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1. INTRODUCTION

The Weibull distribution is considered as a versatile family of life distributions for mod-
elling data, especially in reliability and survival analysis. Many extensions and mod-
ified forms of the Weibull distribution have been introduced and studied by various
researchers, see Ghitany et al. (2005) and Tahir and Nadarajah (2015).
The probability density function (pdf) and cumulative distribution function (cdf) of
Weibull distribution are respectively, given by

g (x;β) =βxβ−1e−xβ ; x > 0, β> 0, (1)

G(x;β) = 1− e−xβ ; x > 0, β> 0. (2)

Marshall and Olkin (1997) introduced a method of including an extra shape parameter
to a given baseline model having cdf G(x), thus defined an extended distribution with
survival function

F̄ (x;α) =
αḠ(x)

G(x)+αḠ(x)
; −∞< x <∞, α > 0, (3)

where Ḡ(x) = 1−G(x).
Various authors studied several univariate distributions belonging to the family of Mar-
shall -Olkin distributions, see Thomas and Jose (2003), Alice and Jose (2005), Ghitany
et al. (2005), Ghitany et al. (2007), Jose et al. (2010) and Ristić and Kundu (2015). Jayaku-
mar and Mathew (2008) introduced a generalization of the family of Marshall-Olkin dis-
tributions using Lehman alternative 1 approach. Sankaran and Jayakumar (2008) pre-
sented a detailed discussion on the physical interpretation of the Marshall-Olkin family,
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by considering proportional odds model. Tahir and Nadarajah (2015) proposed another
generalization of the family of Marshall-Olkin distributions using Lehmann alternative
2 approach. Krishnan and George (2017) introduced a generalization of Marshall-Olkin
Weibull distribution. Nadarajah et al. (2013) introduced a generalization of Marshall-
Olkin family of distributions as follows.

Let X1, X2,... be a sequence of independent and identically distributed (i.i.d) random
variables with survival function Ḡ(x) and N be a truncated negative binomial random
variable, independent of Xi ’s, with parameters γε(0,1) and θ > 0, such that

P (N = n) =
γ θ

1− γ θ

�

θ+ n− 1
θ− 1

�

(1− γ )n ; n = 1,2,3, ....

If UN =min(X1,X2, ...,XN ), then the survival function of UN is

F̄ (x;α) =
γ θ

1− γ θ
∞
∑

n=0

�

θ+ n− 1
θ− 1

�

((1− γ )Ḡ(x))n

=
γ θ

1− γ θ
[(G(x)+ γ Ḡ(x))−θ− 1]; xεR. (4)

If γ > 1 and N is a truncated negative binomial random variable with parameters 1
γ and

θ > 0, then VN =max(X1,X2, ...,XN ) has the same survival function given by Equation
(4). Jayakumar and Sankaran (2016b) defined a generalized uniform distribution using
the approach of Nadarajah et al. (2013). Babu (2016) introduced the Weibull truncated
negative binomial distribution. Further, Jayakumar and Sankaran (2017) introduced the
generalized exponential truncated negative binomial distribution and studied its prop-
erties .
The paper is outlined as follows. In Section 2, we introduce a new generalization of the
Weibull distribution and discuss the shapes of density function and hazard rate func-
tion. Structural properties of the new distribution such as moments, quantile function,
median, random number generation and entropies are derived in Section 3. The distri-
bution of order statistics is investigated in Section 4. The maximum likelihood estima-
tion of the model parameters are discussed in Section 5. In Section 6, we analyse a real
data set to illustrate the usefulness of the proposed distribution. A first order autore-
gressive minification process with new distribution as marginal is developed in Section
7. Finally, concluding remarks are presented in Section 8.

2. MOWTNB DISTRIBUTION

Here, we introduce a new family of distribution, namely, the Marshall-Olkin Weibull
truncated negative binomial (MOWTNB) distribution with four parameters (α,β,γ ,δ),
obtained by substituting the survival function of the Marshall-Olkin Weibull distribu-
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tion

Ḡ(x) =
αe−xβ

1− (1−α)e−xβ
; x > 0,α,β> 0,

in the family of distribution given by Nadarajah et al. (2013).
The new survival function thus obtained is

F̄ (x;α,β,γ ,θ) =
γ θ

1− γ θ





�

1− (1−α)e−xβ

1− (1−αγ )e−xβ

�θ

− 1



 , (5)

for x > 0 and α,β,γ ,θ > 0.
The cdf and pdf of MOWTNB(α,β,γ ,θ) are respectively given by

F (x;α,β,γ ,θ) =
1

1− γ θ
−

γ θ

1− γ θ





�

1− (1−α)e−xβ

1− (1−αγ )e−xβ

�θ


 (6)

and

f (x;α,β,γ ,θ) =
αβ(1− γ )θγ θxβ−1e−xβ

1− γ θ

�

1− (1−α)e−xβ
�θ−1

�

1− (1−αγ )e−xβ
�θ+1

, (7)

for x > 0 and α,β,γ ,θ > 0.
We can see that the MOWTNB family contains many distributions as special cases.
The distributions that arise as special cases of the MOWTNB(α,β,γ ,θ) distribution
are given below.

(i) When β = 1, the MOWTNB distribution reduces to the Marshall-Olkin expo-
nential truncated negative binomial distribution.

(ii) When θ= 1,γ −→ 1, the MOWTNB distribution reduces to the Marshall-Olkin
Weibull distribution.

(iii) When β= θ = 1,γ −→ 1 , the MOWTNB distribution reduces to the Marshall-
Olkin exponential distribution.

(iv) Whenβ= 2,θ= 1,γ −→ 1, the MOWTNB distribution reduces to the Marshall-
Olkin Rayleigh distribution.

(v) When β = θ = 1,γ = 2, the MOWTNB distribution reduces to the Marshall-
Olkin half logistic distribution.

(vi) When α= 1, the MOWTNB distribution reduces to the Weibull truncated nega-
tive binomial distribution.

(vii) When α = β = 1, the MOWTNB distribution reduces to the exponential trun-
cated negative binomial distribution.
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(viii) When α = θ = 1,γ −→ 1, the MOWTNB distribution reduces to the Weibull
distribution.

(ix) When α =β = θ = 1,γ −→ 1, the MOWTNB distribution reduces to the expo-
nential distribution.

(x) When α = θ = 1,β = 2,γ −→ 1, the MOWTNB distribution reduces to the
Rayleigh distribution.

(xi) When α = β = θ = 1,γ = 2, the MOWTNB distribution reduces to the half
logistic distribution.

Graphs of pdf for various values of parameters are presented in Figures 1 and 2.
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Figure 1 – Plots of pdf of MOWTNB(α,β,γ ,θ) when (i) β = 1,γ = 2,θ = 2 (left) and (ii) β =
3,γ = 2,θ= 2 (right), for various values of α.
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Figure 2 – Plots of pdf of MOWTNB(α,β,γ ,θ) when (i) α = 1.5,γ = 2,θ = 1 (left), for various
values of β and (ii) α= 1.5,β= 3,θ= 1 (right), for various values of γ .
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The hazard rate function and the reverse hazard rate function of the MOWTNB
(α,β,γ ,θ) are given by

h(x) =
αβ(1− γ )θxβ−1e−xβ

�

1− (1−α)e−xβ
�θ−1

�

�

1− (1−α)e−xβ
�θ �1− (1−αγ )e−xβ

�

−
�

1− (1−αγ )e−xβ
�θ+1�

and

r (x) =
αβ(1− γ )θγ θxβ−1e−xβ

�

1− (1−α)e−xβ
�θ−1

�

�

1− (1−αγ )e−xβ
�θ+1− γ θ

�

1− (1−α)e−xβ
�θ �1− (1−αγ )e−xβ

�

�
,

respectively.
The graph of the hazard rate function is presented in Figure 3.
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Figure 3 – Plots of hazard rate of MOWTNB(α,β,γ ,θ) when (i) β = 1,γ = 10,θ = 20 (left) and
(ii) β= 1,γ = 2,θ= 10 (right), for various values of α.

3. STATISTICAL PROPERTIES

Moments are necessary and important in any statistical analysis, especially in applica-
tions. If X has MOWTNB (α,β,γ ,θ) distribution, then its r th moment is given by
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µ
′

r = E[X r ]

=
∫ ∞

0

αβ(1− γ )θγ θxβ−1e−xβ

1− γ θ

�

1− (1−α)e−xβ
�θ−1

�

1− (1−αγ )e−xβ
�θ+1

d x

=
α(1− γ )θγ θ

1− γ θ

∫ 1

0
(− log t )

r
β
(1− (1−α)t )θ−1

(1− (1−αγ )t )θ+1
d t ,

by substituting t = e−xβ .
Case 1.
If |1−α|< 1, |1−αγ |< 1, then

µ
′

r =
α(1− γ )γ θΓ (θ+ 1)

1− γ θ
∞
∑

i=0

∞
∑

j=0

�

θ+ j
θ

� (−1) j (1−α)i (1−αγ ) j

Γ (θ− i)i !

∫ 1

0
(− log t )

r
β t i+ j d t

=
α(1− γ )γ θΓ (θ+ 1) r

β (
r
β − 1)...( r

β − (r − 1))

1− γ θ
∞
∑

i=0

∞
∑

j=0

�

θ+ j
θ

� (−1) j (1−α)i (1−αγ ) j

Γ (θ− i)i !(i + j + 1)
r
β+1

.

Case 2. If |1−α|<α, |1−αγ |<α, by letting t = 1− u,

µ
′

r =
α(1− γ )θγ θ

1− γ θ

∫ 1

0
(− log (1− u))

r
β
[1− (1−α)(1− u)]θ−1

[1− (1−αγ )(1− u)]θ+1
d u,

=
(1− γ )θ
αγ (1− γ θ)

∫ 1

0
(− log (1− u))

r
β
[1+( 1−αα )u]

θ−1

[1+( 1−αγαγ )u]θ+1
d u,

=
(1− γ )Γ (θ+ 1)
(1− γ θ)αγ

∞
∑

i=0

∞
∑

j=0

�

θ+ j
θ

� (−1) j (1−α)i (1−αγ ) j

αi+ jγ j

∫ 1

0
(1− v)i+ j (− log v)

r
β d v

=
(1− γ )Γ (θ+ 1) r

β (
r
β − 1)...( r

β − (r − 1))

(1− γ θ)αγ
∞
∑

i=0

∞
∑

j=0

i+ j
∑

k=0

�

θ+ j
θ

� (−1) j+k (1−α)i (1−αγ ) j (i + j − k + 1)k
k!(k + 1)

r
β+1

.
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The mean, variance, skewness and kurtosis of the MOWTNB distribution for vari-
ous values of parameters are presented in Table 1.

TABLE 1
Mean, Variance, Skewness and Kurtosis of MOWTNB(α,β,γ ,θ) distribution for different values of

α and θ when β= 1,γ = 2.

α θ Mean Variance Skewness Kurtosis
1.0 0.1 1.206 1.212 1.725 7.452

0.2 1.226 1.230 1.703 7.340
0.3 1.246 1.249 1.681 7.232
0.4 1.265 1.266 1.660 7.128
0.5 1.285 1.284 1.639 7.028

1.5 0.1 1.448 1.436 1.480 6.298
0.2 1.470 1.455 1.461 6.215
0.3 1.492 1.474 1.442 6.136
0.4 1.514 1.492 1.423 6.061
0.5 1.536 1.510 1.405 5.988

2.0 0.1 1.635 1.599 1.326 5.672
0.2 1.658 1.618 1.309 5.606
0.3 1.682 1.637 1.291 5.543
0.4 1.705 1.655 1.274 5.483
0.5 1.729 1.673 1.258 5.425

2.5 0.1 1.788 1.725 1.217 5.275
0.2 1.813 1.744 1.200 5.220
0.3 1.838 1.762 1.184 5.167
0.4 1.862 1.780 1.168 5.117
0.5 1.887 1.798 1.153 5.069

3.0 0.1 1.919 1.827 1.133 4.999
0.2 1.944 1.846 1.118 4.952
0.3 1.970 1.864 1.102 4.906
0.4 1.996 1.881 1.088 4.863
0.5 2.021 1.898 1.073 4.821

The quantile function of the random variable X, is obtained by inverting Equation
(6) as

xq = F −1(q) =



log





γ (1−α)− (1−αγ )(1− q(1− γ θ))
1
θ

γ − (1− q(1− γ θ))
1
θ









1
β

,

where X ∼M OW T NB(α,β,γ ,θ) and F −1(.) is the inverse function.
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In particular, the median is given by

X =



log





2
1
θ γ (1−α)− (1−αγ )(1+ γ θ)

1
θ

2
1
θ γ − (1+ γ θ)

1
θ









1
β

.

A random sample X with MOWTNB(α,β,γ ,θ) distribution can be simulated as

X =
�

log

�

γ (1−α)− (1−αγ )(1−Y (1− γ θ))
1
θ

γ − [1−Y (1− γ θ)]
1
θ

��

1
β

.

where Y∼U(0,1).

The entropy is the measure of variation or the uncertainty of a random variable X
for the pdf from the lifetime distribution. The Rényi entropy of a random variable X
with pdf f(.) is defined as

IR(η) =
1

1−η
log

∫ ∞

0
f η(x)d x;η > 0,η 6= 1.

The Rényi entropy of MOWTNB(α,β,γ ,θ) is

IR(η) =
1

1−η
log

∫ ∞

0





αβ(1− γ )θγ θxβ−1e−xβ

1− γ θ

�

1− (1−α)e−xβ
�θ−1

�

1− (1−αγ )e−xβ
�θ+1





η

d x.

By letting t = e−xβ , the above integral reduces to

IR(η) =
1

1−η
log

�

1
β

�

αβ(1− γ )θγ θ

1− γ θ

�η�

+

1
1−η

log





∫ 1

0
t η−1(− log t )(η−1)( β−1

β )





�

1− (1−α)e−xβ
�θ−1

�

1− (1−αγ )e−xβ
�θ+1





η

d x



 .

The Shannon entropy of X∼MOWTNB(α,β,γ ,θ) is given by

E[− log f (X )] = E



− log





αβ(1− γ )θγ θXβ−1e−Xβ

1− γ θ

�

1− (1−α)e−Xβ
�θ−1

�

1− (1−αγ )e−Xβ
�θ+1









= log
�

1− γ θ

αβ(1− γ )θγ θ

�

− (β− 1)E[logX ]+ E[Xβ]

−(θ− 1)E[log(1− (1−α)e−Xβ
)]

+(θ+ 1)E[log(1− (1−αγ )e−Xβ
)].
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4. ORDER STATISTICS

Let X1,X2, ...,Xn be a random sample of size n from MOWTNB (α,β,γ ,θ) and let
X(1),X(2), ...,X(n) denote the corresponding order statistics. Then, the pdf of i th order
statistic is

fX(i)
(x;α,β,γ ,θ) =

n!
(i − 1)!(n− i)!

αβ(1− γ )θγ θxβ−1

(1− γ θ)e xβ

�

1− (1−α)e−xβ
�θ−1

�

1− (1−αγ )e−xβ
�θ+1





1
1− γ θ

−
γ θ

1− γ θ





�

1− (1−α)e−xβ

1− (1−αγ )e−xβ

�θ








i−1





γ θ

1− γ θ





�

1− (1−α)e−xβ

1− (1−αγ )e−xβ

�θ

− 1









n−i

=
n!

(i − 1)!(n− i)!
αβθγ (n+1−i)θ(1− γ )

(1− γ θ)n
xβ−1e−xβ

(1− (1−α)e−xβ)θ−1

�

(1− (1−αγ )e−xβ)θ− γ θ(1− (1−α)e−xβ)θ
�i−1

�

(1− (1−α)e−xβ)θ− (1− (1−αγ )e−xβ)θ
�n−i

�

(1− (1−αγ )e−xβ)
�1+nθ

.

The pdf of the largest order statistic, X(n), is

fX(n)
(x;α,β,γ ,θ) =

nαβ(1− γ )θγ θxβ−1e x−β
�

1− (1−α)e−xβ)
�θ−1

(1− γ θ)n
h

�

(1− (1−αγ )e−xβ)
�θ
− γ θ

�

(1− (1−α)e−xβ)
�θ
in−1

�

(1− (1−αγ )e−xβ)
�1+nθ

.

The pdf of the smallest order statistic, X(1), is

fX(1)
(x;α,β,γ ,θ) =

nαβ(1− γ )θγ θxβ−1e x−β
�

1− (1−α)e−xβ)
�θ−1

(1− γ θ)n
h

�

(1− (1−α)e−xβ)
�θ
−
�

(1− (1−αγ )e−xβ)
�θ
in−1

�

(1− (1−αγ )e−xβ)
�1+nθ

.
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5. ESTIMATION OF PARAMETERS

The maximum likelihood estimators (MLEs) for the parameters of the MOWTNB dis-
tribution are discussed in this section.
Let x1, x2, ..., xn be an observed random sample from MOWTNB(α,β,γ ,θ) with un-
known parameter vector ν = (α,β,γ ,θ)T . Then, the likelihood function is

`(x; ν) =
n
∏

i=1

f (x;α,β,γ ,θ)

=
αnβnθnγ nθ(1− γ )n

(1− γ θ)n
(
∏n

i=1 xi )
β−1e−

∑

xβi
h

∏n
i=1(1− (1−α)e

−xβi )
iθ−1

h

∏n
i=1(1− (1−αγ )e

−xβi )
iθ+1

,

so that the log-likelihood function becomes

log ` = n logα+ n logβ+ n logθ+ n log(1− γ )+ nθ logγ − n log(1− γ θ)

+(β− 1)
n
∑

i=1

log xi −
n
∑

i=1

xβi +(θ− 1)
n
∑

i=1

log(1− (1−α)e−xβi )

−(θ+ 1)
n
∑

i=1

log(1− (1−αγ )e−xβi ).

Hence the score vector is

U (ν) =
�

∂ log`
∂ α

,
∂ log`
∂ β

,
∂ log`
∂ γ

,
∂ log`
∂ θ

�T

.

The partial derivatives of log-likelihood function with respect to the parameters are

∂ log `
∂ α

=
n
α
+(θ− 1)

n
∑

i=1

e−xβi

(1− (1−α)e−xβi )
− (θ+ 1)

n
∑

i=1

γ e−xβi

(1− (1−αγ )e−xβi )
,

∂ log `
∂ β

=
n
β
+

n
∑

i=1

log xi −
n
∑

i=1

xβi log xi +(θ− 1)
n
∑

i=1

(1−α)xβi e−xβi log xi

(1− (1−α)e−xβi )

−(θ+ 1)
n
∑

i=1

(1−αγ )xβi e−xβi log xi

(1− (1−αγ )e−xβi )
,
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∂ log `
∂ γ

=
−n

1− γ
+

nθ
γ
+

nθγ θ−1

1− γ θ
− (θ+ 1)

n
∑

i=1

αe−xβi

1− (1−αγ )e−xβi
,

∂ log `
∂ θ

= n logγ +
n
θ
+

nγ θ logγ
1− γ θ

+
n
∑

i=1

log(1− (1−α)e−xβi )

−
n
∑

i=1

log(1− (1−αγ )e−xβi ).

We can find the estimates of the unknown parameters by setting the score vector equal
to zero, U (ν) = 0 and solving them simultaneously to obtain the ML estimators α̂, β̂, γ̂
and θ̂. These equations cannot be solved analytically and statistical software can be
used to solve them numerically by means of iterative techniques such as the Newton-
Raphson algorithm. For the four-parameter MOWTNB distribution, all the second
order derivatives exist.

6. DATA ANALYSIS

The data set represents failure time of 50 items reported in Aarset (1987), as shown
in Table 2. Recently, Elbatal and Aryal (2013), Elbatal et al. (2016), Jayakumar and
Sankaran (2016a) analysed this data using transmuted additive Weibull distribution, the
additive Weibull geometric distribution and discrete Mittag-Leffler additive Weibull dis-
tribution, respectively. We compare the results of MOWTNB distribution with those
of the following distributions:

(a) Weibull (W) with pdf

f (x;β,λ) =βλβxβ−1e−(λx)β ; β,λ > 0,

(b) exponential (E) with pdf

f (x;α) = αe−αx ; α > 0,

(c) gamma (G) with pdf

f (x;α,β) =
βα

Γα
xα−1e−βx ; α,β> 0,

(d) generalized exponential (GE) with pdf

f (x;α,λ) = αλ(1− e−λx )α−1; α,λ > 0,



258 B. Krishnan and D. George

(e) Marshall-Olkin Weibull (MOW) with pdf

f (x;α,λ,β) =
αβλβxβ−1e−(λx)β

(1− (1−α)e−(λx)β)2
; α,β,λ > 0,

(f) Marshall-Olkin exponential (MOE) with pdf

f (x;α,λ) =
αλe−λx

(1− (1−α)e−λx )2
; α,λ > 0,

(g) exponentiated Weibull (EW) with pdf

f (x;γ ,λ,β) =βγλβxβ−1e−(λx)β(1− e−(λx)β)γ−1; γ ,λ,β> 0,

(h) exponentiated Weibull geometric (EWG) with pdf

f (x;α,β,γ , p) =
αγβα(1− p)xα−1e−(βx)α (1− e−(βx)α )γ−1

(1− p(1− e−(βx)α )γ )2
; α,β,γ > 0, pε(0,1),

(i) Marshall-Olkin additive Weibull (MOAW) with pdf

f (x;θ,α,β, p) =
p(αθxθ−1+ γβxβ−1)e−(αxθ+γ xβ)

[p +(1− p)(1− e−(αxθ+γ xβ))]2
; α,θ,γ ,β, p > 0,

(j) Weibull truncated negative binomial (WTNB) with pdf

f (x;α,θ,β,λ) =
(1−α)θαθβλβxβ−1e−(λx)β

(1−αθ)(1− (1−α)e−(λx)β)θ+1
; α,θ,β,λ > 0.

Also, for comparison purpose, we consider the scale parameter λ > 0 so that the
corresponding pdf of MOWTNB (α,β,γ ,θ,λ) is given by

f (x;α,β,γ ,θ) =
αβ(1− γ )θγ θλβxβ−1e−(λx)β

1− γ θ

�

1− (1−α)e−(λx)β
�θ−1

�

1− (1−αγ )e−(λx)β
�θ+1

.
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TABLE 2
Aarset data.

0.1 0.2 1 1 1 1 1 2 3 6
7 11 12 18 18 18 18 18 21 32
36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

Table 3 provides some descriptive statistics of the data.

TABLE 3
Descriptive Statistics of Aarset data.

n Min Max Mean Median Var Q1 Q3
50 0.10 86.00 45.69 48.50 1078.15 13.50 81.25

Plots of the estimated pdf of the MOWTNB model fitted to this data is given in
Figure 4.

20 40 60 80 100
x

0.005

0.010

0.015

0.020

0.025

Density

Figure 4 – Histogram and fitted pdf for the Aarset data.

The MLEs of the model parameters and numerical values of log ˆ̀, AIC, AICC, BIC,
HQIC and K-S statistic are presented in Table 4. Since the values of− log ˆ̀, AIC, AICC,
BIC, HQIC and K-S are smaller for the MOWTNB distribution compared with those
values of the other models such as W, E, G, GE, MOW, MOE, EW, EWG, MOAW and
WTNB, the new distribution seems to be a very competitive model to this data.
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TABLE 4
Parameter estimates and goodness of fit for various models fitted for Aarset data.

Model Estimates − log l̂ AIC AICC BIC HQIC K-S

MOWTNB α̂= 0.902, β̂= 0.537, 231.5 472.9 474.3 482.5 476.6 0.07
γ̂ = 2138.54, θ̂= 0.202
λ̂= 0.543

EWG γ̂ = 1.011, β̂= 0.026, 234.8 477.7 478.6 485.3 480.5 0.14
α̂= 1.069, p̂ = 0.037

MOAW α̂= 0.001, γ̂ = 0.016, 235.1 480.1 481.5 489.7 483.8 0.16
θ̂= 1.972, β̂= 0.658,
p̂ = 0.627

MOW λ̂= 0.713, β̂= 0.068, 238.9 483.8 484.4 489.6 486.0 0.12
α̂= 6.373

MOE α̂= 2.622, λ̂= 0.033, 239.6 483.1 483.4 486.9 484.6 0.12

GE α̂= 0.780, λ̂= 0.019 240.0 484.0 484.2 487.8 485.4 0.19

G α̂= 0.799, β̂= 0.018 240.2 484.4 484.6 488.2 485.8 0.58

W β̂= 0.948, λ̂= 0.022 241.0 486.0 486.2 489.8 490.1 0.17
E α̂= 0.022 241.1 484.1 484.2 486.0 484.9 0.64

WTNB α̂= 0.588, θ̂= 0.452, 245.2 498.4 499.3 506.1 501.3 0.37
β̂= 0.925, λ̂= 0.026

EW γ̂ = 8.070, β̂= 782.099, 261.1 528.1 528.6 533.8 530.4 0.92
λ̂= 0.163
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7. APPLICATION IN AUTOREGRESSIVE TIME SERIES MODELING

Now, we develop a first order autoregressive (AR(1)) minification process with MOWTNB
distribution as marginal distribution.
Consider an AR(1) minification process with structure

Xn =
¨

εn w.p ρ

min(Xn−1,εn) w.p 1−ρ
0<ρ< 1; n ≥ 1, (8)

where {εn} is a sequence of i.i.d random variables. In order to develop the time series
model with MOWTNB marginal distribution, we need the following survival function.
The Marshall-Olkin form of MOWTNB(α,β,γ ,θ) distribution with parameter ϑ has
the survival function given by

F̄εn
(x) =

1

1+ 1
ϑ

h

(1−(1−αγ )e−xβ )θ−γθ(1−(1−α)e−xβ )θ

γθ[(1−(1−α)e−xβ )θ−(1−(1−αγ )e−xβ )θ]

i
. (9)

THEOREM 1. The AR(1) process given by (8), defines a stationary AR(1) minification
process with MOWTNB (α,β,γ ,θ) as marginal distribution if and only if εn ’s are i.i.d

random variables having survival function (9) with X0
d=M OW T NB(α,β,γ ,θ).

PROOF. We have, for MOWTNB(α,β,γ ,θ),

F̄X (x) =
γ θ

1− γ θ





�

1− (1−α)e−xβ

1− (1−αγ )e−xβ

�θ

− 1





=
1

1+
h

(1−(1−αγ )e−xβ )θ−γθ(1−(1−α)e−xβ )θ

γθ[(1−(1−α)e−xβ )θ−(1−(1−αγ )e−xβ )θ]

i
.

The model (8) can be written in terms of survival function as

P (Xn > x) = P (εn > x)[ρ+(1−ρ)P (Xn−1 > x)].

That is,

F̄Xn
(x) = F̄εn

(x)[ρ+(1−ρ)F̄Xn−1
(x)]. (10)
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If {Xn} is stationary with MOWTNB (α,β,γ ,θ)marginals, then

F̄εn
(x) =

F̄X (x)
ρ+(1−ρ)F̄X (x)

=

γθ

1−γθ

�

�

1−(1−α)e−xβ

1−(1−αγ )e−xβ

�θ

− 1
�

ρ+(1−ρ)
�

γθ

1−γθ

�

�

1−(1−α)e−xβ

1−(1−αγ )e−xβ

�θ
− 1

��

=
1

ρ
h

(1−γθ)(1−(1−αγ )e−xβ )θ

γθ[(1−(1−α)e−xβ )θ−(1−(1−αγ )e−xβ )θ]

i

+(1−ρ)

=
1

1+ρ
h

(1−(1−αγ )e−xβ )θ−γθ(1−(1−α)e−xβ )θ

γθ[(1−(1−α)e−xβ )θ−(1−(1−αγ )e−xβ )θ]

i
.

That is, εn ’s are i.i.d random variables having survival function (9) with ϑ = 1
ρ .

Conversely, if εn ’s are i.i.d random variables having survival function (9) with

X0
d=MOWTNB (α,β,γ ,θ), then from (10), we have

F̄X1
(x) = ρF̄ε1

(x)+ (1−ρ)F̄ε1
(x)F̄X0

(x)

= ρ







1

1+ρ
h

(1−(1−αγ )e−xβ )θ−γθ(1−(1−α)e−xβ )θ

γθ[(1−(1−α)e−xβ )θ−(1−(1−αγ )e−xβ )θ]

i






+(1−ρ)







1

1+ρ
h

(1−(1−αγ )e−xβ )θ−γθ(1−(1−α)e−xβ )θ

γθ[(1−(1−α)e−xβ )θ−(1−(1−αγ )e−xβ )θ]

i













1

1+
h

(1−(1−αγ )e−xβ )θ−γθ(1−(1−α)e−xβ )θ

γθ[(1−(1−α)e−xβ )θ−(1−(1−αγ )e−xβ )θ]

i







=
1

1+
h

(1−(1−αγ )e−xβ )θ−γθ(1−(1−α)e−xβ )θ

γθ[(1−(1−α)e−xβ )θ−(1−(1−αγ )e−xβ )θ]

i
, on simplification

=
γ θ

1− γ θ





�

1− (1−α)e−xβ

1− (1−αγ )e−xβ

�θ

− 1



 .
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That is, X1
d=MOWTNB (α,β,γ ,θ). If we assume that Xn−1

d=MOWTNB(α,β,γ ,θ),

then by induction, we can establish that Xn
d=MOWTNB (α,β,γ ,θ). Hence the pro-

cess {Xn} is stationary with MOWTNB marginals. 2

8. CONCLUSION

In this article, we have introduced a four-parameter model, called the Marshall-Olkin
Weibull truncated negative binomial (MOWTNB) distribution, which extends the trun-
cated negative binomial distribution pioneered by Nadarajah et al. (2013) and some
other well-known distributions including the Marshall-Olkin Weibull distribution. We
have derived explicit expressions for the ordinary moments, median, quantile function,
Rényi entropy and Shannon entropy. The distribution of order statistics were obtained.
Further, the maximum likelihood estimation of the model parameters are discussed.
The new distribution is applied to a real data set. The results, compared with other
known distributions, revealed that the MOWTNB distribution provides a better fit than
several other competitive Weibull and exponential models. We hope that the proposed
model will attract wider application in areas such as engineering, lifetime data analysis,
meteorology, hydrology, and economics.

ACKNOWLEDGEMENTS

The authors would like to thank the Editor-in-Chief, and the Referees for their careful
reading and constructive comments and suggestions which greatly improved the presen-
tation of the paper.

REFERENCES

M. V. AARSET (1987). How to identify a bathtub hazard rate. IEEE Transactions on
Reliability, 36, no. 1, pp. 106–108.

T. ALICE, K. JOSE (2005). Marshall–Olkin semi–Weibull minification processes. Recent
Advances in Statistical Theory and Applications, 1, pp. 6–17.

M. BABU (2016). On a generalization of Weibull distribution and its applications. Inter-
national Journal of Statistics and Applications, 6, pp. 168–176.

I. ELBATAL, G. ARYAL (2013). On the transmuted additive Weibull distribution. Aus-
trian Journal of Statistics, 42, no. 2, pp. 117–132.

I. ELBATAL, M. MANSOUR, M. AHSANULLAH (2016). The additive Weibull–Geometric
distribution: Theory and applications. Journal of Statistical Theory and Applications,
15, no. 2, pp. 125–141.



264 B. Krishnan and D. George

M. GHITANY, F. AL-AWADHI, L. ALKHALFAN (2007). Marshall–Olkin extended Lo-
max distribution and its application to censored data. Communications in Statistics -
Theory and Methods, 36, no. 10, pp. 1855–1866.

M. GHITANY, E. AL-HUSSAINI, R. AL-JARALLAH (2005). Marshall–Olkin extended
Weibull distribution and its application to censored data. Journal of Applied Statistics,
32, no. 10, pp. 1025–1034.

K. JAYAKUMAR, T. MATHEW (2008). On a generalization to Marshall–Olkin scheme and
its application to Burr type XII distribution. Statistical Papers, 49, no. 3, pp. 421–439.

K. JAYAKUMAR, K. SANKARAN (2016a). A generalization of additive Weibull distribu-
tion and its properties. Journal of the Kerala Statistical Association, 27, pp. 22–34.

K. JAYAKUMAR, K. SANKARAN (2016b). On a generalisation of uniform distribution
and its properties. Statistica, 76, no. 1, pp. 83–91.

K. JAYAKUMAR, K. SANKARAN (2017). Generalized exponential truncated negative bi-
nomial distribution. American Journal of Mathematical and Management Sciences,
36, no. 2, pp. 98–111.
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SUMMARY

The Weibull distribution is one of the widely known lifetime distribution that has been exten-
sively used for modelling data in reliability and survival analysis. A generalization of both the
Marshall-Olkin Weibull distribution and the Weibull truncated negative binomial distribution is
introduced and studied in this article. Various distributional properties of the new distribution
are derived. Estimation of model parameters using the method of maximum likelihood is dis-
cussed. Applications to a real data set is provided to show the flexibility and potentiality of the
new distribution over other Weibull models. The first order autoregressive minification process
with the new distribution as marginal is also developed. We hope that the new model will serve
as a good alternative to other models available in the literature for modeling positive real data in
several areas.

Keywords: Autoregressive model; Hazard rate; Marshall-Olkin distribution; Minification pro-
cess; Renyi entropy; Shannon entropy; Weibull distribution.


