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1. INTRODUCTION

The three-parameter exponentiated Weibull (EW) distribution introduced by Mudholkar
and Srivastava (1993) as an extension of the Weibull family, is a very flexible class of prob-
ability distribution functions. The applications of the EW distribution in reliability and
survival studies were illustrated by Mudholkar et al. (1995). The EW distribution has
the cumulative distribution function (CDF)

F (x;α,λ,γ ) =
�

1− e−λxγ
�α

, x > 0,

and the associated probability density function (PDF) as

f (x;α,λ,γ ) = αγλxγ−1e−λxγ (1− e−λxγ )α−1, x > 0,

where α > 0 and γ > 0 are shape parameters and λ > 0 is the scale parameter. Gupta and
Kundu (1999) considered a special case of the EW distribution when γ = 1, and called
it as the generalized exponential (GE) distribution. The GE distribution has received a
considerable amount of attention in recent years. The readers are referred to a review
article by Gupta and Kundu (2007) for a current account on the generalized exponential
distribution and a book length treatment of different exponentiated distributions by Al-
Hussaini and Ahsanullah (2015).
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Mudholkar et al. (1996) presented a three-parameter generalized Weibull (GW) fam-
ily that contains distributions with unimodal and bathtub shaped hazard rates. They
showed that the distributions in this family are analytically tractable and computation-
ally manageable. The modeling and analysis of survival data using this family of distri-
butions has been discussed and illustrated in terms of a lifetime data set and the results
of a two-arm clinical trial. The CDF of the GW distribution is the following

F (y;α,λ,δ) = 1−
�

1−δ(λy)1/α
�1/δ

,

where 0< y <∞ for δ ≤ 0 and 0< y <
1
λδα

for δ > 0.

Recently, Gupta and Kundu (2011) introduced a three-parameter extended GE (EGE)
distribution by adding a shape parameter to a GE distribution. The EGE distribution
contains many well known distributions such as exponential, GE, uniform, generalized
Pareto and Pareto distributions as special cases. Interestingly, the EGE distribution has
increasing, decreasing, unimodal and bathtub shaped hazard rate functions similar to
the EWE distribution. The EGE distribution has the following CDF and PDF,

F (y;α,β,λ) =
�

(1− (1−βλy)1/β)α, β 6= 0,
(1− e−λy )α, β= 0,

and

f (y;α,β,λ) =
�

αλ(1−βλy)1/β−1(1− (1−βλy)1/β)α−1, β 6= 0,
αλe−λy (1− e−λy )α−1, β= 0,

respectively, when 0< y <∞ for β≤ 0 and 0< y < 1
βλ for β> 0.

About the motivation, we believe that this new proposed distribution offers the
following advantages:

• Often adding an extra parameter gives more flexibility to a class of distribution
functions, improves the characteristics and provides better fits to the lifetime data
than the other modified models.

• Although the number of potential distribution models is very large, in practice a
relatively small number have come to prominence, either because they have desir-
able mathematical characteristics or because they relate particularly well to some
slice of reality.

• In the recent literature, attempts have been made to propose new statistical dis-
tributions for modelling real phenomena of nature by adding one or more addi-
tional shape parameter (s) to the distribution of baseline random variable. The
major contribution of these distributions such as EW, GW or EGE are to obtain
increasing, decreasing, unimodal and bathtub shaped hazard functions. Although,
the hazard functions can be very flexible, they cannot take decreasing-increasing-
decreasing (DID) shapes. In many practical situations, it is observed that the
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hazard function can take DID shapes. Not too many lifetime distributions, at
least not known to the authors, the hazard functions can take five different types,
namely increasing, decreasing, bathtub shaped, unimodal and DID shaped. The
main motivation of the proposed distribution is that its hazard function covers
these five types.

• The proposed distribution extends the EGE to a four-parameter distribution by
adding a new shape parameter. It contains EW and EGE as special cases. The new
distribution is capable of modeling bathtub-shaped, upside-down bathtub (uni-
modal), increasing, decreasing and decreasing-increasing-decreasing (DID) hazard
rate functions which are widely used in engineering for repairable systems. Hence,
it can be used quite effectively for analysing lifetime data of different types.

The rest of the paper is organized as follows. In Section 2, we introduce the EEW
distribution and outline some sub-models of the distribution and then, discuss some of
its properties. Some related issues are discussed in Section 3. In Section 4, we provide the
estimation procedures and the asymptotic distributions of the estimators. Simulation
results and the analysis of a data set are provided in Section 5, and finally conclusions
arrive in Section 6.

2. DEFINITION AND SOME PROPERTIES

In this section we formally define the extended exponentiated Weibull family of distribu-
tions. We observe that several well known distributions can be obtained as special cases
of the proposed distribution. We also derive different properties and different measures
of the proposed distribution in this section.

2.1. The extended exponentiated Weibull distribution

The random variable Y is said to have an extended exponentiated Weibull (EEW) dis-
tribution, if the CDF of the random variable Y , denoted by F (y;α,β,γ ,λ), is given
by

F (y;α,β,γ ,λ) =
¨

(1− (1−βλyγ )1/β)α, β 6= 0,
(1− e−λyγ )α, β= 0,

(1)

where α,γ ,λ > 0 and −∞ < β <∞. Here, 0 < y <∞ if β ≤ 0 and 0 < y < 1
(βλ)1/γ if

β> 0. The PDF of Y can be expressed as

f (y;α,β,γ ,λ) =
¨

αγλyγ−1(1−βλyγ )1/β−1(1− (1−βλyγ )1/β)α−1, β 6= 0,
αγλyγ−1e−λyγ (1− e−λyγ )α−1, β= 0.

(2)

A random variable X follows the EEW distribution with parameters α,β,γ and λ is
denoted by X ∼ EEW (α,β,γ ,λ).
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Several well known distribution functions can be obtained as special cases of the
EEW distribution depending on the values of α,β,γ . The details are presented below.

(i) For γ = 1, the EEW distribution reduces to the EGE introduced and studied by
Gupta and Kundu (2011).

(ii) For γ = 1, β = 0, α 6= 1, the EEW distribution reduces to the GE distribution
introduced by Gupta and Kundu (2007).

(iii) For γ = 1, β= 1 and α= 1, the EEW distribution reduces to the uniform distri-
bution with CDF

F (y;λ) = λy.

(iv) The Pareto distribution with CDF

F (y;β,λ) = 1− (1−βλy)1/β,

is a special case of the EEW distribution for γ = 1, α= 1 and β> 0.

(v) For γ = 1 and α= 1 b = 1,θ→ 0+, the EEW distribution reduces to the general-
ized Pareto (GP) distribution with CDF

F (y;β,λ) =
�

1− (1−βλy)1/β, β 6= 0,
1− e−λy , β= 0.

(vi) For γ = 1, β 6= 0, α 6= 1, the EEW distribution reduces to the GW distribution
introduced and analyzed by Mudholkar et al. (1996).

(vii) For γ 6= 1, α = 1 and β= 0, the EEW distribution reduces to the Weibull distri-
bution with CDF

F (y;γ ,λ) = 1− e−λyγ .

(viii) For γ 6= 1, α 6= 1 andβ= 0, the EEW distribution reduces to the EW distribution
proposed by Nassar and Eissa (2003).

(ix) For γ = 2, α 6= 1 and β = 0, the EEW distribution reduces to the Burr X distri-
bution with CDF

F (y;α,λ) = (1− e−λy2
)α.

2.1.1. Different shapes of EEW probability density and hazard function
In this section we provide different shapes of the PDFs and hazard functions of the
EEW distribution. Because of the complicated nature of the PDFs and hazard functions,
it is difficult to obtain the shapes of the PDFs and hazard functions analytically. The
following observations have been made graphically. Forβ< 0, the shape of the PDF of
the EEW distribution can be decreasing or unimodal depending on different values of
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parameters. For β> 0, the shape of the PDFs of the EEW distribution can be bath-tub
shaped and increasing depending on the different values of the shape parameters. The
PDFs of the EEW for different values of α, β and γ , where λ= 1 are plotted in Figure
1.
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Figure 1 – The PDFs of the EEW for different values of α, β and γ with λ= 1.

The hazard rate and survival function of the EEW distribution are given by, respec-
tively

h(y;α,β,γ ,λ) =















αγλyγ−1(1−βλyγ )1/β−1(1− (1−βλyγ )1/β)α−1

1− (1− (1−βλyγ )1/β)α
, β 6= 0,

αγλyγ−1e−λyγ (1− e−λyγ )α−1

1− (1− e−λyγ )α
, β= 0,

and

s(y;α,β,γ ,λ) =
�

1− (1− (1−βλyγ )1/β)α, β 6= 0,
1− (1− e−λyγ )α, β= 0.

(3)

The hazard function of the EEW distribution can take different shapes, namely increas-
ing, decreasing, DID, unimodal and bathtub shaped. Figure 2 provides the hazard func-
tions of the EEW distribution for different values of α, β, γ , and λ.

Because of the complicated nature of the hazard function, we could not establish the
above results in its full generality, but the following results can be established. In all
these cases without loss of generality, we have assumed that λ = 1.
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Figure 2 – The hazard rate of the EEW for different values of α, β and γ with λ= 1.

THEOREM 1. If γ = 1 and β< 0, then for

(a) α > 1, the hazard function of EEW is an unimodal shaped,

(b) 0<α < 1 it is a decreasing function.

PROOF. See Theorem 1 of Gupta and Kundu (2011). 2

THEOREM 2. If γ = 1 and for

(a) β> 1, α > 1, the hazard function of EEW is an increasing function,

(b) 0<α < 1, 0<β< 1, it is a bathtub shaped.
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PROOF. See Theorem 2 of Gupta and Kundu (2011). 2

THEOREM 3. If 0< α < 1, β< 0 and 0< γ < 1, then the hazard function of EEW is
a decreasing function.

THEOREM 4. If α > 1, β > 1 and γ > 1, then the hazard function of EEW is an
increasing function.

THEOREM 5. If α > 1, β < 0 and γ > 1, then the hazard function of EEW is an
unimodal function.

The proofs of Theorems 3, 4, and 5 can be found in the Appendix.
The quantile of a distribution plays an important role for any lifetime distribution.

In case of the EEW distribution, it is observed that the p-th quantile can be obtained
in explicit form. Hence, if we have maximum likelihood estimators (MLEs) of the un-
known parameters of a EEW distribution, the MLE of the corresponding p-th quantile
estimator also can be easily obtained.

The p-th quantile of the EEW distribution is given by

Q(p;α,β,γ ,λ) =











(
1
βλ
(1− (1− p1/α)β))1/γ , β 6= 0,

(− 1
λ

log(1− p1/α))1/γ , β= 0.

When p =
1
2

, the median of EEW is

M =











(
1
βλ
(1− (1− 2−1/α)β))1/γ , β 6= 0,

(− 1
λ

log(1− 21/α))1/γ , β= 0.
(4)

The mode of EEW distribution cannot be obtained in explicit form. It has to be obtained
by solving non-linear equation, and it is not pursued here.

2.2. Moments and moment generating function

The moment and moment generating functions play important roles for analysing any
distributions functions. The moment generating function characterizes the distribution
function. Although, we could not obtain the moments in explicit forms, they can be
obtained as infinite summation of beta functions. Different moments can be easily cal-
culated using any standard mathematical softwares.

The k-th moments and the k-th central moments of the EEW distribution can be
obtained by using the expansion (1− z)α =

∑∞
i=0

�α
i

�

(−1)i z i , where α is not integer. We
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have the following results:

µ′k = E(Y k ) =



































∞
∑

i=0

�α−1
i

� (−1)iα
β1+k/γλk/γ

Be(1+ k/γ , (i + 1)/β), β> 0,

∞
∑

i=0

�α−1
i

� (−1)iα
(−β)1+k/γλk/γ

Be(1+ k/γ ,−k/γ − (i + 1)/β), β< 0,

∞
∑

i=0

�α−1
i

� (−1)iα
λk/γ

(i + 1)−(1+k/γ )Γ (1+ k/γ ), β= 0,

(5)

where Be(., .) is beta function. Usingµk = E(Y−µ′k )
k =

∑k
i=0

�k
j

�

µ′j (−µ
′
1)

k− j , the k-th
central moments can be obtained as

µk =



































k
∑

j=0

∞
∑

i=0

�k
j

��α−1
i

� (−1)k+i− jα

β1+ j/γλi/γ
Be(1+ j

γ , i+1
β )µ

′
1

k− j , β> 0,

k
∑

j=0

∞
∑

i=0

�k
j

��α−1
i

� (−1)k+i− jα

(−β)1+ j/γλ j/γ
Be( 1+ j

γ ,− j
γ −

i+1
β )µ

′
1

k− j , β< 0,

k
∑

j=0

∞
∑

i=0

�k
j

��α−1
i

� (−1)k+i− jα

λ j/γ
(i + 1)−(1+ j/γ )Γ ( 1+ j

γ )µ
′
1

k− j , β= 0.

Using the moments of different orders, moment generating function of EEW can be eas-
ily obtained. If all the moments of a random variable exist, then the moment generating

function of Y can be written as MY (t ) = E(e tY ) =
∞
∑

k=0

t k

k!
E(Y k ). Thus, we have

MY (t ) =



































∞
∑

k=0

∞
∑

i=0

t k

k!

�α−1
i

� (−1)iα
β1+k/γλk/γ

Be(1+ k
γ , i+1

β ), β> 0,

∞
∑

k=0

∞
∑

i=0

t k

k!

�α−1
i

� (−1)iα
(−β)1+k/γλk/γ

Be(1+ k
γ ,− k

γ −
i+1
β ), β< 0,

∞
∑

k=0

∞
∑

i=0

t k

k!

�α−1
i

� (−1)iα
λk/γ

(i + 1)−(1+k/γ )Γ (1+ k
γ ), β= 0.

3. SOME RELATED ISSUES

3.1. Order statistics

The CDF and PDF of the first order statistics are given by

F1:n(y) =
¨

1− (1− (1− (1−βλyγ )1/β)α)n , β 6= 0,
1− (1− (1− e−λyγ )α)n , β= 0,
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and

f1:n(y) =











nαγλyγ−1(1−βλyγ )1/β−1(1− (1−βλyγ )1/β)α−1 β 6= 0,
×(1− (1− (1−βλyγ )1/β)α)n−1,
nαγλyγ−1e−λyγ (1− e−λyγ )α−1(1− (1− e−λyγ )α)n−1, β= 0,

respectively. The CDF and PDF of the largest order statistics are given, respectively, by

Fn:n(y) =
¨

(1− (1−βλyγ )1/β)nα, β 6= 0,
(1− e−λyγ )nα, β= 0,

and

fn:n(y) =
¨

nαγλyγ−1(1−βλyγ )1/β−1(1− (1−βλyγ )1/β)nα−1, β 6= 0,
nαγλyγ−1e−λyγ (1− e−λyγ )nα−1, β= 0.

The CDF and PDF of r -th order statistics, where 1 ≤ r ≤ n and β 6= 0, are given by,
respectively

Fr :n(y) =
∞
∑

i=0

n
∑

j=r

�

n− j
i

��

n
j

�

(−1)i (1− (1−βλyγ )1/β)α(i+ j ),

fr :n(y) = αγλyγ−1
∞
∑

i=0

n
∑

j=r

(i + j )
�

n− j
i

��

n
j

�

×
∞
∑

k=0

(−1)i+k
�

α(i + j )− 1
k

�

(1−βλyγ )
k+1
β −1.

3.2. Mean deviations

For a random variable Y with the PDF f (y), CDF F (y), mean µ = E(Y ) and M =
median(Y ), the mean deviation about the mean and the mean deviation about the me-
dian are defined by

δ1 = E |Y −µ|= 2µF (µ)− 2I (µ)

and
δ2 = E |Y −M |=µ− 2I (M ),

respectively, where I (t ) =
∫ t

0
y f (y)d y.
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THEOREM 6. The mean deviation functions of the EEW distribution are

δ1 = 2µ(1− (1−βλµγ )1/β)α− 2
∞
∑

i=0

�

α− 1
i

�

(−1)i
αγλ

γ + 1
µγ+1(1−βλµγ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλµγ )

and

δ2 = µ− 2
∞
∑

i=0

�

α− 1
i

�

(−1)i
αγλ

γ + 1
M γ+1(1−βλM γ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλM γ ),

where β < 0, µ is the mean of the EEW distribution given in (5) , M is the median of
the EEW distribution given in (4), and the hypergeometric function 2F1 can be expressed as

2F1(a, b ; c ; z) =
∑∞

n=0
(a)n (b )n
(c)n

zn

n! , where c does not equal to 0, -1, -2, ..., and

(q)n =
§

1 i f n = 0
q(q + 1)...(q + n− 1) i f n > 0.

PROOF.
F (y) = (1− (1−βλyγ )

1
β )α

and

f (y) = αγλyγ−1(1−βλyγ )1/β−1(1− (1−βλyγ )1/β)α−1

= αγλ(1−βλyγ )
1
β−1

∞
∑

i=0

�

α− 1
i

�

(−1)i (1−βλyγ )
i
β

= αγλyγ−1
∞
∑

i=0

�

α− 1
i

�

(−1)i (1−βλyγ )
i+1
β −1.

So

I (µ) =
∫ µ

0
y f (y)d y

= αγλ
∞
∑

i=0

�

α− 1
i

�

(−1)i
∫ µ

0
yγ (1−βλyγ )

i+1
β −1d y

=
∞
∑

i=0

�

α− 1
i

�

(−1)i
αγλ

γ + 1
µγ+1(1−βλµγ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλµγ ).
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Thus, we have

δ1 = 2µ(1− (1−βλyγ )
1
β )α− 2

∞
∑

i=0

�

α− 1
i

�

(−1)i
αγλ

γ + 1
µγ+1(1−βλµγ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλµγ )

and

δ2 =µ− 2
∑∞

i=0

�α−1
i

�

(−1)i
αγλ

γ + 1
M γ+1(1−βλM γ )

i+1
β

×2 F1(1,1+
1
γ
+ i+1

β ; 2+ 1
γ ;βλM γ ).

2

3.3. Probability weighted moment

The probability weighted moments (PWMs) makes use of the analytical relationship
among the parameters and the so-called PWMs of probability distribution in calculat-
ing magnitudes for the parameters. Although, probability weighted moments are useful
to characterize a distribution. We use the PWMs to derive estimates of the parameters
and quantiles of the probability distribution. Estimates based on PWMs are often con-
sidered to be superior to standard moment-based estimates. These concepts used when
maximum likelihood estimates (MLE), are unavailable or difficult to compute; e.g. see
Greenwood et al. (1979); Hosking (1986); Harvey et al. (2017) and Tarko (2018). The
PWMs are defined by

τs ,r = E(Y s F (Y )r ) =

(
∫∞

0 y s F (y)r f (y)d y, β< 0,
∫

1

(βλ)1/γ

0 y s F (y)r f (y)d y, β> 0,

where r and s are positive integers and F (y) and f (y) are the CDF and PDF of distri-
bution. The following theorem gives the PWMs of the EEW distribution.

THEOREM 7. The PWMs of the EEW distribution are

τs ,r =































∑∞
i=0

�rα
i

�

(−1)i
(−βλ)

s−1
γ Γ ( s+1

γ )Γ (−
β+sβ+iγ

βλ )

γΓ (− i
β )

, β< 0,

∑∞
i=0

�rα
i

�

(−1)i
(−βλ)

s−1
γ Γ ( i+β

β )Γ (−
s+1
λ )

γΓ (− i
β +

1+s+r
γ )

, β> 0,
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PROOF. Here, we only give the proof for β > 0, in which case 0 < y < 1
(βλ)1/γ .

Proof of the other case is similar. We have

τs ,r =
∫

1

(βλ)1/γ

0
αγλy s+γ−1(1−βλyγ )1/β−1(1− (1−βλyγ )1/β)(r+1)α−1d y.

By using the expansion (1− z)α =
∑∞

i=0

�α
i

�

(−1)i z i , we have

τs ,r =
∞
∑

i=0

�

(r + 1)α− 1
i

�

(−1)i
∫

1

(βλ)1/γ

0
αγλy s+γ−1(1−βλyγ )

i+1
β −1

=
∞
∑

i=0

�

(r + 1)α− 1
i

�

(−1)i
αλ(βλ)−

s+γ
γ Γ ( 1+i

β )Γ (
s+γ
γ )

Γ ( i+1
β −

s+γ
γ )

,

where α, β, γ , and s are positive. 2

By use of PWMs, we can obtain the mean and variance of the distribution according to

E(Y ) = τ1,0, and Var(Y ) = τ2,0−τ
2
1,0.

3.4. Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves are fundamental tools for analysing data arising in
economics and reliability. Also, these curves have many applications in other fields like
demography, insurance and medicine; e.g. see Bonferroni (1930); Gail and Gastwirth
(1978); Giorgi and Crescenzi (2001); Shanker et al. (2017) and Arnold and Sarabia
(2018). The Lorenz curve is a function of the cumulative proportion of ordered individ-
uals mapped onto the corresponding cumulative proportion of their size. The Bonfer-
roni curve is given by

BF (F (y)) =
1

µF (y)

∫ y

0
t f (t )d t

or equivalently given by BF (p) =
1
µp

∫ p
0 F −1(t )d t , where p = F (y) and F −1(t ) = inf{y :

F (y)≥ t}. Also, the Lorenz curve is given by

LF (F (y)) = F (y).BF (F (y)) =
1
µ

∫ y

0
t f (t )d t ,

where µ= E(Y ).
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THEOREM 8. The Bonferroni and Lorenz curves of the EEW distribution are given
by, respectively

BF (F (y)) =
1

µF (y)

∞
∑

i=0

�

α− 1
i

�

(−1)i
αγλ

γ + 1
yγ+1(1−βλyγ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλyγ ),

and

LF (F (y)) =
1
µ

∞
∑

i=0

�

α− 1
i

�

(−1)i
αγλ

γ + 1
yγ+1(1−βλyγ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλyγ ),

where β 6= 0, µ= E(Y ) is given in (5) and F (y) is given in (1).

PROOF. Such as the proof of Theorem 2, we have

F (y) = (1− (1−βλyγ )
1
β )α

and

f (y) = αγλyγ−1(1−βλyγ )1/β−1(1− (1−βλyγ )1/β)α−1

= αγλ(1−βλyγ )
1
β−1

∞
∑

i=0

�

α− 1
i

�

(−1)i (1−βλyγ )
i
β

= αγλyγ−1
∞
∑

i=0

�

α− 1
i

�

(−1)i (1−βλyγ )
i+1
β −1.

Thus, we have

BF (F (y)) =
1

µF (y)

∞
∑

i=0

�

α− 1
i

�

(−1)i
αγλ

γ + 1
yγ+1(1−βλyγ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλyγ )

and

LF (F (y)) =
1
µ

∞
∑

i=0

�

α− 1
i

�

(−1)i
αγλ

γ + 1
yγ+1(1−βλyγ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλyγ ).

2
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3.5. Rényi and Shannon entropy

In information theory, entropy is a measure of the uncertainty associated with a ran-
dom variable. The Shannon entropy is a measure of the average information content
one is missing when one doesn’t know the value of the random variable. A useful gen-
eralization of Shannon entropy is the Rényi entropy. The Rényi entropy is important
in ecology and statistics. It is also important in quantum information, where it can be
used as a measure of entanglement; e.g. see Shannon (1948); Renyi (1961); Seo and Kang
(1970); Kayal and Kumar (2013); Kayal et al. (2015) and Kang et al. (2012).

The Rényi and Shannon entropy of the EEW distribution are given, respectively, by

IR(r ) =
1

1− r
log

∫

y
f r (y)d y

=























1
1−r log

∑∞
i=0

�r (α−1)
i

�

(−1)i
(−βλ)

r−rγ−1
γ (αγλ)γ Γ (− γ+1

β +
γ−1
γ )

γΓ (− r−rβ+i
β )

, β< 0,

1
1−r log

∑∞
i=0

�r (α−1)
i

�

(−1)i 1
1+r (γ−1) (αγλ)

γ (βλ)−
1+r (γ−1)

γ

×2F1(−
i+r−rβ

β , 1+r (γ−1)
γ ; 1+r (γ−1)+γ

γ ;βλ((βλ)−1/γ )γ ), β> 0

and

E(− log f (y)) = log(αγλ)− α− 1
α
+(1− γ )

∞
∑

i=0

i
∑

j=0

�i
j

�

(−1) j

i
µ′1

j +(1− 1
β
)
∞
∑

i=0

(βλ)i

i
µ′iγ ,

where µ′k = E(Y k ) is given in (5).

3.6. Residual life function

Given that a component survives up to time t ≥ 0, the residual life function is the period
beyond t , and defined by the conditional variable Y− t |Y > t . We obtain the r -th order
moment of the residual life of the EEW distribution via the general formula

mr (t ) = E[(Y − t )r |Y > t ]

in two cases β< 0 and β> 0. Let β< 0, thus the r -th residual life is given by

mr (t ) =
1

s(t )

∫ ∞

t
(y − t )r f (y)d y =

1
s(t )

∞
∑

i=0

r
∑

j=0

�

α− 1
i

��

r
j

�

(−1)r+i− j

×
t γ+

(i+1)γ
β αγ (−βγ )

i+1
β

jβ+ γ + iγ 2F1(
β+ i − 1

β
,−

jβ+ γ + iγ
βγ

; 1− i + 1
β
−

j
β

;
t − γ
βλ
)
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and for β> 0, the r -th residual life is given by

mr (t )=
1

s(t )

∫
1

(βλ)1/γ

t
(y − t )r f (y)d y =

1
s(t )

∞
∑

i=0

r
∑

j=0

�

α− 1
i

��

r
j

�

(−1)r+i− j αγ t γ− j

jβ+ γ + iγ

×[−e−iπ jβ+γ+iγ
βγ (−βλ)− j

2F1(
β− i − 1

β
,−

jβ+ γ + iγ
βγ

; 1− i + 1
β
−

j
β

; e iπ)

+t
jβ+γ+iγ−βγ

β (−βλ)
i+1
β

2F1(
β− i − 1

β
,−

jβ+ γ + iγ
βγ

;−
jβ+ γ + iγ −βγ

βγ
;

t−γ

βλ
)],

where s(t ) (the servial function of Y ) is given in (3).

The mean residual life (MRL) function is a helpful tool in model building, and it
used for both parametric and nonparametric building. And it is very important since
can be used to determine a unique corresponding life time distribution. Life time can
exhibit increasing MRL (IMRL) or decreasing MRL (DMRL). MRL functions that first
increasing (decreasing) and then decreasing (increasing) are usually called upside-down
bathtub (bathtub) shaped, UMRL (BMRL). The relationship between the behavior of
the two functions of a distribution was studied by many authors such as Ghitany (1998),
Mi (1995), Park (1985), Shanbhag (1970) and Tang et al. (1999). The MRL function
for the EEW distribution obtains by setting r = 1 in above equations and it is given in
the following theorem.

THEOREM 9. The MRL funvtion of the EEW distribution is

m1(t ) =
1

s(t )
[
∞
∑

i

�

α− 1
i

�

(−1)i
αγ t

β+γ+iγ
β (−βλ)

i+1
β

β+ γ + iγ

×2F1(
β− i − 1

β
,−
β+ γ + iγ

βγ
;
γ − 1
γ
− i + 1

β
;

t−γ

βλ
)

−
∞
∑

i=0

�

α− 1
i

�

(−1)i
tα(1−βλt γ )

i+1
β

i + 1
],

where β< 0 and

m1(t ) =
1

s(t )
[
∞
∑

i

�

α− 1
i

�

(−1)i
αγλ

γ + 1
t γ+1(1−βλt γ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλt γ )

−
∞
∑

i=0

�

α− 1
i

�

(−1)i
tα

i + 1
(1−βλt γ )

i+1
β ].
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PROOF. When β< 0, we have

m1(t ) =
1

s(t )

∫ ∞

t
(y − t ) f (y)d y =

1
s(t )
[
∫ ∞

t
y f (y)d y −

∫ ∞

t
t f (y)d y]

=
1

s(t )
[
∫ ∞

t
αγλyγ

∞
∑

i=0

�

α− 1
i

�

(−1)i (1−βλyγ )
i+1
β −1d y

−t
∫ ∞

0
αγλyγ−1

∞
∑

i=0

�

α− 1
i

�

(−1)i (1−βλyγ )
i+1
β −1d y]

=
1

s(t )
[
∞
∑

i

�

α− 1
i

�

(−1)i
αγ t

β+γ+iγ
β (−βλ)

i+1
β

β+ γ + iγ

×2F1(
β− i − 1

β
,−
β+ γ + iγ

βγ
;
γ − 1
γ
− i + 1

β
;

t−γ

βλ
)

−
∞
∑

i=0

�

α− 1
i

�

(−1)i
tα(1−βλt γ )

i+1
β

i + 1
]

and when β> 0, we have

m1(t )=
1

s(t )

∫ 1/(βλ)
1
γ

t
(y − t ) f (y)d y =

1
s(t )
[
∫ 1/(βλ)

1
γ

t
y f (y)d y −

∫ 1/(βλ)
1
γ

t
t f (y)d y]

=
1

s(t )
[
∫ 1/(βλ)

1
γ

t
αγλyγ

∞
∑

i=0

�

α− 1
i

�

(−1)i (1−βλyγ )
i+1
β −1d y

−t
∫ 1/(βλ)

1
γ

0
αγλyγ−1

∞
∑

i=0

�

α− 1
i

�

(−1)i (1−βλyγ )
i+1
β −1d y]

=
1

s(t )
[
∞
∑

i

�

α− 1
i

�

(−1)i
αγλ

γ + 1
t γ+1(1−βλt γ )

i+1
β

×2F1(1,1+
1
γ
+

i + 1
β

; 2+
1
γ

;βλt γ )−
∞
∑

i=0

�

α− 1
i

�

(−1)i
tα

i + 1
(1−βλt γ )

i+1
β ].

2

On the other hand, we analogously discuss the reversed residual life and some of its
properties. The reversed residual life can be defined as the conditional random variable
t −Y |Y ≤ t which denotes the time elapsed from the failure of a component given that
its life is less than or equal to t . Also in reliability, the mean reversed residual life and the
ratio of two consecutive moments of reversed residual life characterize the distribution
uniquely.
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The r -th order moment of the reversed residual life for the EEW distribution can be
obtained via the general formula

µr (t ) = E[(t − y)r |Y ≤ t ]

in two cases β< 0 and β> 0. Let β< 0, thus the r -th reversed residual life is given by

µr (t )=
1

F (t )

∫ t

0
(t − y)r f (y)d y =

1
F (t )

∞
∑

i=0

r
∑

j=0

�

α− 1
i

��

r
j

�

(−1)r+i− jαe−
iπ(γ+r− j )

γ

×[
t j (βλ)

j−r
γ Γ ( j−r

γ +
i+1
β )Γ (

γ+r− j
γ )

βΓ (β−i−1
β )

+
γ (βλ)

i+1
β

rβ− jβ+ γ + iγ
e

iπ(rβ− jβ+γ+iγ )
βγ

×t r+ (i+1)γ
β

2F1(
β− i − 1

β
,

j − r
γ
−

j + 1
β

;
γ + j − r

γ
− i + 1

β
;

t−γ

βλ
)], (6)

and for β> 0 the r -th reversed residual life is given by

µr (t ) =
1

F (t )

∫
1

(βλ)1/γ

0
(t − y)r f (y)d y

=
1

F (t )

∞
∑

i=0

r
∑

j=0

�

α− 1
i

��

r
j

�

(−1)r+i− j
αλt j (βλ)−

γ+r− j
γ Γ ( i+1

β )Γ (
γ+r− j
γ )

Γ ( i+1
β +

γ+r− j
γ )

,

where t > 1
(βλ)1/γ , and for t < 1

(βλ)1/γ , the r -th reversed residual life is same as the Equa-
tion (6). The mean and second moment of the reversed residual life of the EEW distri-
bution can be obtained by setting r = 1,2 in above equations. Also, by using µ1(t ) and
µ2(t ), we obtained the variance of the reversed residual life of the EEW distribution.

4. PARAMETRIC INFERENCE

In this section, we consider the parametric inference of the unknown parameters α,β,γ
and λ of the EEW distribution. The parametric inferences will be discussed based on
likelihood method in two situations; censored and full data.

4.1. Likelihood method based on censored data

In most of survival analysis and reliability studies, the censored data are often encoun-
tered. Let Yi be the random variable from EEW distribution with the parameters vector
Θ = (α,β,γ ,λ). A simple random censoring procedure is one in which each element
i is assumed to have a lifetime Yi and a censoring time Ci , where Yi and Ci are inde-
pendent random variables. Suppose that the data including n independent observations
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yi =min(Yi ,Ci ) for i = 1, · · · , n. The distribution of Ci does not depend on any of the
unknown parameters of Yi . The censored log-likelihood `c (Θ) is given by

`c (Θ)= r logα+ r logγ + r logλ+(γ − 1)
∑

i∈F

log yi +(
1
β
− 1)

∑

i∈F

log(1−βλyγi )

+(α− 1)
∑

i∈F

log(1− (1−βλyγi )
1/β)+

∑

i∈C

log[1− (1− (1−βλyγi )
1/β)α],

where r is the number of failures and F and C denote the uncensored and censored sets
of observations, respectively.

By differentiating the log-likelihood function with respect to α,β,γ and λ, respec-
tively, components of score vector U (Θ) = ( ∂ `c (Θ)

∂ α , ∂ `c (Θ)
∂ β , ∂ `c (Θ)

∂ γ , ∂ `c (Θ)
∂ λ ) are derived as

∂ `c (Θ)
∂ α

=
r
α
+
∑

i∈F

log
�

1−
�

1−βλyγi
�1/β�

−
∑

i∈C

�

1−
�

1−βλyγi
�1/β�α log

�

1−
�

1−βλyγi
�1/β�

1−
�

1−
�

1−βλyγi
�1/β�α

∂ `c (Θ)
∂ β

=− 1
β2

∑

i∈F

log
�
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�

−
�

1
β
− 1

�

∑

i∈F

λyγi
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i∈F
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�

− log(1−βλyγi )
β2 − λyγi

β(1−βλyγi )

�

1−
�

1−βλyγi
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+
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i∈C

α
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4.2. Likelihood method based on complete data

Let y1, ..., yn be the random sample of size n from EEW distribution. The log-likelihood
function is given by

`(α,β,γ ,λ)= n logα+ n logγ + n logλ+(γ − 1)
n
∑

i=1

log yi

+(
1
β
− 1)

n
∑

i=1

log(1−βλyγi )+ (α− 1)
n
∑

i=1

log(1− (1−βλyγi )
1/β).

The first derivatives of the log-likelihood function with respect to α,β,γ and λ are given
in the Appendix, and the maximum likelihood estimators (MLEs) of parameters can be
obtained by maximizing this function. For given β,γ and λ, the MLE of α can be
obtained as

α̂(β,γ ,λ) =− n
∑n

i=1 log(1− (1−βλyγi )
1/β)

.

By maximizing the profile log-likelihood function `(α̂(β,γ ,λ),β,γ ,λ), with respect to
β,γ ,λ, the MLEs of β,γ and λ can be obtained. Now we will discuss the asymptotic
properties of the MLEs in two situations; β< 0 and β> 0.
THE REGULAR CASE. Whenβ< 0, the situation is exactly the same as the generalized
Weibull case discussed by Mudholkar et al. (1996). In this case EEW satisfies all the
regularity properties of the parametric family. Then asymptotically, as n→∞,

p
n(Θ̂−Θ)−→N4(0, I−1(Θ)),

where Θ̂ = (α̂, β̂, γ̂ , λ̂), Θ = (α,β,γ ,λ), N4 denotes the tetravariate normal distribution
and I (Θ) is the Fisher information matrix. The observed information matrix is

In (Θ) =−









Iαα Iαβ Iαγ Iαλ
Iαβ Iββ Iβγ Iβλ
Iαγ Iβγ Iγγ Iγλ
Iαλ Iβλ Iγλ Iλλ









,

where

Iθiθ j
=

∂ 2`

∂ θi∂ θ j
, i , j = 1,2,3,4

and they are provided in the Appendix.
THE NON-REGULAR CASE. Whenβ> 0, we propose a reparametrization of α,β,γ ,λ

as (α,β,γ ,φ), where φ =
1

(βλ)
1
γ

, then λ =
φ−γ

β
. The PDF (2) and CDF (1) can be

written as

f (y;α,β,γ ,φ) = αγ
φ−γ

β
yγ−1(1− (

y
φ
)γ )

1
β−1(1− (1− (

y
φ
)γ )

1
β )α−1 (7)
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and
F (y;α,β,γ ,φ) = (1− (1− (

y
φ
)γ )

1
β )α,

respectively, for 0 < y < φ and 0 otherwise. The corresponding quantile function be-
comes

Q(y;α,β,γ ,φ) = (φγ (1− (1− u
1
α )β))

1
γ .

Based on a random sample y1, ..., yn from (7), the MLEs can be obtained by maximizing
the log-likelihood function

`(α,β,γ ,φ)= n logα+ n logγ − nγ logφ− n logβ+(γ − 1)
n
∑

i=1

log y(i)

+(
1
β
− 1)

n
∑

i=1

log(1− (
y(i)
φ
)γ )+ (α− 1)

n
∑

i=1

log(1− (1− (
y(i)
φ
)γ )

1
β ).

(8)

It is immediate from (8) that for fixed 0 < α < 1, 0 < β < 1 and γ > 0, as φ ↓ y(n),
`(α,β,γ ,φ)→∞. Thus, in this case the MLEs do not exist.

To estimate the unknown parameters, first estimate the parameterφ by its consistent
estimator φ̃= y(n). The modified log-likelihood function based on the remaining (n−1)

observations after ignoring the largest observation and replacing φ by φ̃= y(n) is

`(α,β,γ , φ̃) = (n− 1) logα+(n− 1) logγ − (n− 1)γ log y(n)− (n− 1) logβ

+(γ − 1)
n−1
∑

i=1

log y(i)+(
1
β
− 1)

n−1
∑

i=1

log(1− (
y(i)
y(n)
)γ )

+(α− 1)
n−1
∑

i=1

log(1− (1− (
y(i)
y(n)
)γ )

1
β ).

The modified MLE of α and λ, for fixed β and γ , can be obtained as

α̃(β,γ ) =− n− 1

1− (1− ( y(i)
y(n)
)γ )

1
β

and

λ̃=
y−γ(n)
β

,

respectively. Therefore, in this case the modified MLE of β and λ can be obtained by
solving the optimization problem from the modified log-likelihood function of β and
γ .

For the propose of statistical inference, an understanding of the distribution of φ̃ is
necessary. This is given in the following theorem.
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THEOREM 10. i) The marginal distribution of φ̃= y(n) is given by

p(φ̃≤ t ) = (1− (1− ( t
φ
)γ )

1
β )nα.

ii) Asymptotically as n→∞,

nβ((
y(n)
φ
)γ − 1)→−Xβ,

where X ∼ E x p(α), with mean 1
α .

PROOF. i)

p(φ̃≤ t ) = p(Y(n) ≤ t ) = (p(Y ≤ t ))n = (1− (1− ( t
φ
)γ )

1
β )nα.

ii)

Y(n)
d=Q(U(n)) =φ(1− (1−U

1
α

(n))
β)

1
γ ,

so
Y(n)
φ
= (1− (1−U

1
α

(n))
β)

1
γ ,

then we have

nβ((
Y(n)
φ
)γ − 1) =−(n(1−U

1
α

(n)))
β.

Hence,

p(n(1−U
1
α

(n))≤ t ) = p(1−U
1
α

(n) ≤
t
n
) = p(−U

1
α

(n) ≤
t
n
− 1) = p(U

1
α

(n) ≥ 1− t
n
)

= p(U(n) ≥ (1−
t
n
)α) = 1− ((1− t

n
)α)n = 1− (1− t

n
)nα,

as n −→∞, we have

p(n(1−U
1
α

(n))≤ t )−→ 1− e−αt .

Thus

nβ((
y(n)
φ
)γ − 1)→−Xβ, where X ∼ Exp(α).

2
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5. SIMULATION EXPERIMENTS AND DATA ANALYSIS

5.1. Simulation experiments

In this section, we perform some simulation studies, just to verify how the MLEs work
for different sample sizes and different parameter values for the proposed EEW model.
The results are obtained from 1000 Monte Carlo replications from simulations carried
out using the software R. We have used the following parameter sets:
Model 1: α= 0.8,β=−0.50,γ = 0.8,λ= 1
Model 2: α= 2,β=−0.8,γ = 0.8,λ= 1,
Model 3: α= 0.8,β=−0.8,γ = 2,λ= 1,
Model 4: α= 0.8,β=−2,γ = 0.8,λ= 1,
Model 5: α= 0.8,β= 0.5,γ = 0.8,λ= 1
Model 6: α= 2,β= 0.8,γ = 0.8,λ= 1
Model 7: α= 0.8,β= 0.8,γ = 2,λ= 1.
We have used different sample sizes, namely: n = 50,100,150,200,250,300,350,400,450
and 500.

TABLE 1
The MLEs, Std and RMSE for models 1-3.

(α,β,γ ,λ) n MLE Absolute Bias RMSE

α̂ β̂ γ̂ λ̂ α̂ β̂ γ̂ λ̂ α̂ β̂ γ̂ λ̂
(0.8, -0.5, 0.8, 1.0) 50 2.169 -0.765 1.0149 1.389 1.703 0.859 0.654 0.870 1.703 0.859 0.654 0.869

100 1.710 -0.567 0.8472 1.263 1.173 0.581 0.464 0.619 1.173 0.581 0.464 0.619
150 1.529 -0.510 0.7972 1.249 0.955 0.462 0.382 0.549 0.955 0.462 0.382 0.549
200 1.291 -0.530 0.8130 1.171 0.718 0.424 0.345 0.468 0.718 0.424 0.345 0.468
250 1.221 -0.510 0.8021 1.152 0.635 0.368 0.308 0.434 0.635 0.368 0.308 0.434
300 1.121 -0.491 0.7889 1.112 0.518 0.340 0.273 0.367 0.518 0.340 0.273 0.367
350 1.065 -0.517 0.8156 1.082 0.477 0.323 0.270 0.359 0.477 0.323 0.270 0.359
400 1.058 -0.497 0.7934 1.093 0.447 0.292 0.242 0.337 0.447 0.292 0.242 0.337
450 0.992 -0.512 0.8079 1.080 0.381 0.261 0.223 0.315 0.381 0.261 0.223 0.315
500 0.975 -0.513 0.8094 1.061 0.362 0.251 0.221 0.300 0.362 0.255 0.221 0.300

(2.0, -0.8, 0.8, 1.0) 50 5.319 -1.336 1.081 2.247 4.230 1.184 0.721 1.799 4.230 1.184 0.721 1.799
100 5.350 -1.004 0.887 1.889 4.152 0.782 0.524 1.370 4.152 0.782 0.524 1.370
150 4.840 -0.891 0.835 1.616 3.629 0.606 0.431 1.101 3.629 0.606 0.431 1.101
200 4.572 -0.821 0.791 1.587 3.239 0.514 0.367 0.999 3.239 0.514 0.367 0.999
250 4.350 -0.812 0.787 1.479 3.042 0.489 0.352 0.907 3.042 0.489 0.352 0.907
300 3.957 -0.853 0.816 1.410 2.661 0.461 0.332 0.837 2.661 0.461 0.332 0.837
350 3.799 -0.833 0.804 1.379 2.525 0.438 0.317 0.826 2.525 0.438 0.317 0.826
400 3.847 -0.783 0.775 1.396 2.438 0.384 0.281 0.757 2.438 0.384 0.281 0.757
450 3.502 -0.786 0.781 1.323 2.082 0.351 0.261 0.678 2.082 0.351 0.261 0.678
500 3.513 -0.792 0.779 1.335 2.082 0.361 0.264 0.661 2.080 0.348 0.259 0.675

(0.8, -0.8, 2.0, 1.0) 50 2.944 -1.047 2.299 1.691 2.444 1.099 1.611 1.136 2.444 1.099 1.611 1.136
100 2.178 -0.980 2.205 1.378 1.674 0.828 1.277 0.797 1.674 0.828 1.278 0.797
150 1.742 -0.913 2.097 1.282 1.205 0.668 1.014 0.661 1.205 0.668 1.014 0.661
200 1.438 -0.862 2.040 1.215 0.878 0.558 0.851 0.547 0.878 0.558 0.851 0.547
250 1.332 -0.820 1.994 1.194 0.740 0.456 0.707 0.484 0.740 0.456 0.707 0.484
300 1.299 -0.818 1.992 1.171 0.708 0.444 0.697 0.468 0.708 0.444 0.697 0.468
350 1.107 -0.856 2.051 1.108 0.519 0.400 0.618 0.396 0.519 0.400 0.618 0.396
400 1.112 -0.805 1.979 1.129 0.491 0.362 0.565 0.375 0.491 0.362 0.565 0.375
450 1.025 -0.815 2.007 1.093 0.411 0.333 0.529 0.351 0.411 0.333 0.529 0.351
500 1.035 -0.815 2.001 1.104 0.408 0.330 0.523 0.347 0.405 0.330 0.524 0.344
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We report the average estimates, absolute biases and the associated square root of
mean squared errors (RMSE). The results are presented in Table 1 and Table 2. From
the results presented, the following points are quite clear. (i) It is quite clear that the
MLEs are working quite well. As the sample size increases the standard deviation and
the square root of mean squared errors decrease. (i i) This verifies the consistency prop-
erties of the MLEs. For all practical purposes, MLEs can be used quite effectively for
estimating the unknown parameters of the proposed EEW model.

TABLE 2
The MLEs, Std and RMSE for models 4-7.

(α,β,γ ,λ) n MLE Absolute Bias RMSE

α̂ β̂ γ̂ λ̂ α̂ β̂ γ̂ λ̂ α̂ β̂ γ̂ λ̂
(0.8, -2.0, 0.8, 1.0) 50 3.693 -2.517 0.864 2.979 3.187 1.942 0.533 2.436 3.187 1.942 0.533 2.436

100 2.604 -2.174 0.800 2.090 2.043 1.375 0.383 1.488 2.043 1.375 0.383 1.488
150 2.275 -2.087 0.785 1.870 1.706 1.166 0.340 1.268 1.706 1.166 0.340 1.268
200 1.572 -2.179 0.824 1.490 1.001 0.957 0.269 0.882 1.001 0.957 0.269 0.882
250 1.410 -2.047 0.793 1.506 0.798 0.804 0.234 0.829 0.798 0.804 0.234 0.829
300 1.240 -2.092 0.805 1.321 0.637 0.793 0.222 0.664 0.637 0.793 0.222 0.664
350 1.107 -2.063 0.809 1.245 0.498 0.668 0.194 0.577 0.498 0.668 0.194 0.577
400 1.153 -1.992 0.787 1.338 0.468 0.612 0.182 0.550 0.455 0.612 0.182 0.541
450 1.031 -2.024 0.794 1.257 0.385 0.597 0.172 0.510 0.385 0.597 0.172 0.510
500 0.991 -2.001 0.790 1.191 0.342 0.555 0.159 0.451 0.342 0.555 0.159 0.451

(0.8, 0.5, 0.8, 1.0) 50 4.308 0.596 0.586 1.139 3.670 0.216 0.631 0.332 3.670 0.216 0.631 0.332
100 2.969 0.578 0.703 1.054 2.368 0.193 0.604 0.279 2.363 0.193 0.604 0.279
150 2.468 0.577 0.692 1.051 1.853 0.161 0.545 0.247 1.853 0.161 0.545 0.247
200 2.101 0.553 0.734 1.053 1.500 0.143 0.530 0.237 1.500 0.143 0.530 0.237
250 1.814 0.534 0.784 1.037 1.237 0.130 0.507 0.228 1.237 0.130 0.507 0.228
300 1.692 0.539 0.745 1.049 1.085 0.116 0.462 0.212 1.085 0.116 0.462 0.212
350 1.605 0.539 0.748 1.040 0.998 0.110 0.432 0.204 0.998 0.110 0.432 0.204
400 1.416 0.527 0.799 1.015 0.837 0.104 0.424 0.193 0.837 0.104 0.424 0.193
450 1.314 0.524 0.788 1.018 0.717 0.098 0.384 0.179 0.717 0.098 0.384 0.179
500 1.303 0.521 0.783 1.025 0.705 0.093 0.379 0.176 0.705 0.093 0.379 0.176

(2.0, 0.8, 0.8, 1.0) 50 3.234 0.736 0.897 1.084 1.394 0.108 0.321 0.149 1.394 0.108 0.321 0.149
100 2.201 0.800 0.805 1.016 0.227 0.049 0.079 0.060 0.227 0.049 0.079 0.060
150 2.041 0.802 0.808 1.007 0.227 0.049 0.079 0.060 0.068 0.037 0.054 0.042
200 2.029 0.806 0.800 1.002 0.049 0.026 0.039 0.030 0.049 0.026 0.039 0.030
250 2.007 0.806 0.803 0.999 0.023 0.020 0.029 0.023 0.023 0.020 0.029 0.023
300 2.008 0.804 0.803 0.999 0.022 0.019 0.024 0.019 0.022 0.016 0.024 0.019
350 2.004 0.803 0.802 1.000 0.018 0.015 0.022 0.018 0.018 0.015 0.022 0.018
400 2.001 0.804 0.804 0.999 0.013 0.012 0.020 0.014 0.013 0.012 0.020 0.014
450 2.000 0.805 0.803 0.998 0.012 0.011 0.018 0.012 0.012 0.011 0.018 0.012
500 2.001 0.804 0.802 0.998 0.010 0.009 0.016 0.011 0.010 0.009 0.016 0.011

(0.8, 0.8, 2.0, 1.0) 50 2.759 0.723 1.788 1.159 2.080 0.126 1.178 0.214 2.080 0.126 1.178 0.214
100 1.483 0.781 1.886 1.053 0.769 0.081 0.633 0.126 0.769 0.081 0.633 0.126
150 1.056 0.786 2.015 1.027 0.336 0.069 0.404 0.093 0.336 0.069 0.404 0.093
200 0.935 0.794 2.004 1.016 0.183 0.053 0.234 0.067 0.184 0.053 0.234 0.067
250 0.888 0.806 1.977 1.009 0.122 0.044 0.130 0.057 0.122 0.044 0.130 0.057
300 0.854 0.804 1.969 1.011 0.084 0.037 0.082 0.048 0.084 0.037 0.082 0.048
350 0.847 0.805 1.968 1.008 0.075 0.032 0.064 0.042 0.075 0.032 0.064 0.042
400 0.823 0.804 1.988 1.006 0.048 0.028 0.045 0.035 0.048 0.028 0.045 0.035
450 0.828 0.805 1.981 1.00 0.052 0.025 0.048 0.032 0.052 0.025 0.048 0.032
500 0.812 0.807 1.995 0.999 0.035 0.023 0.035 0.028 0.035 0.023 0.035 0.028
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5.2. Data analysis

In this part, we fit the EEW distribution to the real data set and also compare the fit-
ted EEW with some sub-models such as: the EW, W, EGE, GE and exponential distri-
butions, to show the superiority of the EEW distribution. In fact, it is observed that
empirical hazard function of the data indicates that the data are coming from a lifetime
distribution which has a DID shaped hazard function and the proposed distribution
provides the best fit than many existing lifetime distributions. Therefore, the proposed
distribution provides another option to a practitioner to use it for data analysis purposes.
The results are obtained by using the function optim form package stats4 in R.

As a data set, we consider the 101 data points represent the stress-rupture life of
kevlar 49/epoxy strands which were subjected to constant sustained pressure at the 70%
stress level until all had failed, so that we have complete data with exact times of failure,
which are shown by Andrews and Herzberg (1985). Cooray and Ananda (2008) used
this data in fitting generalization of the half-normal distribution.

The TTT plot of this data set in Figure 3 display a decreasing-increasing-decreasing
(DID) hazard rate function. The MLEs of the parameters, -2log-likelihood, AIC (Akaike
information criterion), the Kolmogorov-Smirnov test statistic (K-S), the Anderson- Dar-
ling test statistic (AD), the Cramér-von Mises test statistic (CM) and Durbin-Watson test
statistic (DW) are displayed in Table 3. The CM and DW test statistics are described in
details in Chen and Balakrishnan (1995) and Watson (1961), respectively. In general,
the smaller the values of KS, AD, CM and WA, the better the fit to the data. From the
values of these statistics, we conclude that the EEW distribution provides a better fit to
this data than the EW, W, EGE, GE and exponential distributions.

Figure 3 – TTT Plots of Andrews and Herzberg data.

Plots of the estimated PDF and CDF of the EEW, EW, W, EGE, GE and exponential
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models fitted to the data set corresponding to Table 3, are given in Figures 4 and 5. Also,
Figure 6 is displayed the QQ-plot of the EEW model to the data set. These plots suggest
that the EEW distribution is superior to the other distributions in terms of model fitting.

TABLE 3
MLEs, K-S, p-value, -2 Log L, AD, CM, DW and AIC statistics for Andrews and Herzberg data.

Dist MLE K-S AIC p-value -2 Log L AD CM DW

EEW α̂= 0.100, β̂=−3.475 0.059 205.7 0.876 197.7 0.455 0.158 0.149
γ̂ = 6.936, λ̂= 0.008

EGE α̂= 0.877, β̂=−0.018 0.091 211.6 0.375 205.6 1.056 0.272 0.263
λ̂= 0.911

GE α̂= 0.866, λ̂= 0.888 0.089 209.6 0.404 205.6 1.021 0.263 0.257
EW α̂= 0.793, γ̂ = 1.060 0.084 211.6 0.467 205.6 0.955 0.247 0.243

λ̂= 0.811
E λ̂= 0.976 0.089 209.0 0.404 207.0 1.248 0.247 0.246
W γ̂ = 0.926, λ̂= 1.010, 0.097 210.0 0.303 206.0 1.122 0.279 0.272

Figure 4 – Plots of fitted PDF and CDF of EEW, EGE, GE, EW, exponential and Weibull models
for Andrews and Herzberg data.
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Figure 5 – Estimated distribution function versus the empirical distribution from the fitted EEW,
EGE, GE, EW, E and Weibull models for Andrews and Herzberg data.
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Figure 6 – QQ-plot of EEW model for Andrews and Herzberg data.

6. CONCLUSIONS AND SOME FUTURE WORK

We propose the extended exponentiated Weibull (EEW) distribution to generalized the
extended generalized exponential (EGE) distribution by adding a new shape parameter.
The PDF of the EEW distribution can take various shapes depending on it’s parameter
values. The hazard rate function of the EEW distribution can take i) increasing, i i)
decreasing, i i i) unimodal, i v) bathtub and v) decreasing-increasing-decreasing (DID)
shaped, depending on it’s parameter values. Therefore, it is quite flexible and can be
used effectively in modeling survival data and reliability problems. Application of the
EEW distribution to the real data set is given to show that the new distribution provides
consistently better fit than the some of its sub-models. Now a natural question is how to
choose the correct model, i.e. whether we should choose the full four-parameter model
or one of the sub models. As we have mentioned before, we may use some testing of
hypothesis namely whether the shape parameters take some specific values as indicated
in Section 2, or we can use some of the information theoretic criteria to choose the
correct model.

It should be mentioned that in this paper we have mainly discussed about the classical
inference of the unknown parameters. It will be interesting to develop the Bayesian
inference of the unknown parameters. One may think of taking independent gamma
priors of α, γ and δ and nomal priors on β. It is expected that the Bayes estimates or
the associated highest posterior density credible intervals cannot be obtained in closed
form. One my try to use importance sampling method or Markov chain Monte Carlo
methods to compute Bayes estimates and to construct highest posterior density credible
intervals. Another important development can be to provide inference both classical
and Bayesian when we have censored data. More work is needed along these directions.
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APPENDIX

A. HAZARD FUNCTION

To prove Theorems 3, 4 and 5 we need the following Lemma.

LEMMA 11. Let U be a non-negative absolutely continuous random variable with the
PDF, CDF and hazard function as fU , FU and hU , respectively. For θ > 0, let us define
V = U θ. Then the shape of the hazard function of V will be the same as the shape of the
function g (u) = hU (u)u

1−θ, for u > 0.

PROOF. If we denote the PDF, CDF and the hazard function of V as fV (·), FV (·)
and hV (·), respectively, then after some calculations, it can be that for v > 0

hV (v) =
1
θ

hU (v
1/θ)v (1/θ)(1−θ).

Since v1/θ is an increasing function and it increases from zero to infinity as v increases
from zero to infinity, for θ > 0, the result follows. 2

PROOF (THEOREM 3). First observe that if V ∼ EEW(α,β,γ ,λ), then U =V γ ∼
EGE(α,β,λ). Now let us use Lemma 11 with θ = 1/γ . Using part (b) of Theorem 1
and Lemma 11, the result immediately follows. 2

PROOF (THEOREM 4). Using part (a) of Theorem 4 and Lemma 11, the result im-
mediately follows. 2

PROOF (THEOREM 5). From Theorem 3, it follows that if U ∼ EGE(α,β,λ), then
hU (u) is unimodal. If for u > 0, g (u) = hU (u)u

1−1/γ , then

g ′(u) = h ′U (u)u
1−1/γ +

(1− 1/γ )hU (u)
u1/γ

.

Therefore, the sign of g ′(u) will be the same as the sign of

p(u) = h ′U (u)u +(1− 1/γ )hU (u).

Since hU (u)→ 0 as u→∞, and γ > 1, then p(u) changes sign only once. Hence, hV (v)
is also unimodal. 2
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B. THE FIRST DERIVATIVES OF THE LOG-LIKELIHOOD FUNCTION

The first derivatives of the log-likelihood function with respect to α,β,γ and λ are given
by
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The elements of the observed information matrix are
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2
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β(1−βλyγi )

)

(1− (1−βλyγi )
1
β )2

+
λy2γ

i (1−βλyγi )
1
β−2

1− (1−βλyγi )
1
β

+
yγi (1−βλyγi )

1
β−1(− log(1−βλyγi )

β2 − λyγi
β(1−βλyγi )

)

1− (1−βλyγi )
1
β
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Iγλ=
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= (

1
β
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n
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(−
β2λ log(yi )y

2γ
i
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2
−
β log(yi )y

γ
i
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)
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n
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(−
λ log(yi )y

2γ
i (1−βλyγi )

2
β−2
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1
β )2

−
( 1
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1
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1
β

+
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SUMMARY

In this paper, we introduce a univariate four-parameter distribution. Several known distributions
like exponentiated Weibull or extended generalized exponential distribution can be obtained as
special case of this distribution. The new distribution is quite flexible and can be used quite effec-
tively in analysing survival or reliability data. It can have a decreasing, increasing, decreasing-
increasing-decreasing (DID), upside-down bathtub (unimodal) and bathtub-shaped failure rate
function depending on its parameters. We provide a comprehensive account of the mathemat-
ical properties of the new distribution. In particular, we derive expressions for the moments,
mean deviations, Rényi and Shannon entropy. We discuss maximum likelihood estimation of
the unknown parameters of the new model for censored and complete sample using the profile
and modified likelihood functions. One empirical application of the new model to real data are
presented for illustrative purposes.

Keywords: Probability weighted moments; Rényi and Shannon entropy; Extended generalized
exponential distribution; Regular family of distributions.


