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1. INTRODUCTION

The lifetime experiments are usually time consuming and expensive in nature. To reduce
the cost and time of experimentation, various types of censoring schemes are used in life
testing experiments. The two most common censoring schemes in literature are type I
and type II censoring schemes. But these censoring schemes do not allow intermediate
removal of the experimental units from the experiment other than the final termination
point, see Chaturvedi and Vyas (2017a), Chaturvedi and Vyas (2017b), etc. For this rea-
son, a more general purpose censoring scheme known as progressive censoring scheme
is considered. Recently, the progressive censoring scheme has received considerable at-
tention in life testing and reliability studies. Progressive censoring scheme is a useful
method for deriving inferential conclusions for data which arise from such experiments
and it was first discussed by Cohen (1963). Recently it has become very popular in the
reliability and life testing experiments. An excellent monograph on progressive censor-
ing is given by Balakrishnan and Aggarwala (2000). Some recent studies on progressive
censoring can be found in Krishna and Kumar (2011), Krishna and Kumar (2013), Ras-
togi and Tripathi (2014), Kumar et al. (2017), Valiollahi et al. (2018) and references cited
therein.

The progressive type II right censoring scheme can briefly be described as follows:
Let n units are placed on test at time zero. Immediately following the first failure, R1
surviving units are removed from the test at random. Then, immediately following the
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second observed failure, R2 surviving units are removed from the test at random. This
process continues until, at the time of the mth observed failure, the remaining Rm =
n − R1 − R2 − . . .− Rm−1 −m units are all removed from the experiment. We denote
the m completely observed failure times by Xi :m:n , i = 1,2, . . . , m. The joint pdf of
X1:m:n ,X2:m:n , . . . ,Xm:m:n is given by, see, Balakrishnan and Aggarwala (2000)

fX1:m:n ,X2:m:n ,...,Xm:m:n
(x1, x2, . . . , xm) = c

m
∏

j=1

f (x j ){1− F (x j )}
R j , (1)

where, c = n(n−R1−1)(n−R1−R2−2) . . . (n−R1− . . .−Rm−1−m+1). Also, f (x j )
and F (x j ) are the probability density and distribution functions of X j :m:n , respectively.

If the random variable (rv) X denotes the lifetime of an item or system, the reliability
function is R(t ) = P (X > t ) and the stress-strength reliability is the probability P =
P (X >X ∗). The stress-strength reliability represents the reliability of an item or system
of random strength X subject to random stress X ∗. The point estimation and testing
procedures of R(t ) and P have considerable attention in the statistics literature. Some
early and recent work on reliability and stress-strength reliability can be found in Pugh
(1963), Tong (1974), Kelly et al. (1976), Awad and Gharraf (1986), Tyagi and Bhattacharya
(1989), Chaturvedi and Kumar (1999), Chaturvedi and Tomer (2002), Chaturvedi and
Singh (2006) and others. Also, an excellent review on stress-strength reliability can be
found in Kotz et al. (2003).

Let the rv X follows the distribution having the pdf

f (x;a,λ,θ) = λG′(x,a,θ)exp(−λG(x;a,θ)); x > a ≥ 0, λ > 0, (2)

where, G(x;a,θ) is a function of x and may also depend on the parameters a and θ.
θ may be vector-valued. Moreover, G(x;a,θ) is monotonically increasing in x with
G(a;a,θ) = 0, G(∞;a,θ) =∞ and G′(x;a,θ) denotes the derivative of G(x;a,θ) with
respect to x. The family of lifetime distributions given in (2) covers fourteen distribu-
tions as specific cases was proposed by Chaturvedi and Kumari (2015).

This article serves many fold purposes. The point estimation and testing procedures
under progressive type II right censoring are developed. Uniformly minimum variance,
maximum likelihood and invariantly optimal estimators are derived. A new technique
of obtaining these estimators, in which estimators of powers of parameter are obtained,
under progressive type II censoring is developed. These estimators are used to obtain
estimators of R(t ). Using the derivatives of estimators of R(t ), the estimators of proba-
bility density function (pdf) (at a specified point) are obtained, which are subsequently
used to obtain estimators of P . The estimators for P are derived for the cases when X
and X ∗ belong to same and different families of distributions. The rest of the paper is or-
ganized as follows: in Section 2, the uniformly minimum variance unbiased estimators
(UMVUE) of reliability function R(t ) and stress-stress reliability P are provided. The
maximum likelihood estimators of R(t ) and P are derived in Section 3. In section 4,
the invariantly optimal estimators of R(t ) and P are developed. Section 5 deals with the
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testing of hypotheses procedures. For comparing various estimators developed a Monte
Carlo simulation study is carried out in Section 6. Section 7 deals with a real data anal-
ysis for illustration purposes. Finally, concluding remarks on this article are given in
Section 8.

2. UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATION

This section is devoted to UMVUE of powers of λ, R(t ) and P based on progressively
type II censored sample x1, x2, . . . , xm from model in (2). Now, from model (2), it is easy
to see that

F (x j ;a,λ,θ) = 1− exp(−λG(x j ;a,θ)), j = 1,2, . . . , m.

Thus, denoting by Y j =G(x j ;a,θ),

fX1:m:n ,X2:m:n ,...,Xm:m:n
(x1, x2, . . . , xm) = cλm exp

 

−λ
m
∑

j=1

(R j + 1)Y j

!

. (3)

Let us consider the transformations

Z1 = nY1, Z2 = (n−R1− 1)(Y2−Y1), Z3 = (n−R1−R2− 2)(Y3−Y2), . . . ,
Zm = (n−R1− . . .−Rm−1−m+ 1)(Ym −Ym−1).

The Jacobian of transformation is c−1. Z j ’s are exponential with mean life λ−1 and

the distribution of Sm =
m
∑

j=1
(R j + 1)Y j =

m
∑

j=1
Z j is gamma with pdf

g (sm ;a,λ,θ) =
λm s m−1

m exp(−λsm)
Γ (m)

(4)

It follows from Equation (3) and Equation (4) the Sm is a complete sufficient statistic
for λ. The following theorem provides UMVUES of powers of λ.

THEOREM 1. For p ∈ (−∞,∞), p 6= 0, the UMVUE of λp is given by

λ̃p =
¨ Γ (m)
Γ (m−p) S

−p
m , m− p > 0,

0, otherwise.

PROOF. The result follows from (4) that

E(S−p
m ) =

Γ (m− p)
Γ (m)

λp , m > p. 2

In the following theorem, we obtain UMVUE of the reliability function R(t ).
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THEOREM 2. The UMVUE of the reliability function is

R̃(t ) =

(
�

1− G(t ;a,θ)
Sm

�m−1
, G(t ;a,θ)< Sm

0, otherwise.

PROOF. It is easy to see that

R(t ) = exp(−λG(t ;a,θ))

=
∞
∑

i=0

(−1)iλi G i (t ;a,θ)
i !

. (5)

Applying Theorem 1 and using (5) the UMVUE of R(t ) is obtained as

R̃(t ) =
∞
∑

i=0

(−1)i λ̃i G i (t ;a,θ)
i !

=
m−1
∑

i=0

(−1)i

i !

�

Γ (m)
Γ (m− i)

��

G(t ;a,θ)
Sm

�i

and the theorem follows. 2

COROLLARY 3. The UMVUE of the sampled pdf (1) at a specified point ‘x’ is

f̃ (x;a,λ,θ) =

(

(m−1)G′(x;a,θ)
Sm

�

1− G(x;a,θ)
Sm

�m−2
, G(x;a,θ)< Sm ,

0, otherwise.

PROOF. We note that the expectation of
∫∞

t f̃ (x;a,λ,θ)d x with respect to Sm is
R(t ). Hence

R̃(t ) =
∫ ∞

t
f̃ (x;a,λ,θ)d x

or

−
d R̃(t )

d t
= f̃ (t ;a,λ,θ).

The result now follows from Theorem 2. 2
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THEOREM 4. The variance of R̃(t ) is given by

Var{R̃(t )}= (λG(t ;a,θ))m exp(−λG(t ;a,θ))

·
�

am−1

λG(t ;a,θ)
+ am−2 exp(λG(t ;a,θ)){−El (−λG(t ;a,θ))}

+
m−3
∑

l=0

al

§m−l−2
∑

k=1

(k − 1)! (−λG(t ;a,θ))m−l−k−2

(m− l − 2)!
+
(−λG(t ;a,θ))m−l−2

(m− l − 2)!

× exp(λG(t ;a,θ)){−El (−λG(t ;a,θ))}
ª

+
2m−2
∑

l=m

al

l−m+1
∑

w=0

�

l −m+ 1
w

�

w!(λG(t ;a,θ))−(w+1)

�

− exp(−2λG(t ;a,θ)),

where al = (−1)l
�2m−2

l

�

and −El (−x) =
∫∞

x
e−u

u d u.

PROOF. Using Equation (4) and Theorem 2

E{R̃(t )}2 = λm

Γ (m)

∫ ∞

G(t ;a,θ)

�

1−
G(t ;a,θ)

sm

�2m−2

s m−1
m exp(−λsm)d sm

=
1
Γ (m)

(λG(t ;a,θ))m exp(−λG(t ;a,θ))
∫ ∞

0

u2m−2

(1+ u)m−1
exp(−λG(t ;a,θ)u)d u

=
1
Γ (m)

(λG(t ;a,θ))m exp(−λG(t ;a,θ))I , say, (6)

where

I =
2m−2
∑

l=0

al

∫ ∞

0

(1+ u)l

(1+ u)m−1
exp(−λG(t ;a,θ)u)d u

=
m−1
∑

l=0

al

∫ ∞

0

1
(1+ u)m−l−1

exp(−λG(t ;a,θ)u)d u

+
2m−2
∑

l=m

al

∫ ∞

0
(1+ u)l−m+1 exp(−λG(t ;a,θ)u)d u. (7)

Using the result
∫∞

0
1

(u+a)n exp(−u p)d u =
n−1
∑

k=1

(k−1)!(−p)n−k−1

(n−1)!ak − (−p)n−1

(n−1)! exp(a p)El (−a p)
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given by Erdélyi (1954), we have
∫ ∞

0

1
(1+ u)m−l−1

exp(−λG(t ;a,θ)u)d u

=
m−l−2
∑

k=1

(k − 1)!
(m− l − 2)!

(−λG(t ;a,θ))m−l−k−2− 1
(m− l − 2)!

(−λG(t ;a,θ))m−l−2

× exp(λG(t ;a,θ))El (−λG(t ;a,θ)), l = 0,1, . . . , m− 3. (8)

and
∫ ∞

0

1
(1+ u)

exp(−λG(t ;a,θ)u)d u

= exp(λG(t ;a,θ))
∫ ∞

0

1
(u + 1)

exp(−λG(t ;a,θ)(u + 1))d u

= exp(λG(t ;a,θ))
∫ ∞

λG(t ;a,θ)

e−z

z
d z

=−exp(λG(t ;a,θ))El (−λG(t ;a,θ)), (9)

we have
∫ ∞

0
exp(−λG(t ;a,θ)u)d u =

1
λG(t ;a,θ)

. (10)

Finally,
∫ ∞

0
(1+ u)l−m+1 exp(−λG(t ;a,θ)u)d u

=
l−m+1
∑

w=0

�

l −m+ 1
w

�∫ ∞

0
uw exp(−λG(t ;a,θ)u)d u

=
l−m+1
∑

w=0

�

l −m+ 1
w

�

w!(−λG(t ;a,θ))−(w+1). (11)

The theorem now follows on making substitutions from Equations (8), (9), (10) and
(11) in (7) and then using (6). 2

Suppose two independent rv’s X and X ∗ are following two different families of dis-
tributions f1(x;a1,λ1,θ1) and f2(x

∗;a2,λ2,θ2), respectively, i.e.

f1(x;a1,λ1,θ1) = λ1G′(x;a1,θ1)exp(−λ1G(x;a1,θ1)); x > a1 ≥ 0, λ1 > 0

and

f2(x
∗;a2,λ2,θ2) = λ2H ′(x∗;a2,θ2)exp(−λ2H (x∗;a2,θ2)); x∗ > a2 ≥ 0,λ2 > 0.
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Let n and n∗ experimental units are put on life testing experiment at time zero on X
and X ∗, respectively, and Ri , i = 1,2, . . . , m−1, R∗i , i = 1,2, . . . , m∗−1 units are removed
at the i th stage on X and X ∗, respectively. Obviously, denoting by Y j = G(X j ;a1,θ1)
and Y ∗j =H (X ∗j ;a2,θ2), we have

f (1)X1:m:n ,X2:m:n ,...,Xm:m:n
(x1, x2, . . . , xm) = cλm

1 exp

 

−λ1

m
∑

j=1

(R j + 1)Y j

!

and

f (2)
X ∗1:m∗ :n∗ ,X

∗
2:m∗ :n∗ ,...,X ∗m∗ :m∗ : n∗

(x∗1 , x∗2 , . . . , x∗m∗) = c∗λm∗
2 exp

 

−λ2

m∗
∑

j=1

(R∗j + 1)Y ∗j

!

,

where c = n(n − R1 − 1)(n − R1 − R2 − 2) . . . (n − R1 − . . .− Rm−1 −m + 1) and c∗ =
n∗(n∗−R∗1− 1)(n∗−R∗1−R∗2− 2) . . . (n∗−R∗1− . . .−R∗m∗−1−m∗+ 1), respectively.

Let us consider the following transformations

Z1 = nY1, Z2 = (n−R1− 1)(Y2−Y1), Z3 = (n−R1−R2− 2)(Y3−Y2) . . . ,
Zm = (n−R1− . . .−Rm−1−m+ 1)(Ym −Ym−1)

and

Z∗1 = n∗Y ∗1 , Z∗2 = (n
∗−R∗1− 1)(Y ∗2 −Y ∗1 ), Z∗3 = (n

∗−R∗1−R∗2− 2)(Y ∗3 −Y ∗2 ), . . . ,
Z∗m∗ = (n

∗−R∗1− . . .−R∗m∗−1−m∗+ 1)(Y ∗m∗ −Y ∗m∗−1).

The Jacobian of transformation for Z ’s and Z∗’s are c−1 and c∗−1, respectively. Z j ’s
are exponential with mean life λ−1

1 and Z∗j ’s are exponential with mean life λ−1
2 . Denot-

ing by Sm =
m
∑

j=1
(R j + 1)Y j =

m
∑

j=1
Z j and Tm∗ =

m∗
∑

j=1
(R∗j + 1)Y ∗j =

m∗
∑

j=1
Z∗j , we note that Sm

and Tm∗ follow gamma distribution with pdf’s

g (sm ;a1,λ1,θ1) =
λm

1 s m−1
m

Γ (m)
exp(−λ1 sm)

and

h(Tm∗ ;a2,λ2,θ2) =
λm∗

2 T m∗−1
m∗

Γ (m∗)
exp(−λ2Tm∗) . 2

Now, we derive the UMVUE of stress-strength reliability P in the following theorem
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THEOREM 5. The UMVUE of P is given by

P̃ =



























(m∗− 1)
∫ T −1

m∗H (G−1(Sm ))
0 (1− z)m∗−2

�

1− G(H−1(zTm∗ ))
Sm

�m−1
d z,

G−1(Sm)<H−1(Tm∗),

(m∗− 1)
∫ 1

0 (1− z)m∗−2
�

1− G(H−1(zTm∗ ))
Sm

�m−1
d z,

H−1(Tm∗)<G−1(Sm).

PROOF. From Corollary 3 the UMVUES of f1(x;a1,λ1,θ1) and f2(x
∗;a2,λ2,θ2) at

specified points ‘x’ and ‘x∗’ are, given by, respectively,

f̃1(x;a1,λ1,θ1) =

(

(m−1)G′(x;a1,θ1)
Sm

�

1− G(x;a1,θ1)
Sm

�m−2
, G(x;a1,θ1)< Sm ,

0, otherwise

and

f̃2(x
∗;a2,λ2,θ2) =

(

(m∗−1)H ′(x∗;a2,θ2)
Tm∗

�

1− H (x∗;a2,θ2)
Tm∗

�m∗−2
, H (x∗;a2,θ2)< Tm∗ ,

0, otherwise.

From the arguments similar to those used in the proof of Corollary 3,

P̃ =
∫ ∞

x∗=a2

∫ ∞

x=x∗
f̃1(x;a1,λ1,θ1) f̃2(x

∗;a2,λ2,θ2)d xd x∗

=
∫ ∞

x∗=a2

R̃1(x
∗;a1,λ1,θ1)

¨

−
d R̃2(x

∗;a2,λ2,θ2)
d x∗

«

d x∗

= (m∗− 1)
∫ min{G−1(Sm ),H

−1(Tm∗ )}

x∗=a2

�

1−
G(x∗;a1,θ1)

Sm

�m−1

·
H ′(x∗;a2,θ2)

Tm∗

�

1−
H (x∗;a2,θ2)

Tm∗

�m∗−2

d x∗.

The theorem now follows on considering the two cases and putting T −1
m∗ H (x∗;a2,θ2) =

z 2.

Now, the UMVUE of P when X and X ∗ belong to same families of distributions is
obtained in the following theorem.

THEOREM 6. When rv’s X and X ∗ belong to the same families of distributions,

P̃ =











m∗−2
∑

i=0
(−1)i (m

∗−1)!(m−1)!
(m∗−i−2)!(m+i)!

�

Sm
Tm∗

�i+1
, Sm < Tm∗ ,

m−1
∑

i=0
(−1)i (m∗−1)!(m−1)!

(m∗+i−1)!(m−i−1)!

�

Tm∗
Sm

�i
, Tm∗ < Sm .
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PROOF. In Theorem 5, taking G(x;a1,θ1) =H (x∗;a2,θ2), we get, for Sm < Tm∗ ,

P̃ = (m∗− 1)
∫ Sm/Tm∗

0
(1− z)m

∗−2
�

1−
Tm∗

Sm
z
�m−1

d z

= (m∗− 1)
∫ 1

0

�

1−
Sm

Tm∗
u
�m∗−2

(1− u)m−1
�

Sm

Tm∗

�

d u

= (m∗− 1)
m∗−2
∑

i=0

(−1)i
�

m∗− 2
i

��

Sm

Tm∗

�i+1∫ 1

0
u i (1− u)m−1d u

and the first assertion follows. Similarly, we can prove the second assertion. 2

3. MAXIMUM LIKELIHOOD ESTIMATION

In this section, the MLEs of the reliability function of R(t ) and stress-strength reliability
P , respectively, are derived. The following theorem provides the MLE of R(t ).

THEOREM 7. The MLE of R(t ) is given by

R̂(t ) = exp
�

− m
Sm

G(t ;a,θ)
�

.

PROOF. Since the likelihood function is of the same form as (3), it can be easily seen
that the MLE of λ is λ̂= m

Sm
. The theorem now follows from invariance property of the

MLEs. 2

COROLLARY 8. The MLE of f (x;a,λ,θ) at a specified point ‘x’ is

f̂ (x;a,λ,θ) =
mG′(x;a,θ)

Sm
exp

�

− m
Sm

G(x;a,θ)
�

.

PROOF. The result follows from the fact that

f̂ (t ;a,λ,θ) =−
d R̂(t )

d t
. 2

In the following theorem , we obtain the expression for variance of R̂(t ).

THEOREM 9. The variance of R̂(t ) is given by

Var{R̂(t )}= 2
(m− 1)!

(2mλG(t ;a,θ))m/2Km(2
Æ

2mλG(t ;a,θ))

−
�

2
(m− 1)!

(mλG(t ;a,θ))m/2Km(2
Æ

mλG(t ;a,θ))
�2

,

where, Km(·) is the modified Bessel function of the second kind of order m.
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PROOF. Using Equation (4), we have

E{R̂(t )}= λm

Γ (m)

∫ ∞

0
s m−1
m exp

�

−
�

mG(t ;a,θ)
sm

+λsm

��

d sm

=
1
Γ (m)

∫ ∞

0
u m−1 exp

�

−
�

u +
mλG(t ;a,θ)

u

��

d u. (12)

Applying the result
∫ ∞

0
u−m exp

§

−
�

au +
b
u

�ª

d u = 2
� a

b

�(m−1)/2
Km−1(2

p
ab ), [K−m(·) =Km(·),

for m = 0,1,2, . . . ,], given by Watson (1952), we obtain from (12) that

E{R̂(t )}= 2
(m− 1)!

(mλG(t ;a,θ))m/2Km(2
Æ

mλG(t ;a,θ)) .

Similarly, we can obtain the expression for E{R̂(t )}2 and the result follows. 2

The MLE of P when rv’s X and X ∗ belong to different families of distributions is
given by following theorem.

THEOREM 10. The MLE of P is given by

P̂ =
∫ ∞

0
exp

�

−
�

m
Sm

�

G
�

H−1
� z Tm∗

m∗

��

�

e−z d z.

PROOF. We have

P̂ =
∫ ∞

x∗=a2

∫ ∞

x=x∗
f̂1(x;a1,λ1,θ1) f̂2(x

∗;a2,λ2,θ2)d xd x∗

=
∫ ∞

x∗=a2

R̂1(x
∗;a1,λ1,θ1)

¨

−
d R̂2(x

∗;a2,λ2,θ2)
d x∗

«

d x∗

=
∫ ∞

x∗=a2

exp
�

− m
Sm

G(x∗;a1,θ1)
�

m∗H ′(x∗;a2,θ2)
Tm∗

exp
�

− m∗

Tm∗
H (x∗;a2,θ2)

�

d x∗.

The result now follows on putting m∗T −1
m∗ H (x∗;a2,θ2) = z. 2

The MLE of P when X and X ∗ belong to same family of distributions is given by
following theorem.

THEOREM 11. When X and X ∗ belong to same families of distributions, the MLE of
P is given by

P̂ =
m∗Sm

m∗Sm +mTm∗
.

PROOF. The result follows from Theorem 10. 2
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4. INVARIANTLY OPTIMAL ESTIMATION

This section deals with the IOE of R(t ) and P . The IOE of R(t ) is given by, see Hurt
and Wertz (1983),

Ř(t ) =
�

1+
G(t ;a,θ)

Sm

�−(m+1)

. (13)

THEOREM 12. The variance of Ř(t ) is given by

Var{Ř(t )}=
¨

(λG(t ;a,θ))m
1
Γ (m)

�

c2m+2

λG(t ;a,θ)
+ c2m+1

· exp(λG(t ;a,θ))[−El (−λG(t ;a,θ))]

+
2m
∑

l=0

cl

¨

2m−l+1
∑

k=1

(k − 1)!
(2m− l + 1)!

(−λG(t ;a,θ))2m−l+1−k

+
(−λG(t ;a,θ))2m−l+1

(2m− l + 1)!
exp(λG(t ;a,θ)) [−El (−λG(t ;a,θ))]

«

+
3m+1
∑

l=2m+3

cl

l−2m−2
∑

w=0

�

l − 2m− 2
w

�

w!(λG(t ;a,θ))−(w+1)

�«

−
¨

(λG(t ;a,θ))m
1
Γ (m)

¨

bm+1

λG(t ;a,θ)
+ bm exp(λG(t ;a,θ))

· [−El (−λG(t ;a,θ))]+
m−1
∑

l=0

bl

¨

m−l
∑

k=1

(k − 1)!(−λG(t ;a,θ))m−l−k

(m− l )!

+
(−λG(t ;a,θ))m−l

(m− l )!
exp(λG(t ;a,θ))[−El (−λG(t ;a,θ))]

«

+
2m
∑

l=m+2

bl

l−m−1
∑

w=0

�

l −m− 1
w

�

w!(λG(t ;a,θ))−(w+1)

««2

Here, bl = (−1)l
�2m

l

�

and cl =







(−1)l
�3m+1

l

�

; m odd

(−1)l+1
�3m+1

l

�

; m even.

PROOF. The proof is similar to that of Theorem 4. 2

The IOE of pdf using Equation (13) is given by

f̌ (x;a,λ,θ) =
(m+ 1)G′(x;a,θ)

Sm

�

1+
G(x;a,θ)

Sm

�−(m+2)

.
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THEOREM 13. When rv’s X and X ∗ belong to different families of distributions, the
IOE of P is given by

P̌ = (m∗+ 1)
∫ ∞

0
(1+ z)−(m

∗+2)
�

1+
G(H−1(zTm∗)

Sm

�−(m+1)

d z.

PROOF. We have

P̌ =
∫ ∞

x∗=a2

∫ ∞

x=x∗
f̌ (x;a1,λ1,θ1) f̌ (x

∗;a2,λ2,θ2)d xd x∗

= (m∗+ 1)
∫ ∞

x∗=a2

�

1+
G(x∗;a1,θ1)

Sm

�−(m+1)

·
H ′(x∗;a2,θ2)

Tm∗

�

1+
H (x∗;a2,θ2)

Tm∗

�−(m∗+2)

d x∗.

The result now follows on putting T −1
m∗ H (x∗;a2,θ2) = z. 2

THEOREM 14. When X and X ∗ belong to same families of distributions, the IOE of P
is given by

P̌ = (m∗+ 1)
∫ ∞

0
(1+ z)−(m

∗+2)
�

1+
Tm∗

Sm
z
�−(m+1)

d z.

PROOF. The result follows from Theorem 13. 2

Note that in all the estimators, first we estimated powers of the parameter, which is
used to estimate the pdf. This estimated pdf is subsequently used to estimate R(t ) and
P . Thus, the basic role is played by the estimators of powers of parameter.

5. TESTING OF HYPOTHESES

Let we are to test the hypothesis H0 : λ= λ0 against H1 : λ 6= λ0. It follows from (3) and
MLE of λ that, under H0,

sup
Θ0

L(λ | x) = cλm
0 exp(−λ0Sm); Θ0 = {λ : λ= λ0}

and

sup
Θ

L(λ | x) = c
�

m
Sm

�m

exp(−m); Θ = {λ : λ > 0}.

Therefore, the likelihood ratio (LR) is given by

φ(x) =

sup
Θ0

L(λ | x)

sup
Θ

L(λ | x)
=
�

Smλ0

m

�m

exp{−Smλ0+m}. (14)
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Note that the first term on the right hand side of Equation (14) is monotonically increas-
ing and the second term is monotonically decreasing in Sm . Denoting by χ 2

2m(·), the
chi-square statistic with 2m degrees of freedom and using the fact that 2λ0Sm ∼ χ 2

(2m),
the critical region is given by {0 < Sm < k0} ∪ {k ′0 < Sm <∞}, where k0 and k ′0 are
obtained such that P [χ 2

(2m) < 2λ0k0 or 2λ0k
′

0 <χ
2
(2m)] = α.

Thus k0 =
1

2λ0
χ 2
(2m)

�

1− α
2

�

and k
′

0 =
1

2λ0
χ 2
(2m)

�α
2

�

.
An important hypothesis in life testing experiments is H0 : λ ≤ λ0 against H1 : λ >

λ0. It follows from (3) that, for λ1 > λ2,

f (x1, x2, . . . , xm ;a,λ1,θ)
f (x1, x2, . . . , xm ;a,λ2,θ)

=
�

λ1

λ2

�m

exp{−(λ1−λ2)Sm}. (15)

It follows from (15) that f (x;a,λ,θ) has monotone likelihood ratio in Sm . Thus, the
uniformly most powerful critical region for testing H0 against H1 is given by

φ(x) =
¨

1, if Sm ≤ k ′′0 ,
0, otherwise.

where, k ′′0 is obtained such that P [χ 2
(2m) < 2λ0k ′′0 ] = α. Therefore, k ′′0 =

�

1
2λ0

�

χ 2
(2m)(1−

α). It can be seen that when X and X ∗ belong to same families of distributions

P =
λ2

λ1+λ2
.

Suppose we want to test H0 : P = P0 against H1 : P 6= P0. It follows that H0 is equivalent
to λ2 = kλ1, where k = P0

1−P0
. Thus, H0 : λ2 = kλ1 and H1 : λ2 6= kλ1. It can be shown

that, under H0,

λ̂1 =
m+m∗

Sm + kTm∗
and λ̂2 =

(m+m∗)k
Sm + kTm∗

.

For a generic constant K ,

L(λ1,λ2 | x, x∗) =Kλm
1 λ

m∗
2 exp{−(λ1Sm +λ2Tm∗)}.

Thus

sup
Θ0

L(λ1,λ2 | x, x∗) =
K k m∗

(Sm + kTm∗)m+m∗
exp{−(m+m∗)};

Θ0 = {λ1,λ2 : λ2 = kλ1} (16)

and

sup
Θ

L(λ1,λ2 | x, x∗) =
K

(Sm)m(Tm∗)m
∗ exp{−(m+m∗)};

Θ = {λ1,λ2 : λ1 > 0,λ2 > 0}. (17)
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From (16) and (17), the LR is given by

φ(x, x∗) =
K
�

Sm
kTm∗

�m

�

1+ Sm
kTm∗

�m+m∗ .

Denoting by Fa,b (·), the F -statistic with (a, b ) degrees of freedom and using the fact
that

Sm

Tm∗
∼

mλ2

m∗λ1
F2m,2m∗(·).

The critical region is given by
�

Sm

Tm∗
< k2 or

Sm

Tm∗
> k ′2

�

,

where k2 and k ′2 are obtained such that

P
�

m∗Sm

m kTm∗
< F2m,2m∗ or

m∗Sm

m kTm∗
> F2m,2m∗

�

= α.

Thus k2 =
mk
m∗ F2m,2m∗

�

1− α
2

�

and k ′2 =
mk
m∗ F2m,2m∗

�α
2

�

.

6. MONTE CARLO SIMULATION STUDY

This section deals with a Monte Carlo simulation study to judge the performance of
different sample sizes, progressive censoring schemes and various estimates developed.
Different progressively censored samples are generated using the algorithm proposed by
Balakrishnan and Sandhu (1995). All the numerical computations are done on statistical
software R 3.4.0. Eight different progressive censoring schemes with different sample
sizes are considered and reported in Table 1. Different censoring schemes are denoted
by short notation like (0,0,0,0,1) by (0 ∗ 4,1). Two different true values of the param-
eter λ = 0.5 and λ = 1.5 with mission time t = 0.5 so that R(t ) = 0.7788 and 0.4724,
respectively, are taken. In case of stress-strength reliability estimation, two sets of true
values of the parameters (λ1,λ2) = (0.5,1.5) and (1.5,0.5) so that P = 0.75 and 0.25, re-
spectively, are considered. Also, for stress-strength reliability different combinations of
censoring schemes are used and reported in second column of Table 3. For a particular
set of sample size, parameter value and progressive censoring schemes, we generate 1000
progressively censored samples. For each simulation, the ML, UMVU and IO estimates
of reliability function R(t ) and stress-strength reliability P are computed. Then, the
mean squared error (MSE) for all the estimators and average absolute bias (AB) for ML
and IO estimators are computed based on the estimates from all 1000 simulations.

The results of simulation study are presented in Tables 2 and 3. From these Tables
one can observe that as the sample size n and the effective sample size m increase, ABs
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TABLE 1
Progressive censoring schemes.

(n, m) C.S.
R1 (20,5) (3 ∗ 5)
R2 (20,5) (0 ∗ 4,15)
R3 (20,15) (1 ∗ 2,0 ∗ 5,1,0 ∗ 5,1 ∗ 2)
R4 (20,15) (0 ∗ 14,5)
R5 (40,10) (3 ∗ 10)
R6 (40,10) (0 ∗ 9,30)
R7 (40,25) (1 ∗ 5,0 ∗ 5,1 ∗ 5,0 ∗ 5,1 ∗ 5)
R8 (40,25) (0 ∗ 24,15)

TABLE 2
The ABs and MSEs for ML and IO estimates, and MSEs for UMVUE of the reliability function R(t ).

λ C.S. R̂(t ) R̃(t ) Ř(t )
AB MSE MSE AB MSE

0.5 R1 0.0816 0.0135 0.0108 0.0953 0.0181
R2 0.0801 0.0126 0.0099 0.0938 0.0171
R3 0.0422 0.0031 0.0027 0.0453 0.0036
R4 0.0426 0.0032 0.0028 0.0457 0.0037
R5 0.0527 0.0050 0.0043 0.0578 0.0062
R6 0.0537 0.0054 0.0046 0.0592 0.0067
R7 0.0321 0.0017 0.0016 0.0335 0.0019
R8 0.0322 0.0017 0.0016 0.0336 0.0019

1.5 R1 0.1271 0.0255 0.0284 0.1280 0.0260
R2 0.1290 0.0264 0.0292 0.1297 0.0269
R3 0.0737 0.0087 0.0088 0.0743 0.0089
R4 0.0750 0.0089 0.0091 0.0755 0.0092
R5 0.0899 0.0129 0.0134 0.0907 0.0133
R6 0.0908 0.0132 0.0137 0.0915 0.0135
R7 0.0567 0.0051 0.0051 0.0571 0.0052
R8 0.0573 0.0051 0.0052 0.0575 0.0052
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TABLE 3
The ABs and MSEs for ML and IO estimates, and MSEs for UMVUE of stress-strength reliability P .

(λ1,λ2) C.S. P̂ P̃ P̌
AV MSE MSE AV MSE

(0.5,1.5) R1, R5 0.0862 0.0127 0.0126 0.0881 0.0135
R2, R6 0.0859 0.0125 0.0123 0.0881 0.0134
R3, R7 0.0493 0.0040 0.0039 0.0497 0.0041
R4, R8 0.0504 0.0041 0.0041 0.0507 0.0042
R5, R1 0.0814 0.0105 0.0114 0.0780 0.0096
R6, R2 0.0806 0.0103 0.0112 0.0772 0.0095
R7, R3 0.0491 0.0038 0.0039 0.0484 0.0037
R8, R4 0.0486 0.0038 0.0039 0.0479 0.0037

(1.5,0.5) R1, R5 0.0809 0.0103 0.0113 0.0775 0.0095
R2, R6 0.0816 0.0105 0.0115 0.0782 0.0097
R3, R7 0.0485 0.0037 0.0038 0.0479 0.0036
R4, R8 0.0482 0.0037 0.0038 0.0476 0.0036
R5, R1 0.0862 0.0126 0.0124 0.0885 0.0135
R6, R2 0.0871 0.0130 0.0129 0.0890 0.0138
R7, R3 0.0495 0.0040 0.0040 0.0499 0.0041
R8, R4 0.0497 0.0040 0.0039 0.0501 0.0041

and MSEs decrease. Progressive type II censoring schemes give less AB and MSEs in
comparison to conventional type II censoring schemes in almost all cases. The UMVUE
is better than MLE of the reliability function in all cases in terms of MSEs. The MLE is
better than UMVUE and IOE for stress-strength parameter P in terms of MSEs in most
of the cases. In case of estimation of reliability function and stress-strength reliability
UMVUE and MLE, respectively, may be considered for all practical purposes.

7. REAL DATA ANALYSIS

In this section, a pair of real data sets is analyzed for illustration purpose. The data on
breaking strength of jute fibers were proposed by Xia et al. (2009). The Jute fibers were
tested under tension at gauge lengths of 5, 10, 15, and 20 mm. In our study, we consider
data on breaking strength of jute fibers under gauge lengths 15 mm and 20 mm. For
ready reference of readers, these data are reported in Tables 4 and 5, respectively. First
of all these two data sets are used to fit the exponential distribution, separately. The es-
timated parameters, Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) statistics
with corresponding p-values are presented in Table 6. This table represents that the K-S
as well A-D tests accept the null hypothesis that each data set is drawn from exponential
distribution. Now, three different progressively censored samples of sizes m = 20 and
m∗ = 25 are generated, respectively, from these two data sets. The progressive censor-
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ing schemes and the corresponding generated data sets are reported in Tables 7 and 8,
respectively.

Now, based on these samples the ML, UMVU and IO estimates of reliability func-
tion R(t ) are computed for all data sets and results are presented in Table 9 assuming
mission times median of complete samples. Again all the estimators are computed for
stress-strength reliability P and results are reported in Table 10. Again, let us consider
the testing of hypothesis H0 : P = 0.5 against H1 : P 6= 0.5 i.e. stress and strength are
equally effective. The critical region is constructed according to the section 5. Also, the
ratio of statistics Sm/Tm∗ is calculated for three different censoring schemes and reported
in Table 11. All three censoring schemes show that stress and strength both are equally
effective.

TABLE 4
Breaking strength of jute fiber under gauge length 15mm.

594.40 202.75 168.37 574.86 225.65 76.38 156.67 127.81 813.87 562.39
468.47 135.09 72.24 497.94 355.56 569.07 640.48 200.76 550.42 748.75
489.66 678.06 457.71 106.73 716.30 42.66 80.40 339.22 70.09 193.42

TABLE 5
Breaking strength of jute fiber under gauge length 20mm.

71.46 419.02 284.64 585.57 456.60 113.85 187.85 688.16 662.66 45.58
578.62 756.70 594.29 166.49 99.72 707.36 765.14 187.13 145.96 350.70
547.44 116.99 375.81 581.60 119.86 48.01 200.16 36.75 244.53 83.55

TABLE 6
MLEs, K-S and A-D goodness-of-fit tests for real data sets.

Data Set Parameter λ K-S Test A-D Test
Statistic p-value Statistic p-value

Gauge length 15 mm (X ) 0.0027 0.1823 0.2403 1.3449 0.2182
Gauge length 20 mm (X ∗) 0.0029 0.1328 0.6181 0.9029 0.4116
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TABLE 7
The generated progressively censored samples corresponding to real data set of gauge length 15mm.

(n, m) Censoring Scheme Data Set
R1 (30,20) (0 ∗ 19,10) 42.66, 70.09, 72.24, 76.38, 80.40, 106.73, 127.81,

135.09, 156.67, 168.37, 193.42, 200.76, 202.75,
225.65, 339.22, 355.56, 457.71, 468.47, 489.66,
497.94.

R2 (30,20) (1 ∗ 5,0 ∗ 10,1 ∗ 5) 42.66, 72.24, 80.40, 127.81, 156.67, 193.42,
200.76, 202.75, 225.65, 339.22, 355.56, 457.71,
468.47, 489.66, 497.94, 550.42, 569.07, 594.40,
678.06, 748.75.

R3 (30,20) (10,0 ∗ 19) 42.66, 200.76, 202.75, 225.65, 339.22, 355.56,
457.71, 468.47, 489.66, 497.94, 550.42, 562.39,
569.07, 574.86, 594.40, 640.48, 678.06, 716.30,
748.75, 813.87.

TABLE 8
The generated progressively censored samples corresponding to real data set of gauge length 20mm.

(n∗, m∗) Censoring Scheme Data Set
R∗1 (30,25) (0 ∗ 24,5) 36.75, 45.58, 48.01, 71.46, 83.55, 99.72, 113.85,

116.99, 119.86, 145.96, 166.49, 187.13, 187.85,
200.16, 244.53, 284.64, 350.70, 375.81, 419.02,
456.60, 547.44, 578.62, 581.60, 585.57, 594.29.

R∗2 (30,25) (1 ∗ 2,0 ∗ 10,1,0 ∗ 10,1 ∗ 2) 36.75, 48.01, 83.55, 99.72, 113.85, 116.99,
119.86, 145.96, 166.49, 187.13, 187.85, 200.16,
244.53, 350.70, 375.81, 419.02, 456.60, 547.44,
578.62, 581.60, 585.57, 594.29, 662.66, 688.16,
756.70.

R∗
3
(30,25) (5,0 ∗ 24) 36.75, 113.85, 116.99, 119.86, 145.96, 166.49,

187.13, 187.85, 200.16, 244.53, 284.64, 350.70,
375.81, 419.02, 456.60, 547.44, 578.62, 581.60,
585.57, 594.29, 662.66, 688.16, 707.36, 756.70,
765.14.

TABLE 9
The ML, UMVU and IO estimates of the reliability function corresponding to the real data sets.

Here, mission times are 347.39 and 264.585, respectively.

CS R̂(t ) R̃(t ) Ř(t ) CS R̂(t ) R̃(t ) Ř(t )
R1 0.4793 0.4907 0.4684 R∗1 0.5026 0.5118 0.4937
R2 0.5215 0.5333 0.5103 R∗2 0.5202 0.5296 0.5113
R3 0.5045 0.5162 0.4935 R∗3 0.5181 0.5274 0.5091
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TABLE 10
The ML, UMVU and IO estimates of the stress-strength reliability corresponding to the real data sets.

CS P̂ P̃ P̌
R1, R∗1 0.5512 0.5537 0.5490
R2, R∗2 0.5686 0.5715 0.5660
R3, R∗

3
0.5579 0.5606 0.5555

TABLE 11
Testing of hypothesis H0 : P = 0.5 against H1 : P 6= 0.5 corresponding to the real data sets.

CS Critical Region Sm/Tm∗ Decision
R1, R∗1 {0< Sm/Tm∗ < 0.4366 or Sm/Tm∗ > 1.4370} 0.9827 H0 may be accepted
R2, R∗2 {0< Sm/Tm∗ < 0.4366 or Sm/Tm∗ > 1.4370} 1.0543 H0 may be accepted
R3, R∗

3
{0< Sm/Tm∗ < 0.4366 or Sm/Tm∗ > 1.4370} 1.0097 H0 may be accepted

8. CONCLUDING REMARKS

In this article, the problem of statistical inference for the reliability function and stress-
strength reliability of a family of distributions based on progressive type II censoring
was considered. Uniformly minimum variance, maximum likelihood and invariantly
optimal estimators of the reliability function and stress-strength reliability were derived.
All these estimators were in closed form. The comparisons of all estimators were done
by extensive simulation study. Also, a real data analysis was performed for applicability
of the proposed methods. This work was mainly associated with progressive type II
right censoring case, the same methods can be extended for other censoring schemes
also.
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SUMMARY

In this article, a general family of lifetime distributions is considered under progressive type II
right censoring. The classical point estimation and testing procedures are developed for reliability
function and stress-strength reliability. The uniformly minimum variance unbiased, maximum
likelihood and invariantly optimal estimators are considered. Testing procedures are developed
for the hypotheses related to scale parameter, reliability and stress-strength reliability functions.
A Monte Carlo simulation study is performed for comparison of various estimators developed.
Finally, the use of proposed estimators is shown in an illustrative example.
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