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LOCALLY LINEAR EMBEDDING FOR NONLINEAR DIMENSION 
REDUCTION IN CLASSIFICATION PROBLEMS: 
AN APPLICATION TO GENE EXPRESSION DATA 

M. Pillati, C. Viroli 

1. INTRODUCTION

Although classification is by no means a new subject in the statistical literature, 
the large and complex multivariate datasets typical of some real problems raise 
new methodological and computational challenges. 

For example, in the last few years gene expression measurements, as currently 
determined by the microarray technology, have been increasingly used in cancer 
research to obtain a reliable and precise classification of tumors. The data from 
such experiments are usually in the form of large matrices containing the expres-
sion levels of p genes under n experimental conditions (different times, cells, tis-
sues ...), where n is usually less than 100 and p can easily be several thousands. 

The particular condition p>> n makes most of the standard statistical techniques 
difficult to employ and dimensionality reduction methods are required. 

One possible solution consists in performing a variable selection procedure to 
avoid the inclusion of not relevant or noisy variables that may degrade the overall 
performances of the estimated classification rule. There is a vast literature on 
gene selection for cell classification; a comparative study of several discrimination 
methods in the context of cancer classification based on filtered sets of genes can 
be found in Dudoit et al. (2002) (see also the more recent proposal in Calò et al.,
2005).

As an alternative, the dimensionality reduction can be addressed by mapping 
the high dimensional data onto a meaningful lower-dimensional latent space. 
There is a wide class of techniques for the dimensionality reduction task that op-
erate under the hypothesis that the submanifold is embedeed linearly, almost line-
arly or non-linearly.  

In this paper we provide a classification rule based on a supervised version of 
Locally Linear Embedding (LLE), useful to deal with high dimensional data for 
which the condition p>> n holds) lying on non linear structures.  
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2. THE DIMENSION REDUCTION PROBLEM

In general terms, dimensionality reduction consists in mapping a multidimen-
sional space into a lower dimensional one. Its aim is to obtain compact representa-
tions of the data that are essential for higher-level analysis while eliminating unim-
portant or noisy factors otherwise hiding meaningful relationships and correlations.  

If the data fall exactly on a smooth, locally flat subspace then the reduced di-
mensions are just the coordinates in the subspace and dimensionality reduction 
can be accomplished without loss of information. More commonly, data are noisy 
and an exact mapping does not exist. However a relatively small number of rele-
vant directions for describing the true process underlying the data generating 
mechanism expectantly exists. In doing that we certainly discard some of the 
original information, but this loss is hopefully less than the gain we could obtain 
by simplifying the data structure.

Classical techinques for dimensionality reduction are designed to operate when 
the submanifold is linearly embedded, that is the high dimensional data are as-
sumed to lye close to a hyperplane. Then each data point can be approximated 
using the vectors that span the hyperplane alone. 

If these vectors are the d (with d << p ) eigenvectors corresponding to the larg-
est eigenvalues of the data covariance matrix, the mapping procedure corre-
sponds to the popular Principal Components Analysis (PCA). PCA finds the low-
dimensional embedding of the data points that best preserves their variance as 
measured in the high-dimensional observed space.

Another popular technique, the Multidimensional Scaling (MDS), finds an em-
bedding that preserves the pairwise distances between data points, which is 
equivalent to PCA when the distances are Euclidean. Carrying on this line, Linear 
Discriminant Analysis (LDA) finds the low-dimensional embedding of the data 
points that best discriminates between two or more groups.  

However in many cases of interest, the way the dimensions depend on each 
other can be very complex and this can lead to data with non linear structure that 
can be invisible to PCA or MDS. Figure 1 shows a three-dimensional simulated 
example, the Swiss role data, sampled from a non linear two-dimensional mani-
fold. Note that PCA (in the third graph of the figure) fails to recover the underly-
ing structure of the manifold, since it maps faraway data points to nearby points 
in the two-dimensional space and vice versa. 

Swiss roll model Swiss roll sampleSwiss roll model Swiss roll sample PCAPCA

Figure 1 – Dimension reduction with PCA on Swiss role data. 
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There is a wide class of recently proposed methods by which unsatisfactory 
linear representations obtained by PCA or MDS may be “improved” towards 
more successful representations of the data. These techniques include principal 
curves and surfaces (Hastie and Stuetzle, 1989), generative topographic maps 
(Bishop et al. 1998), self-organizing maps (Kohonen, 1998) or the more recent 
methods based on non linear multidimensional scaling called Isomap (Tenen- 
baum et al., 2000). 

Another solution in non linear dimension reduction is based on the idea that 
global structure of the high dimensional data set can be retained in a collection of 
local structures when projecting the data to a low-dimensional space. One of the 
methods following this lines is the locally linear embedding of Roweis and Saul 
(2000), which will be described in details in the next section. 

3. LOCALLY LINEAR EMBEDDING

Locally linear embedding is an unsupervised technique for dimensional reduc-
tion that looks for an embedding that preserves the local geometry in the 
neighbourhood of each data point. 

In other words, nearby points in the high dimensional space have to remain 
nearby and similarly co-located with respect to each other in the low dimensional 
space.

Starting from this intuition each data point xi
p, i=1,..., n, is approximated 

by a weighted linear combination of its neighbours (from the nature of these local 
and linear reconstructions the algorithm derives its name). 

The neighbourhood of each data point xi can be identified in two different 
ways: a) by selecting all the points lying within a hypersphere of radius  centered 
at xi ; b) by the k nearest neighbours of xi, as measured by euclidean distance. 
Both the solutions require a parameter to be set, but in the latter one, the most 
widely used, the same number of neighbours for every point simplifies the com-
putation. 

In its base formulation, the LLE algorithm finds the linear coefficients wij by 
minimizing the reconstruction errors 
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in which  is the Euclidean norm. 
If the number of neighbours exceeds the input dimensionality (k > p), the least 

square problem (1) does not have a unique solution and a regularisation term 
must be added to the reconstruction error. 

It follows directly from the cost function (1) that for each vector xi the weights 
wij are invariant to rotations and rescalings of that data point and its neighbours. 
Moreover, the weights are subject to two constraints, a sparseness constraint and 
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an invariance constraint. The sparseness contraint means that the weights are en-
forced to be equal to zero if a point xj does not belong to the set of k neighbours 
of xi. The second restriction is that for each xi the weights wij are enforced to sum 
to one. It derives from these two constraints that the weights are also invariant to 
translations. Thus, the reconstruction weights characterize intrinsic geometric 
properties of each neighbourhood. 

Suppose the data lie on an underlying non-linear manifold of dimensionality 
d<<p .  It is then assumed that there exists a linear mapping, consisting of transla-
tions, rotations and rescalings, which maps the high dimensional neighbourhoods 
to global coordinates on the underlying manifold. As the reconstruction weights 
are invariant to translation, rotation and rescaling we can expect that the weights 
that characterize the local geometry in the original data space are equally valid for 
local pieces of the low dimensional embedding. In other words, the weights that 
reconstruct the original vectors xi of dimensionality p can also be used to recon-
struct the underlying manifold in d dimensions. 

Let yi
d be the ith coordinate in the embedding. The n coordinates are then 

estimated by minimizing the cost function: 
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Then the embedding is calculated directly from the wij without reference to the 
original imputs xi.

Two constraints are imposed: the center of gravity of the data is set in the ori-

gin, i.e.
1

0
n

i
i

y , to ensure the uniqueness of the solution and the covariance 

matrix is supposed to be equal to the identity matrix, i.e. 1/n YY'=I, otherwise 
Y = 0 would minimise (2).  

While the cost function (1) can be minimized by solving a set of constrained 
least square problems, the embedding cost function (2) can be optimized, after 
having introduced the two constraints above, by solving a n n eigenvalue prob-
lem which is a global operation over all the data points.  

The optimal solution is given by the eigenvectors corresponding to the small-
est eigenvalues of the matrix (I-W)'(I-W), where W is the n n sparse matrix con-
taining the weights wij. As the last eigenvector is the unit vector with equal entries 
and with eigenvalue equal to 0, we need to compute the eigenvectors correspond-
ing to the bottom (d+1) eigenvalues of the matrix and discard the last one to ob-
tain an embedding centered at the origin. 

To find a good LLE mapping, two parameters will have to be set: the dimen-
sionality d of the reduced space and the neighbourhood size k. Incorrect choices 
for these parameters may degrade the results of the analysis: in fact, if d is set too 
high, the mapping will enhance noise; if it is set too low, distinct parts of the data 
set might be mapped one onto each other.  On the other hand, if k is set too 
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small, the mapping will not reflect any global properties; if it is too high, the 
mapping will loose its nonlinear character as the entire data set is seen as local 
neighbourhood (some methods for the setting of these parameters are discussed 
in de Ridder and Duin, 2002). 

4. SUPERVISED LOCALLY LINEAR EMBEDDING

Let X be a p n data matrix, in which the n units belong to G different classes 
and p >>            n.

As traditional LLE is an unsupervised dimension reduction method, it does 
not make use of the class membership of each point to be mapped. But if groups 
are not well separated in the high-dimensional space, they will remain so in the 
embedding. This is perhaps the reason why the application of LLE as a dimen-
sion reduction method before performing a discriminant analysis does not always 
give good results (de Ridder et al., 2003). 

A supervised version of LLE, useful to deal with data sets containing multiple 
manifolds, corresponding to different classes, has been proposed in the literature 
(see de Ridder and Duin, 2002).  

For each xi from a class g (1 g G) a set of k neighbours is defined by select-
ing the closest points (in terms of Euclidean distance) to xi belonging to the same 
class g. The mapping of the n units of a training set into a low-dimensional space 
follows the LLE procedure described in Section 3, but the local neighbourhood is 
made up of observations belonging to the same class. This procedure leads to a 
perfect separation of the n points in the low-dimensional space. 

Unsupervised and supervised version of LLE can be viewed as particular cases 
of a more general approach that can be obtained by defining the neighborhood of 
a units xi as the set of k points nearest to xi in terms of the following modified 
distance:

*
, 1,...,max( )ij ij ij ij i j nd d d      0 1 (3) 

where dij is the Euclidean distance, ij is equal to zero if xi and xj belong to the same 
class and to 1 otherwise. This means that the distance of units belonging to differ-
ent classes is increased, and the amount of the increase is controlled by the  pa-
rameter. The distance between elements of the same class remains unchanged. 

When  = 0, equation (3) gives the unsupervised LLE, i.e. the basic version of 
the method, while when  = 1, the result is the supervised LLE.  

For 0< <1 a mapping is found which preserves some of the manifold struc-
ture but introduces separation between classes. 

The parameter  introduced in this “partially” supervised version of LLE con-
trols the amount to which class information should be incorporated. 

The effect of different values of  can be shown in Figure 2, in which a gene 
expression data set is mapped onto a two-dimensional space obtained by LLE. 
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As shown, the separation between classes increases with . In the forth pic-
ture, which corresponds to =1, the cells belonging to the same class are mapped 
on the same point. This is due to the fact that the eigenvectors related to the last 
G eigenvalues assign the same value to the elements of the same class, which cor-
responds to the mean. It follows that all the members of the same class are 
mapped on a single point in G-1, and G-1 is therefore the optimal embedding 
dimension for =1. For 1 this is not necessarily optimal. 

Figure 2 – -supervised LLE on Leukemia data set (Golub et al., 1999). 

The perfect separation between the classes in the low dimensional space for 
=1 and d=G – 1 holds only in the training set, and the best solution in terms of 

class separation for previously unobserved units is not necessarily obtained with 
those particular choices for  and d. The use of locally linear embedding in a su-
pervised classification context makes the mapping of a new observation a crucial 
issue, and in the next section we propose a solution suitable to handle the prob-
lem in presence of high-dimensional data. 
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5. MAPPING AND CLASSIFICATION OF A NEW OBSERVATION

The locally linear embedding is an exploratory data analysis method that re-
quires a whole set of points as an input in order to map it into the embedded 
space and in the original works of Roweis and Saul (2000) the issue of how a new 
data point can be mapped was not taken into account, because of the exploratory 
nature of the method. In presence of new data points, the best way to map them 
should be to pool old and new points and rerun locally linear embedding again. 

In their 2002 paper, De Ridder and Duin suggest however that, after embed-
ding, a new observation x* can be mapped quickly by calculating the weights for 
reconstructing it by its k nearest neighbours (as in the first step of LLE, but now 
the minimization involves only one units). The optimal weights are then used to 
derive the coordinates in the low dimensional space by a linear combination of 
the embedding of the k nearest neighbors. 

This solution, that provides a significant reduction in the processing time, is 
not suitable in the context of supervised LLE, since for a new observation x*,
whose class membership is unknown, the neighbourhood can not be identified. 

As an alternative, a global approximation of the mapping between the high 
dimensional coordinates and the low-dimensional ones is proposed in this paper. 
After the embedding has been recovered,  the problem can be addressed by find-
ing an approximation of the mapping between the two spaces, in order to derive 
the embedding projection y* of x*. The simplest solution is to consider the linear 
approximation, but in doing this we have to face the problem of high dimen-
sional data for which the condition p>>n holds. 

Thus, after embedding, we look for the best linear transformation between the 
two spaces that minimizes the following least square problem: 

2

1

min
n

i i
A

i

Ax y

where 1ˆ '( ')A XY YY is a p×d matrix. Thus a new observation x* can be 
mapped in the latent space by the pseudo-inverse of the matrix Â: 

* 1 *( )A A Ay x

Thanks to the use of class information in the feature extraction step, as ex-
plained in Section 4, in the allocation phase the employment of a simple classifi-
cation rule suffices, as suggested in De Ridder et al. (2003). Thus the new observa-
tion x* is assigned to the class having the nearest centroid in the reduced d-
dimensional space. 

6. EMPIRICAL ANALYSIS ON GENE EXPRESSION DATA

We applied our proposal on four publicy available data sets: the lymphoma 
data set of Alizadeh et al. (2000), the leukemia data set of Golub et al. (1999), the 
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mammary data set of Wit and McClure (2004) and the small round blue cell tu-
mor data set of Khan et al. (2001). The main features of these real data sets are 
summarized in Table 1. 

TABLE 1 

Dataset description 

Dataset N. of classes N. of variables N. of samples Origin 

Leukemia 3   2,226 72 Golub et al. (1999) 
Small blue cell tumor 4   2,308 63 Khan et al. (2001) 
Lymphoma 3   4,026 62 Alizadeth et al. (2000) 
Mammary 4 12,488 54 Wit and McClure (2004) 

According to LLE, different classification rules have been obtained from sev-
eral values for , for each of which different values of the neighbourhood size k
and of the embedding dimension d are explored. 

In order to check the validity of LLE, and in particular of the proposed solu-
tion, we consider also alternative dimension reduction methods, i.e. PCA and 
ICA.

Given the small number of cells in each data set, the misclassification rate of 
each classifier has been estimated by averaging the error rates obtained on 100 
balanced cross validations sets.  

In the first two columns of Table 2 the estimated error rates for classifiers 
based on PCA and ICA are reported. 

TABLE 2 

Cross validated misclassification rates of the best classifiers for each considered data set 

-LLE

Allocations by LLE weights
Allocation by Global Linear 

ApproximationDataset PCA ICA 

=0 =0.1 =1 =0 =0.1 =1

Leukemia 0.042 0.042 0.051 0.067 0.079 0.050 0.042 0.035 
Small blue cell tumor 0.064 0.048 0.116 0.081 0.092 0.051 0.041 0.012 

Lymphoma 0.016 0.016 0.028 0.016 0.016 0.028 0.025 0.005 
Mammary 0.148 0.148 0.154 0.093 0.086 0.084 0.074 0.070 

The other columns show the estimated misclassification rates of classification 
rules based on LLE, for different values of . More precisely, the first three col-
umns show the results obtained by mapping test observations by minimizing the 
reconstruction error for each of them, as suggested in De Ridder and Duin 
(2002). The last three columns show the estimated rates obtained following the 
solution we have proposed in the previous section. 

Different values of k and d have been considered and the cross-validated error 
rates of the classifiers with the best performance in the four training sets are re-
ported. 

The minimum error rate, for each data set, is the one obtained following our 
strategy, even if the superiority of the corresponding classifiers with respect to the 
others differs in the four data sets. 
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For the Leukemia data set, for example, the superiority of LLE with respect to 
the linear reduction methods is not so evident, but for the other data sets this is 
no longer true. This may depend on the different degrees of non linearity of the 
data structure in the observed space. 

The supervised version of LLE generally outperforms the original one, but the 
amount of the improvement still strictly depends on the class structure of data in 
the high-dimensional space.  

The smaller error rates obtained with the proposed solution seem to suggest 
that the mapping of new observation based only on the reconstruction weights 
looses relevant information about the relations between the two spaces. 

7. CONCLUSIONS

In this paper we propose to deal with classification problems with high dimen-
sional data, through the so-called locally linear embedding. The goal of this 
methodology is to recover low-dimensional, neighbourhood preserving embed-
ding of high dimensional data. 

We consider the supervised version of the method in order to take into ac-
count of class information in the feature extraction phase. 

We propose a solution to the problem of mapping a new observation suitable 
to handle high-dimensional data for which the condition p >>        n holds. 

The proposed discriminant strategy is applied to the problem of cell classifica-
tion using gene expression data. 

In the four considered data set, it leads to classifiers with small misclassifica-
tion rates, that are competitive with the ones obtained with other techniques on 
the same data sets (see, among the others, Calò et al. (2005) in which the nearest 
shrunken centroid method of Tibshirani et al. (2002) have been applied to the 
same data). 

As the preliminary results on these real data sets show, the proposed strategy 
seems to represent a useful tool for supervised classification when the number of 
variables is greater than the number of units. 

However, some aspects deserve further analysis. In particular, the issues con-
cerning the choice of both the neighbourhood size k and the dimension d of the 
reduced space should be examined in more depth. 

Finally, the employment of different approximations for the mapping between 
the observed space and the embedding in order to project new observations in 
the latent space could be explored. 
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RIASSUNTO

Locally linear embedding per la riduzione delle dimensioni in problemi di classificazione: un’applicazione 
a dati di espressione genica 

In alcuni problemi reali, quali il riconoscimento d’immagini o l’analisi di dati di espressio-
ne genica, si dispone dell’osservazione di un numero molto elevato di variabili in un esiguo 
numero di unità. La soluzione di problemi di classificazione in tale contesto non sempre può 
avvalersi dei metodi tradizionali per difficoltà sia di ordine analitico che interpretativo.  

In questo lavoro si propone di affrontare il problema della classificazione in presenza 
di un numero di osservazioni inferiore al numero delle variabili attraverso il ricorso a una 
tecnica di riduzione delle dimensioni, detta locally linear embedding. L’impiego di una partico-
lare versione del metodo consente di tener conto delle informazioni sulla classe di appar-
tenenza nella fase di riduzione delle dimensioni. La strategia discriminante proposta è sta-
ta impiegata per la classificazione di tessuti mediante dati di espressione genica. 
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SUMMARY

Locally linear embedding for nonlinear dimension reduction in classification problems: an application to 
gene expression data  

Some real problems, such as image recognition or the analysis of gene expression data, 
involve the observation of a very large number of variables on a few units. In such a con-
text conventional classification methods are difficult to employ both from analytical and 
interpretative points of view. 

In this paper we propose to deal with classification problems with high-dimensional 
data, through a non linear dimension reduction technique, the so-called locally linear em-
bedding. We consider a supervised version of the method in order to take into account of 
class information in the feature extraction phase. The proposed discriminant strategy is 
applied to the problem of cell classification using gene expression data. 


