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1. INTRODUCTION

The statistical literature contains many new classes of distributions which have been
constructed by extending common families of continuous distributions. These new
families have been used for modeling data in many areas such as engineering, economics,
biological studies, environmental sciences, to name a few. The general objectives of
generalizing a new family of distributions include the following:

• produce skewness for symmetrical models;

• define special models with different shapes of hazard rate function;

• construct heavy-tailed distributions for modeling various real data sets;

• make the kurtosis more flexible compared to that of the baseline distribution;

• generate distributions which are skewed, symmetric, J-shaped or reversed-J shaped;

• provide consistently better fits than other generalized distributions with the same
underlying model.

1 Corresponding Author. E-mail: aryalg@pnw.edu
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The Marshall-Olkin distribution has been generalized by using the genesis of other
distributions to develop wider family of distributions and achieve one or more of the
above characteristics. Some notable examples include Marshall-Olkin-G (MO-G) fam-
ily by Marshall and Olkin (1997), beta Marshall-Olkin-G (BMO-G) by Alizadeh et al.
(2015a), Kumaraswamy Marshall-Olkin-G (KwMO-G) by Alizadeh et al. (2015b), among
others.

Consider a random variable X with cumulative distribution function (cdf) G (x;ψ)
depending on a parameter vectorψ. The reliability function (rf) and probability density
function (pdf) of X are given by G (x;ψ) = 1 − G (x;ψ) and g (x;ψ) = d

d x G (x;ψ),
respectively. The generalized-G (G-G) family has cdf given by

H (x;a,ψ) = 1− [G(x;ψ)]a , x ∈R. (1)

The corresponding pdf is

h(x;a,ψ) = a g (x;ψ)
�

G(x;ψ)
�a−1

, x ∈R. (2)

Marshall and Olkin (1997) introduced a new method of adding a parameter to a
family of distributions to develop the MO-G family as follows. If H (x) and h(x) denote
the rf and pdf of a continuous random variable X , then the MO-G family has cdf defined
by

F (x;δ,ψ) = 1−
δH (x;ψ)

1− (1−δ)H (x;ψ)
, x ∈R, δ > 0. (3)

Clearly, when δ = 1, we get the baseline distribution with cdf H (x;ψ). The pdf
corresponding to (3) is given by

f (x;δ,ψ) =
δh (x;ψ)

�

1− (1−δ)H (x;ψ)
�2 , x ∈R, δ > 0. (4)

In this paper, we propose and study a new generalized family called the Marshall-
Olkin generalized-G (MOG-G) family and provide a comprehensive description of its
mathematical properties along with some applications.

The rest of the paper is outlined as follows. In Section 2, we provide the structural
derivation of the MOG-G family and study the shape of its density and hazard rate func-
tion. In Section 3, we define three special submodels of MOG-G family. In Section 4,
we derive some mathematical properties including ordinary and incomplete moments,
order statistics. Some characterization results are provided in Section 5. Parameter es-
timation and related issues are addressed in Section 6. In Section 7, we provide applica-
tions to two real data sets to illustrate the importance of the new family. Finally, some
concluding remarks are presented in Section 8.
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2. THE MOG-G FAMILY

Inserting (1) in (3), we obtain the cdf of the MOG-G class

F (x;δ,a,ψ) =
1−

�

G (x;ψ)
�a

1− (1−δ)
�

G (x;ψ)
�a , x ∈R, (5)

where δ and a are two positive shape parameters representing the different patterns
of the MOG-G family. The effectiveness of the parameters a and δ on skewness and
kurtosis are illustrated in Section 4. The additional shape parameter a is pursued as a
tool to furnish a more flexible family of distributions. The corresponding pdf of MOG-
G is given by

f (x;δ,a,ψ) =
δa g (x;ψ)

�

G(x;ψ)
�a−1

�

1− (1−δ) [G(x;ψ)]a
�2 , x ∈R. (6)

Henceforth, X ∼MOG-G(δ,a,ψ) denotes a random variable with density function
(6).
The rf , R(x), and hazard rate function (hrf), τ(x), of MOG-G are given by

R(x) =
δ[G (x;ψ)]a

1− (1−δ) [G (x;ψ)]a
and τ(x) =

a ς (x;ψ)
�

1− (1−δ)
�

G(x;ψ)
�a�

respectively, where ς (x;ψ) = g (x;ψ)/G (x;ψ) is the hrf of the baseline model. We
may use G(x) and g (x) for G(x;ψ) and g (x;ψ) interchangeably.

The MOG-G family contains the following sub-classes

• the generalized-G (G-G) family pioneered by Gupta et al. (1998), for δ = 1;

• the Marshall-Olkin-G (MO-G) class given by Marshall and Olkin (1997), for a = 1;

• the baseline distribution, for δ = 1 and a = 1.

The shapes of the density and hazard rate functions can be described analytically.
The critical points of the MOG-G pdf are the roots of the equation

g ′(x)
g (x)

+ (1− a)
g (x)

G(x)
− 2(1−δ)

g (x)

1− (1−δ)G(x)
= 0. (7)

Let λ(x) = d 2 log f (x)
d x2 , then

λ(x) = g ′′(x)g (x)−g ′(x)2

g (x)2 +(1− a) g ′(x)G(x)+g (x)2

G(x)2

−2(1−δ) g ′(x)[1−(1−δ)G(x)]−(1−δ)g (x)2

[1−(1−δ)G(x)]2
.
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If x = x0 is a root of (7), then it corresponds to a local maximum (minimum) if
λ(x) > 0(< 0) for all x < x0 and λ(x) < 0(> 0) for all x > x0. It yields points of
inflection if either λ(x)> 0 for all x 6= x0 or λ(x)< 0 for all x 6= x0.

The critical points of the hrf h(x) are obtained from the equation

g ′(x)
g (x)

+
g (x)

G(x)
− (1−δ)

g (x)

1− (1−δ)G(x)
= 0. (8)

Let τ(x) = d 2 log[h(x)]/d x2. We have

τ(x) = g ′′(x)g (x)−g ′(x)2

g (x)2 + g ′(x)G(x)+g (x)2

G(x)2

−(1−δ) g ′(x)[1−(1−δ)G(x)]−(1−δ)g (x)2

[1−(1−δ)G(x)]2
.

If x = x0 is a root of (8), then it corresponds to a local maximum (minimum) if
τ(x) > 0(< 0) for all x < x0 and τ(x) < 0(> 0) for all x > x0. It yields points of
inflection if either τ(x)> 0 for all x 6= x0 or τ(x)< 0 for all x 6= x0.

3. SPECIAL SUBMODELS

In this section, we discuss three special submodels of the MOG-G family. These sub-
models generalize some well-known distributions appeared in the literature.

3.1. The MOG-Weibull (MOG-W) distribution

Consider the Weibull distribution with parameters α > 0 and β> 0 whose cdf is given
by G(x) = 1− exp

�

−(αx)β
�

, x ≥ 0. Then, the pdf of the MOGW model is given by

f (x) =
δaβαβxβ−1 exp

�

−a(αx)β
�

�

1− (1−δ)exp
�

−a(αx)β
�	2 , x > 0.

The MOG-W distribution includes the generalized Weibull (GW) distribution when
δ = 1. For a = 1, we obtain the MO-Weibull (MOW) model. For β = 1, we have the
MOG-exponential (MOGE) distribution. For β = 2, we obtain the MOG-Rayleigh
(MOGR) distribution.

3.2. The MOG-Lomax (MOG-Lo) distribution

Consider the Lomax distribution with parameters α > 0 andβ> 0 whose cdf is given by
G(x) = 1− [1+(x/β)]−α , x ≥ 0. Then, the pdf of the MOGLo distribution becomes

f (x) =
δaα[1+(x/β)]−(αa+1)

β
�

1− (1−δ) [1+(x/β)]−αa	2 , x > 0.
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The MOG-Lo distribution includes the generalized Lomax (GLo) distribution for
δ = 1. For a = 1, we obtain the MO-Lomax (MOLo) distribution.

3.3. The MOG-log-logistic (MOG-LL) distribution

Consider the log-logistic distribution with parameters α > 0 and β > 0 whose cdf is

given by G(x) = 1−
�

1+(x/α)β
�−1

, x ≥ 0. Then, the pdf of the MOG-LL distribution
is given by

f (x) =
δaβα−β xβ−1

�

1+(x/α)β
�−a−1

n

1− (1−δ)
�

1+(x/α)β
�−a

o2 , x > 0.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

pdf of MOGW distribution

x

f(
x)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

α = 1  β = 1  δ = 1  a = 1
α = 2  β = 2  δ = 2  a = 1
α = 2  β = 2  δ = 1  a = 2
α = 0.5  β = 2  δ = 0.5  a = 2
α = 0.5  β = 0.5  δ = 0.5  a = 0.5
α = 2  β = 1.5  δ = 5  a = 1.5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

pdf of MOGLL distribution

x

f(
x)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 

α = 1  β = 1  δ = 1  a = 1
α = 1  β = 2  δ = 2  a = 2
α = 2  β = 5  δ = 0.5  a = 2
α = 1  β = 2  δ = 0.5  a = 1.5
α = 0.5  β = 0.5  δ = 0.5  a = 0.5
α = 0.5  β = 5  δ = 1  a = 1.5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

pdf of MOGLO distribution

x

f(
x)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 

 

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 

α = 1  β = 1  δ = 1  a = 1
α = 2  β = 2  δ = 2  a = 2
α = 2  β = 1  δ = 2  a = 2
α = 1  β = 2  δ = 0.5  a = 1.5
α = 0.5  β = 0.5  δ = 0.5  a = 0.5
α = 3  β = 2  δ = 1  a = 1.5

Figure 1 – Pdfs of special MOG-G distributions.
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The MOG-LL distribution includes the generalized log-logistic (GLL) distribution
for δ = 1. For a = 1, we obtain the MO-log-logistic (MOLL) distribution. Figure 1
displays possible shapes of the MOG-G distributions for selected models.

4. MATHEMATICAL PROPERTIES

In this section we provide some mathematical properties of the MOG-G family of dis-
tributions including the moments and order statistics. First, we express the pdf and cdf
of MOG-G family as a mixture of exp-G distributions which is useful to present the
mathematical characteristics of MOG-G family analytically. Note that

1−
�

G(x)
�a
= 1+

∞
∑

k=0

(−1)1+k
�

a
k

�

[G(x)]k =
∞
∑

k=0

αk [G(x)]
k , (9)

where α0 = 2 and αk = (−1)1+k �a
k

�

for k ≥ 1, and

1− (1−δ)−G(x)a = 1− (1−δ)−
∞
∑

k=0

(−1)k
�

a
k

�

G(x)k =
∞
∑

k=0

βk G(x)k , (10)

where β0 = δ and βk = (1−δ) (−1)1+k �a
k

�

. Using (9) and (10), the cdf of the MOG-G
family can be expressed as

F (x) =

∞
∑

k=0
αk G(x)k

∞
∑

k=0
βk G(x)k

=
∞
∑

k=0

tk G(x)k ,

where t0 =
α0
β0

and for k ≥ 1, we have

tk =
1
β0

�

αk −
1
β0

k
∑

r=1

βr tk−r

�

.

The pdf of the MOG-G family can also be expressed as a mixture of exp-G densities.
By differentiating F (x), we obtain the same mixture representation

f (x) =
∞
∑

k=0

tk+1πk+1(x), (11)

where πk+1 (x) = (k + 1)g (x;ψ) [G (x;ψ)]k is the exp-G pdf with power parameter k.
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4.1. Moments

The r th ordinary moment of X is given by

µ′r = E (X r ) =
∫ ∞

−∞
x r f (x)d x. (12)

Using the series representation of f (x) we obtain

µ′r =
∞
∑

j=0

tk+1E
�

Y r
k+1

�

. (13)

Henceforth, Yk+1 denotes the exp-G distribution with power parameter k+ 1. The
last integration can be computed numerically for most parent distributions. The r th
order moment can be used to calculate the skewness and kurtosis. The effect of parame-
ters a and δ on skewness and kurtosis are displayed in Figures 2, 3 and 4, respectively. It
can be observed that the skewness and kurtosis measures for all three distributions are
highly influenced by these parameters.
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Figure 2 – Skewness(left panel) and kurtosis (right panel) of MOG-Lo distribution.
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Figure 3 – Skewness (left panel) and Kurtosis (right panel) of MOG-W distribution.
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Figure 4 – Skewness (left panel) and kurtosis (right panel) of MOG-LL distribution.

Similarly, the s th incomplete moment, say ϕs (t ), of X can be expressed from (11) as

ϕs (t ) =
∫ t

−∞
x s f (x)d x =

∞
∑

k=0

tk+1

∫ t

−∞
x s πk+1 (x)d x. (14)
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4.2. Order statistics

Suppose X1, . . . ,Xn is a random sample from a MOG-G distribution. Let Xi :n denote
the i th order statistic. The pdf of Xi :n can be expressed as

fi :n(x) =
f (x)

B(i , n− i + 1)

n−i
∑

j=0

(−1) j
�

n− i
j

�

F (x) j+i−1. (15)

Following similar algebraic developments of Nadarajah et al. (2015), we can write
the density function of Xi :n as

fi :n(x) =
∞
∑

r,k=0

br,k πr+k+1(x), (16)

where

br,k =
n! (r + 1) (i − 1)! tr+1

(r + k + 1)

n−i
∑

j=0

(−1) j f j+i−1,k

(n− i − j )! j !
,

with f j+i−1,k defined recursively by f j+i−1,0 = t j+i−1
0 and for k ≥ 1

f j+i−1,k = (k t0)
−1

k
∑

m=1

[m( j + i)− k] tm f j+i−1,k−m .

Observe that the pdf of the MOG-G order statistic is a combination of exp-G density
functions. So, several mathematical quantities of the MOG-G order statistics such as
ordinary, incomplete and factorial moments, mean deviations and several others can be
determined from those quantities of the exp-G distribution.

5. CHARACTERIZATIONS

This section deals with various characterizations of the MOG-G distribution. These
characterizations are based on: (i) a simple relationship between two truncated mo-
ments; (i i) the hazard function. It should be mentioned that for characterization (i) the
cdf need not have a closed form. We believe, due to the nature of the cdf of the MOG-G
distribution, there may not be other possible characterizations than the ones presented
in this section.

5.1. Characterizations based on two truncated moments

In this subsection, we present characterizations of the MOG-G distribution in terms of
a simple relationship between two truncated moments. Our first characterization result
borrows a theorem due to Glánzel (1987), see Theorem 1 below. Note that the result
holds also when the interval I is not closed. Moreover, as mentioned above, it could be
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also applied when the cdf F does not have a closed form. As shown in Glánzel (1990),
this characterization is stable in the sense of weak convergence. Again, by a continuous
random variable, we mean the one whose cdf is a continuous function on R.

THEOREM 1. Let (Ω,F ,P) be a given probability space and let I = [d , e] be an in-
terval for some d < e (d = −∞, e =∞ might as well be allowed). Let X : Ω→ I be a
continuous random variable with the distribution function F and let q1 and q2 be two real
functions defined on I such that

E [q2 (X ) | X ≥ x] = E [q1 (X ) | X ≥ x]η (x) , x ∈ I

is defined with some real function η. Assume that q1, q2 ∈ C 1 (H ), η ∈ C 2 (H ) and F
is twice continuously differentiable and strictly monotone function on the set I . Finally,
assume that the equation q1η = q2 has no real solution in the interior of I . Then F is
uniquely determined by the functions q1, q2 and η, particularly

F (x) =
∫ x

d
C

�

�

�

�

�

η′ (u)
η (u) q1 (u)− q2 (u)

�

�

�

�

�

exp (−s (u)) d u,

where the function s is a solution of the differential equation s ′ = η′ q1
η q1 − q2

and C is the
normalization constant, such that

∫

I d F = 1.

PROPOSITION 2. Let X : Ω→ R be a continuous random variable and let q1 (x) =
�

1−δG (x;ψ)a
�2

and q2 (x) = q1 (x)G (x;ψ) for x ∈R. The random variable X belongs
to MOG-G family (6) if and only if the function η defined in Theorem 1 has the form

η (x) =
a

a+ 1
G (x;ψ) , x ∈R.

PROOF. Let X be a random variable with density (6), then

(1− F (x))E [q1 (x) | X ≥ x] = δG (x;ψ)a , x ∈R,

and

(1− F (x))E [q2 (x) | X ≥ x] =
aδ

a+ 1
G (x;ψ)a+1 , x ∈R,

and finally

η (x) q1 (x)− q2 (x) =−
1

a+ 1
q1 (x)G (x;ψ)< 0 for x ∈R.

Conversely, if η is given as above, then

s ′ (x) =
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

a g (x;ψ)

G (x;ψ)
, x ∈R,
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and hence
s (x) =− ln

¦

G (x;ψ)a
©

, x ∈R.

Now, in view of Theorem 1, X has density (6). 2

COROLLARY 3. Let X : Ω→R be a continuous random variable and let q1 (x) be as
in Proposition 2. The pdf of X is (6) if and only if there exist functions q2 and η defined in
Theorem 1 satisfying the differential equation

η′ (x) q1 (x)
η (x) q1 (x)− q2 (x)

=
a g (x;ψ)

G (x;ψ)
, x ∈R.

The general solution of the differential equation in Corollary 3 is

η (x) =G (x;ψ)−a
�

−
∫

a g (x;ψ)G (x;ψ)a−1 (q1 (x))
−1 q2 (x)d x +D

�

,

where D is a constant. Note that a set of functions satisfying the differential equation in
Corollary 3, is given in 2 with D = 0. However, it should be also noted that there are other
triplets (q1, q2,η) satisfying the conditions of Theorem 1.

5.2. Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function,
F , satisfies the first order differential equation

f ′(x)
f (x)

=
h ′F (x)
hF (x)

− hF (x).

For many univariate continuous distributions, this is the only characterization avail-
able in terms of the hazard function. The following characterization establishes a non-
trivial characterization for the MOG-G distribution. This characterization produces a
bridge between two fields of probability and differential equations.

PROPOSITION 4. Let X : Ω→ R be a continuous random variable. The pdf of X is
(6) if and only if its hazard function hF (x) satisfies the differential equation

h ′F (x)− a
�

g ′ (x;ψ)
g (x;ψ)

�

hF (x) =
g (x;ψ)2

¦

1−δ (a+ 1)G (x;ψ)a
©

¦

G (x;ψ)
�

1−δG (x;ψ)a
�©2 ,

with the boundary condition limx→0+ hF (x) =
a
δ limx→0+ g (x;ψ).
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PROOF. If X has pdf (6), then clearly the above differential equation holds. Now,
if the differential equation holds, then

d
d x

�

1
g (x;ψ)

hF (x)
�

= a
d

d x

¦

G (x;ψ)
�

1−δG (x;ψ)a
�©−1

,

or, equivalently,

hF (x) =
a g (x;ψ)

¦

G (x;ψ)
�

1−δG (x;ψ)a
�© =

a g (x;ψ)

G (x;ψ)
+
δa g (x;ψ)G (x;ψ)a−1

1−δG (x;ψ)a
.

Integrating both sides of the above equation, we arrive at

ln [1− F (x)] = ln

�

δG (x;ψ)a

1−δG (x;ψ)a

�

or

1− F (x) =
δG (x;ψ)a

1−δG (x;ψ)a
. 2

6. PARAMETER ESTIMATION AND SIMULATION

Let x1, . . . , xn be a random sample from the MOG-G family with parameters δ,a and
ψ. Let Θ = (δ,a,ψᵀ)ᵀ be the (p + 2)× 1 parameter vector, where p is the number
of parameters of the G- distribution. To estimate the parameters Θ using maximum
likelihood method we express the log-likelihood function as

`= `(Θ) = n logδ + n loga+
n
∑

i=1

log g (xi ;ψ)+ (a− 1)
n
∑

i=1

logG (xi ;ψ)− 2
n
∑

i=1

log pi ,

where pi = 1− (1−δ)G (xi ;ψ)
a . The components of the score vector, U (Θ) = ∂ `

∂ Θ =
�

∂ `
∂ δ , ∂ `∂ a , ∂ `∂ ψ

�ᵀ
, and the elements of J (Θ) =

¦

∂ 2`
∂ r ∂ s

©

can be derived routinely but are
quite complicated to solve analytically. Therefore, some numerical methods should be
adopted to estimate the parameters.

Usually, it is more efficient to obtain the MLEs by maximizing ` directly. We used
the routine optim in the R software for direct numerical maximization of `. optim is
based on a quasi-Newton algorithm. The initial values for numerical maximization can
be determined by the method of moments. The simultaneous roots of these (p + 2)
equations are determined by the routine multiroot in the R software. The optim routine
always converged when the method of moments estimates are used as initial values. The
method of re-sampling bootstrap can be used for correcting the biases of the MLEs of the
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model parameters. Good interval estimates may also be obtained using the bootstrap
percentile method.

Now we present some simulation results using different models to assess the reliabil-
ity of the MLEs. For illustration purpose, we first choose the MOG-W distribution. An
ideal technique for simulating from the MOG-W distribution is the inversion method.
We can simulate X by

X =
1
α

�

−1
a

ln
�

1−U
1− (1−δ)U

��
1
β

,

where U has a uniform distribution on (0,1). For different values of α,β,δ and a,
samples of sizes n = 100,200,300,500 and 1000 were generated from the MOG-W dis-
tribution. We repeated the simulation k = 1000 times and calculated the mean and the
root mean square errors (RMSEs). The empirical results obtained using the R software
are given in Table 1.

TABLE 1
Empirical means and the RMSEs of the MOG-W distribution.

n α= 1, β= 2, δ = 1, a = 2 α= 1.5, β= 2.5, δ = 2, a = 2.5

bα bβ bδ ba bα bβ bδ ba

100 1.458 2.049 5.133 1.945 1.899 2.663 8.921 2.488
(3.981) (0.489) (34.698) (0.257) (2.802) (0.761) (37.458) (2.130)

200 1.239 1.995 3.032 1.960 1.666 2.520 4.392 2.425
(1.722) (0.350) (14.878) (0.157) (0.875) (0.536) (11.519) (0.386)

300 1.114 2.017 2.044 1.976 1.590 2.543 3.193 2.451
(1.222) (0.286) (11.434) (0.130) (0.650) (0.437) (8.138) (0.237)

500 1.028 2.010 1.366 1.998 1.576 2.495 3.059 2.465
(0.372) (0.214) (5.335) (0.347) (0.431) (0.367) (6.283) (0.539)

1000 1.007 1.200 1.056 1.993 1.519 2.507 2.242 2.479
(0.076) (0.140) (0.365) (0.041) (0.126) (0.235) (1.784) (0.096)

Similarly, we simulate MOG-LL random variable by

X = α
�

�

1− (1−δ)U
1−U

�1/a

− 1

�1/β

,

where U has a uniform distribution on (0,1). For different values of α,β,δ and a,
samples of sizes n = 100,200,300,400 and 500 were generated from the MOGLL distri-
bution. The corresponding results from 1,000 simulations are given in Table 2. It can
be observed from the estimated parameters and the RMSEs that the maximum likeli-
hood method works well to estimate the model parameters of both the MOG-W and
MOG-LL distributions.
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TABLE 2
Empirical means and the RMSEs of the MOG-LL distribution.

n α= 2.5, β= 1.5, δ = 2, a = 1.5 α= 2, β= 2.5, δ = 2.5, a = 1.5

bα bβ bδ ba bα bβ bδ ba

100 2.973 1.479 2.043 2.043 2.435 2.634 2.330 1.838
(1.365) (0.504) (0.849) (0.978) (1.114) (0.522) (1.068) (1.073)

200 2.841 1.462 1.983 1.592 2.227 2.537 2.368 1.672
(0.959) (0.480) (0.718) (0.653) (0.666) (0.354) (0.786) (0.603)

300 2.742 1.462 1.955 1.541 2.141 2.535 2.425 1.598
( 0.781) (0.464) (0.675) (0.582) (0.515) (0.283) (0.718) (0.453)

400 2.742 1.435 1.956 1.535 2.118 2.506 2.395 1.578
(0.754) (0.546) (0.648) (0.591) (0.449) (0.326) (0.623) (0.386)

500 2.567 1.313 1.970 1.377 2.090 2.494 2.439 1.553
(0.491) (0.856) (0.431) ( 0.944) (0.367) (0.344) (0.465) (0.459)

7. APPLICATIONS

In this section, we provide applications to two real data sets to illustrate the flexibility
of the MOG-LL, MOG-Lo and MOG-W models presented in Section 3.

7.1. Cancer patient data

The first data set describes the remission times (in months) of a random sample of 128
bladder cancer patients studied by Lee and Wang (2003). For these data, we compare the
fit of the MOG-LL and MOG-Lo distributions with the following distributions: Ku-
maraswamy Lomax (KwLo) of Lemonte and Cordeiro (2013), generalized transmuted
log-logistic (GT-LL) of Nofal et al. (2017), Kumaraswamy-log-logistic (KwLL)of Flor de
Santana et al. (2012), transmuted complementary Weibull geometric (TCWG) of Afify
et al. (2014), transmuted Weibull Lomax (TWLo) of Afify et al. (2015c), Kumaraswamy
exponentiated Burr XII (KwEBXII) of Mead and Afify (2017), generalized inverse gamma
of Mead (2015), beta exponentiated Burr XII (BEBXII) of Mead (2014), beta Fréchet
(BFr) of Nadarajah and Gupta (2004) and exponentiated transmuted generalized Rayleigh
(ETGR) of Afify et al. (2015b). The probability density functions of these distributions
are provided in the Appendix. The estimated parameters of these distributions for the
cancer data are provided in Table 3.
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TABLE 3
MLEs and their standard errors (in parentheses) for cancer data.

Model Estimates

MOG-LL bα= 2.325
(0.005)

bβ= 1.058
(0.067)

ba= 2.159
(0.002)

bδ= 17.646
(3.091)

MOG-Lo bα= 1.184
(0.022)

bβ= 2.053
(0.246)

ba= 1.927
(0.036)

bδ= 23.647
(15.619)

KwLo bα= 0.390
(1.228)

bβ= 12.295
(11.754)

ba= 1.516
(0.266)

bb= 12.055
(45.016)

GT-LL bα= 9.229
(1.908)

bβ= 2.172
(0.321)

bλ=−0.0002
(0.048)

ba= 0.585
(0.160)

bb= 0.001
(0.087)

KwLL bα= 4.658
(13.163)

bβ= 0.298
(0.167)

ba= 7.866
(4.493)

bb= 112.881
(243.364)

TCWG bα= 106.069
(124.800)

bβ= 1.712
(0.099)

bλ= 0.217
(0.610)

bγ= 0.009
(0.007)

TWLo bα= 0.201
(0.180)

bβ= 5.495
(5.401)

bλ=−0.001
(0.505)

ba= 10.571
(21.344)

bb= 1.519
(0.297)

KwEBXII ba= 2.780
(44.510)

bb= 67.636
(104.728)

bc= 0.338
(0.385)

bβ= 3.083
(49.353)

bk= 0.839
(1.723)

BEBXII ba= 22.186
(21.956)

bb= 20.277
(17.296)

bc= 0.224
(0.144)

bβ= 1.780
(1.076)

bk= 1.306
(1.079)

GIG ba= 2.327
(0.369)

bb= 0.0002
(0.0002)

bc= 17.931
(7.385)

bβ= 0.543
(0.042)

bk= 0.001
(0.0003)

BFr bα= 27.753
(71.507)

bβ= 0.169
(0.104)

ba= 12.526
(24.469)

bb= 33.342
(36.348)

ETGR bα= 7.376
(5.389)

bβ= 0.047
(0.004)

bλ= 0.118
(0.260)

bδ= 0.049
(0.036)

7.2. Failure times of aircraft windshield

The second data set was studied by Murthy et al. (2004), which represents the failure
times for a particular windshield device. For these data, we shall compare the fits of
the MOG-Lo and MOG-W distributions with the following distributions: TCWG of
Afify et al. (2014), McDonald Lomax (McLo), KwLL, ETGR, TWLo, Kumaraswamy
Lomax (KwLo) of Lemonte and Cordeiro (2013), Kumaraswamy Weibull (KwW) of
Cordeiro et al. (2010), McDonald Weibull (McW) of Cordeiro et al. (2014), beta Weibull
(BW) of Lee et al. (2007) and transmuted Marshall-Olkin Fréchet (TMOFr) of Afify
et al. (2015a). The probability density functions of these distributions are provided in
the Appendix. The estimated parameters of these distributions for windshield data are
provided in Table 4.
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TABLE 4
MLEs and standard errors (in parentheses) for failure times of windshield data.

Model Estimates

MOG-Lo bα= 21.120
(0.044)

bβ= 258.503
(47.232)

ba= 17.682
(0.037)

bδ= 35.902
(15.627)

MOG-W bα= 0.734
(0.003)

bβ= 1.058
(0.034)

ba= 1.754
(0.008)

bδ= 27.611
(3.346)

TCWG bα= 0.019
(0.061)

bβ= 0.960
(0.716)

bγ= 1.408
(2.749)

bλ= 0.665
(0.294)

McLo bα= 19.924
(71.621)

bβ= 75.661
(212.774)

bγ= 12.417
(21.374)

ba= 2.188
(0.483)

bb= 119.175
(170.536)

KwLL bα= 9.294
(4.481)

bβ= 4.636
(2.023)

ba= 0.497
(0.201)

bb= 14.501
(19.016)

ETGR bα= 0.034
(0.048)

bβ= 0.379
(0.025)

bλ=−0.354
(0.815)

bδ= 26.430
(40.252)

TWLo bα= 8.052
(28.393)

bβ= 387.740
(1439.700)

bλ= 0.673
(0.259)

ba= 571.516
(1446)

bb= 2.435
(0.189)

KwLo bα= 5.277
(37.988)

bβ= 78.677
(799.338)

ba= 2.615
(1.343)

bb= 100.276
(404.095)

KwW bα= 14.433
(27.095)

bβ= 0.204
(0.042)

ba= 34.660
(17.527)

bb= 81.846
(52.014)

McW bα= 1.940
(1.011)

bβ= 0.306
(0.045)

ba= 17.686
(6.222)

bb= 33.639
(19.994)

bc= 16.721
(9.622)

BW bα= 1.360
(1.002)

bβ= 0.298
(0.060)

ba= 34.180
(14.838)

bb= 11.496
(6.730)

TMOFr bα= 200.747
(87.275)

bβ= 1.952
(0.125)

bσ= 0.102
(0.017)

bλ=−0.869
(0.101)

7.3. Model comparisons

In order to compare the fitted models, we consider some goodness-of-fit measures in-
cluding the Akaike information criterion (AIC) consistent Akaike information crite-
rion (CAIC), Hannan-Quinn information criterion (HQIC), Bayesian information cri-
terion (BIC) and −2b`, where b` is the maximized log-likelihood. Further, we adopt the
Anderson-Darling (A∗) and Cramér-von Mises (W ∗) statistics in order to compare the
fits of the two new models with other nested and non-nested models. Tables 5 and 6 list
the values of these statistic for cancer patient data and windshield data, respectively.

In Table 5, we compare the fits of the MOG-LL and MOG-Lo distributions with
the KwLo, GT-LL, KwLL, TCWG, TWLo, KwEBXII, BEBXII, GIG, BFr and ETGR
models. We note that the MOG-LL and MOG-Lo models have the lowest values for
goodness-of-fit statistics (for the cancer data) among the fitted models. So, the MOG-LL
and MOG-Lo models could be chosen as the best models.
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TABLE 5
The statistics −2b`, AI C , C AI C , H QI C ,BI C , W ∗ and A∗ for cancer data.

Model Goodness of fit criteria
−2b` AIC CAIC HQIC BIC W ∗ A∗

MOG-LL 819.081 827.081 827.406 831.716 838.489 0.015 0.095
MOG-Lo 819.088 827.088 827.413 831.723 838.496 0.016 0.095
KwLo 819.873 827.873 828.198 832.508 839.281 0.028 0.186
GT-LL 819.398 829.398 829.89 835.192 843.658 0.016 0.106
KwLL 821.531 829.531 829.857 834.167 840.939 0.049 0.317
TCWG 821.995 829.995 830.320 834.63 841.403 0.043 0.306
TWLo 820.402 830.402 830.894 836.196 844.662 0.034 0.222
KwEBXII 821.651 831.651 832.143 837.445 845.911 0.048 0.320
BEBXII 831.268 841.268 841.760 847.062 855.528 0.134 0.900
GIG 829.824 839.824 840.316 845.618 854.085 0.410 2.618
BFr 834.965 842.965 843.290 847.600 854.373 0.168 1.121
ETGR 858.350 866.350 866.675 870.985 877.758 0.398 2.361

TABLE 6
The statistics −2b`, AI C , C AI C , H QI C , BI C , W ∗ and A∗ for windshield data.

Model Goodness of fit criteria
−2b` AIC CAIC HQIC BIC W ∗ A∗

MOG-Lo 256.54 264.54 265.047 268.449 274.264 0.065 0.509
MOG-W 256.491 264.491 264.997 268.399 274.214 0.067 0.519
TCWG 257.28 265.28 265.786 269.188 275.003 0.078 0.578
McLo 257.137 267.137 267.906 272.023 279.291 0.099 0.729
KwLL 259.287 267.287 267.793 271.195 277.010 0.079 0.706
ETGR 261.975 269.975 270.481 273.883 279.700 0.085 0.786
TWLo 261.743 271.743 272.513 276.629 283.897 0.085 0.786
KwLo 262.296 270.296 270.802 274.204 280.019 0.097 0.868
KwW 273.434 281.434 281.941 285.343 291.158 0.185 1.506
McW 273.899 283.899 284.669 288.785 296.053 0.199 1.591
BW 297.028 305.028 305.534 308.937 314.751 0.465 3.220
TMOFr 301.472 309.472 309.978 313.380 319.195 0.320 2.404
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Similarly, in Table 6, we compare the fits of the MOG-Lo and MOG-W models with
the TCWG, McLo, KwLL, ETGR, TWLo, KwLo, KwW, McW, BW and TMOFr mod-
els. The figures in this table reveal that the MOG-Lo and MOG-W models have the
lowest values of goodness-of-fit statistics (for the windshield data) among all fitted mod-
els. So, the MOG-Lo and MOG-W distributions can be chosen as the best models.

The histogram and the estimated densities and cdfs of the cancer data and windshield
data are displayed in Figures 5 and 6.
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Figure 5 – Fitted pdfs (left panel) and cdfs (right panel) for cancer data.
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Figure 6 – Fitted pdfs (left panel) and cdfs (right panel) for windshield data.
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8. CONCLUSIONS

In this article, we have presented Marshall-Olkin generalized-G (MOG-G) family of dis-
tributions. Many well-known distributions emerge as special cases of the proposed fam-
ily. We have provided some mathematical properties of the new family. The method of
maximum likelihood estimation for model parameters has been investigated. By means
of two real data sets, we have verified that special cases of the MOG-G family can pro-
vide better fits than other distributions generated from well-known families.

Addendum. This work was completed in October 2015 and was first submitted for publica-
tion in November 2015 (not to STATISTICA). The article by Dias et al. (2016) was brought
to our attention by one of the current reviewers, which generalizes the Marshall-Olkin fam-
ily of distributions including ours. The properties and applications discussed in that paper,
however, are different from ours. It seems to us that Dias et al. (2016) were not aware of our
(2015) work, as we were not aware of their work before either.
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APPENDIX

Probability density functions of the distributions referenced in Section 7:
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1+
� x
α

�β�−1�b
)

.

KwLL : f (x) =
abβ
αaβ

xaβ−1
�

1+
� x
α

�β�−a−1






1−



1− 1

1+
� x
α

�β





a




b−1

.

T CW G : f (x) = αβγ (γ x)β−1 e−(γ x)β
�

α+(1−α) e−(γ x)β
�−3

×
�

α (1−λ)− (α−αλ−λ− 1) e−(γ x)β
�

.

T W Lo : f (x) =
abα
β

�

1+
x
β

�bα−1

e−a
n�

1+ x
β

�α
−1
ob

�

1−
�

1+
x
β

�−α�b−1

×
�

1−λ+ 2λe−a
n�

1+ x
β

�α
−1
ob�

.

KwEBX I I : f (x) =
a b ckβx c−1

(1+ x c )k+1

�

1− (1+ x c )−k
�aβ−1

×
n

1−
�

1− (1+ x c )−k
�aβ

ob−1
.

BEBX I I : f (x) =
ckβ

B (a, b )
x c−1 (1+ x c )−(k+1)

�

1− (1+ x c )−k
�aβ−1

×
n

1−
�

1− (1+ x c )−k
�β
ob−1

.

GI G : f (x) =
βcaβ

Γb (a, k)
x−(aβ+1)

�
� c

x

�β
+ k

�−b

e−(
c
x )
β

.

BF r : f (x) =
βαβ

B (a, b )
x−(β+1) e−a( αx )

β h

1− e−(
α
x )
βib−1

.

ET GR : f (x) = 2αδβ2 x e−(βx)2
¦

1+λ− 2λ
�

1− e−(βx)2
�α©

×
�

1− e−(βx)2
�αδ−1 ¦

1+λ−λ
�

1− e−(βx)2
�α©δ−1

.

M cLo : f (x) =
αλ

βB (aλ−1, b )

�

1+
x
β

�−(α+1) �

1−
�

1+
x
β

�−α�a−1

×

(

1−
�

1−
�

1+
x
β

�−α�λ
)b−1

.
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KwW : f (x) = abβαβxβ−1 e−(αx)β
�

1− e−(αx)β
�a−1 ¦

1−
�

1− e−(αx)β
�a©b−1

.

M cW : f (x) =
βcαβ

B (a/c , b )
xβ−1 e−(αx)β

�

1− e−(αx)β
�a−1 ¦

1−
�

1− e−(αx)β
�c©b−1

.

BW : f (x) =
βαβ

B (a, b )
xβ−1e−b (αx)β

�

1− e−(αx)β
�a−1

.

T M OF r : f (x) =
αβσβx−(β+1)e−(

σ
x )
β

h

α+(1−α) e−(
σ
x )
βi2



1+λ− 2λe−(
σ
x )
β

α+(1−α) e−(
σ
x )
β



 .

The parameters of all distributions are positive real numbers except |λ| ≤ 1.
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SUMMARY

We introduce a new class of distributions called the Marshall-Olkin generalized-G family. Some
of its mathematical properties including explicit expressions for the ordinary and incomplete mo-
ments, order statistics are discussed. The maximum likelihood method is used for estimating the
model parameters. The importance and flexibility of the new family are illustrated by means of
two applications to real data sets.

Keywords: Marshall-Olkin distribution; Order statistics; Parameter estimation; Simulation.


