752 is valid. Therefore, the number of customers ar-
riving in an interval can be estimated using the under-dispersed generalized exponential
count model.

Figure 5 shows the probability of observed counts and predicted generalized expo-
nential model counts of customers arriving in the departmental store in a time interval
of length 1 minute.

5. CONCLUSION

In this article, a new count model based on generalized exponential (GE) inter arrival
time process is introduced. This model is based on generalized exponentially distributed
inter arrival times and is a generalization of the traditional Poisson count model. An-
other advantage of this new model lies in its ability to model under-dispersed, equi-
dispersed as well as over-dispersed count data, owing to the non-constant hazard func-
tion of the corresponding GE inter arrival time distribution. The simulation of count
model probabilities and calculation of the mean and variance of the model can be car-
ried out using the R software. Finally, the proposed model is applied to two real life
data sets, where the inter arrival times are generalized exponentially distributed. It is
seen that the generalized exponential count model is able to model both over dispersed
and under dispersed count data, in addition to the equi-dispersed count data.
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SUMMARY

This paper introduces a new counting process which is based on generalized exponentially dis-
tributed inter-arrival times. The advantage of this new count model over the existing Poisson
count model is that the hazard function of the inter arrival time distribution is non-constant,
so that the distribution is duration dependent and hence, is able to model both under dispersed
and over dispersed count data, as opposed to the exponentially distributed inter arrival time of
the Poisson count model, which is not duration dependent and the corresponding count model
is able to model only equi-dispersed data. Further, some properties of this model are explored.
Simulation from this new model is performed to study the behavior of count probabilities, mean
and variance of the model for different values of the parameter. Use of the proposed model is
illustrated with the help of real life data sets on arrival times of patients at a clinic and on arrival
times of customers at a departmental store.

Keywords: Inter-arrival times; generalized exponential distribution; Counting process; Hazard
function; Dispersion.



