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1. INTRODUCTION

Let X1,X2, . . . be independent and identical random variables with the cumulative dis-
tribution function (cdf) F (x) and the probability density function (pdf) f (x). Define

Yn =max{X1, . . . ,Xn}

for n ≥ 1. Then, X j is an upper record value of this sequence if X j > Y j−1, j > 1.
Generally, if we define the sequence {U (n), n ≥ 1} as

U (1) = 1, U (n) =min
¦

j : j >U (n− 1),X j >XU (n−1)

©

for n ≥ 2, then
¦

XU (n), n ≥ 1
©

is a sequence of upper record values. The sequence
{U (n), n ≥ 1} represents the record times.

Chandler (1952) defined the theory of records as a model for successive extremes in a
sequence of independent and identical random variables. Record data arise in many real
life problems, such as in destructive stress testing, weather, hydrology, economics and
sporting and athletic events. For more details and applications, see Ahsanullah (1995),
Arnold et al. (1998) and Nevzorov (2000).

1 Corresponding Author. E-mail: a.asgharzadeh@umz.ac.ir
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In the frequentist set up, the estimation and prediction problems for normal dis-
tribution based on record data have been discussed by several authors. Balakrishnan
and Chan (1998) obtained the best linear unbiased estimators (BLUEs) of the normal
location and scale parameters, µ and σ , based on the first few upper record values. Us-
ing these BLUEs, they then developed a prediction interval for a future record value.
Chacko and Mary (2013) discussed classical estimation and prediction for the normal
distribution based on k-records. Sajeevkumar and Irshad (2014) estimated the location
parameter of distributions with known coefficient of variation by record values.

The main aim of this paper is to consider estimation and prediction for normal dis-
tribution based on record data in the Bayesian set up. To the best of our knowledge, this
problem has not been studied before in the literature. We compute Bayes estimators ofµ
and σ under squared error and Linex loss functions. It is observed that Bayes estimators
can not be obtained in closed forms. We use the importance sampling procedure to gen-
erate samples from the posterior distributions and then compute the Bayes estimators.
We then compare Bayes estimators with the maximum likelihood estimators (MLEs)
and BLUEs by Monte Carlo simulations. We observe that Bayes estimators work quite
well. Bayesian prediction of future records based on the first few upper records is also
discussed. We use the importance sampling method to estimate the predictive distribu-
tion and then compute the Bayesian predictors.

The contents of this paper are organized as follows. In Section 2, we provide a brief
review of frequentist estimators and predictors. In Section 3, the Bayes estimators of
µ and σ are obtained using squared error and Linex loss functions. In Section 4, we
discuss Bayesian prediction for future records based on the first few upper records. In
Section 5, a real data set is analyzed for illustrative purposes. Monte Carlo simulations
are performed to compare the proposed estimators and predictors in Section 6. Finally,
we conclude the paper in Section 7.

2. FREQUENTIST ESTIMATION AND PREDICTION: A REVIEW

Suppose that we observe the first n upper record values XU (1) = x1,XU (2) = x2, . . . ,XU (n)

= xn from the normal N
�

µ,σ2
�

distribution. For notational simplicity, we will write
Xi for XU (i). The likelihood function is given (see Arnold et al., 1998) by

L (µ,σ |x) = f (xn ;µ,σ)
n−1
∏

i=1

f (xi ;µ,σ)
1− F (xi ;µ,σ)

,

where f (xn ;µ,σ) and F (xn ;µ,σ) denote, respectively, the pdf and cdf of the N
�

µ,σ2
�

distribution.
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The likelihood function can be rewritten as

L (µ,σ |x) = 1
σ
φ

�

xn −µ
σ

� n−1
∏

i=1





1
σφ

�

xi−µ
σ

�

1−Φ
�

xi−µ
σ

�





=
�

1
σ

�n n
∏

i=1

φ

�

xi −µ
σ

�

�

n−1
∏

i=1

�

1−Φ
�

xi −µ
σ

��

�−1

, (1)

where φ(·) and Φ(·) denote, respectively, the pdf and cdf of a standard normal distribu-
tion.

The log-likelihood function is

L= ln L (µ,σ |x) =−n lnσ +
n
∑

i=1

lnφ
�

xi −µ
σ

�

−
n−1
∑

i=1

ln
�

1−Φ
�

xi −µ
σ

��

. (2)

From (2), we obtain the likelihood equations for µ and σ as

∂ L
∂ µ
=

1
σ2

n
∑

i=1

(xi −µ)−
1
σ

n−1
∑

i=1

φ
�

xi−µ
σ

�

1−Φ
�

xi−µ
σ

� = 0 (3)

and

∂ L
∂ σ
=− n

σ
+

1
σ3

n
∑

i=1

(xi −µ)
2− 1

σ2

n−1
∑

i=1

(xi −µ)φ
�

xi−µ
σ

�

1−Φ
�

xi−µ
σ

� = 0. (4)

The equations (3) and (4) can be solved analytically to obtain bµM L and bσM L, the MLEs
of µ and σ .

Following the generalized least-squares approach, the BLUEs of µ and σ can be de-
rived as (see Balakrishnan and Cohen, 1991)

bµBLU =
n
∑

i=1

ai Xi , bσBLU =
n
∑

i=1

bi Xi , (5)

where

a =
α′β−1α1′β−1−α′β−11α′β−1

(α′β−1α) (1′β−11)− (α′β−11)2

and

b =
1′β−11α′β−1− 1′β−1α1′β−1

(α′β−1α) (1′β−11)− (α′β−11)2
,
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where α′ = (α1,α2, . . . ,αn) is the moment vector with αi = E (Xi ) and β =
�

βi , j

�

,

1≤ i ≤ j ≤ n is the covariance matrix withβi , j =Cov
�

Xi ,X j

�

, and 1′ = (1,1, . . . , 1)1×n .
The variances of these BLUEs are given by

Var (bµBLU ) =
�

α′β−1α

(α′β−1α) (1′β−11)− (α′β−11)2

�

σ2 =V1σ
2

and

Var (bσBLU ) =
�

1′β−11

(α′β−1α) (1′β−11)− (α′β−11)2

�

σ2 =V2σ
2.

The coefficients a, b and the values of V1 and V2 can be found in Balakrishnan and Chan
(1998, Tables 3 to 5). See also Arnold et al. (1998, Table 5.3.1, pages 139 and 140). From

those tables, we can see that
n
∑

i=1

ai = 1 and
n
∑

i=1

bi = 0.

By using the BLUEs, one can construct confidence intervals (CIs) for the location
and scale parameters, µ and σ , through pivotal quantities given by

R1 =
bµBLU −µ
bσBLU

p

V1

, R2 =
bσBLU −σ
bσBLU

p

V2

. (6)

For constructing such CIs, we require the percentage points of R1 and R2, which can be
computed by using the BLUEs bµBLU and bσBLU via Monte Carlo simulations. Table 1
gives the percentage points of R1 and R2 based on ten thousand replications and different
choices of n. The following algorithm was used to determine the percentage points:

1. set a value for n;

2. simulate XU (1),XU (2), . . . ,XU (n) from a standard normal distribution;

3. compute bµBLU and bσBLU from (5);

4. then compute R1 and R2 from (6) by taking µ= 0 and σ = 1;

5. repeat steps 2 to 4 ten thousand times, obtaining ten thousand estimates for R1
and ten thousand estimates for R2;

6. compute the percentage points of R1 as the quantiles of the empirical distribution
of the ten thousand estimates of R1;

7. similarly, compute the percentage points of R2 as the quantiles of the empirical
distribution of the ten thousand estimates of R2.
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Let R1(α) and R2(α) denote the percentage points at α determined through simulation for
the pivotal quantities R1 and R2, respectively. Then,

�

bµBLU − bσBLU R1(1−α/2)
p

V1, bµBLU − bσBLU R1(α/2)

p

V1

�

and
�

bσBLU − bσBLU R2(1−α/2)
p

V2, bσBLU − bσBLU R2(α/2)

p

V2

�

form 100(1− α) percent CIs for µ and σ based on the pivotal quantities R1 and R2,
respectively.

Note that if we define Y = XU (n+1) as the next upper record value, then we can
predict this value by using the best linear unbiased prediction (BLUP) method. The
BLUP of the next upper record value can be derived as (see Balakrishnan and Chan,
1998)

ÒYBLU P = bµBLU + bσBLUαn+1.

TABLE 1
Simulated percentage points of R1 and R2.

Percentage points of R1.
n 1% 2.5% 5% 10% 90% 95% 97.5% 99%
2 -4.318 -2.765 -1.766 -1.165 2.975 4.926 7.187 9.945
3 -2.240 -1.633 -1.292 -1.003 2.587 3.970 5.662 8.125
4 -1.706 -1.430 -1.223 -0.997 2.253 3.506 4.906 6.795
5 -1.704 -1.443 -1.240 -0.999 2.038 3.107 4.193 5.974
6 -1.592 -1.375 -1.185 -0.944 2.140 3.136 4.218 5.572
7 -1.598 -1.390 -1.224 -1.030 1.825 2.776 3.778 4.930
8 -1.653 -1.441 -1.254 -1.033 1.876 2.717 3.542 4.709
9 -1.664 -1.442 -1.281 -1.048 1.767 2.548 3.384 4.368
10 -1.631 -1.453 -1.264 -1.045 1.740 2.439 3.219 4.222

Percentage points of R2.
n 1% 2.5% 5% 10% 90% 95% 97.5% 99%
2 -8.822 -7.391 -5.666 -3.847 0.649 0.747 0.808 0.856
3 -8.137 -6.242 -4.624 -3.039 0.763 0.896 0.984 1.062
4 -7.120 -5.396 -3.934 -2.613 0.828 0.982 1.104 1.0198
5 -6.560 -4.822 -3.503 -2.332 0.877 1.033 1.160 1.275
6 -6.035 -4.411 -3.282 -2.214 0.898 1.064 1.186 1.311
7 -5.353 -3.938 -2.972 -2.024 0.928 1.112 1.247 1.387
8 -4.833 -3.623 -2.845 -1.949 0.927 1.123 1.276 1.723
9 -4.720 -3.591 -2.740 -1.960 0.948 1.145 1.292 1.440
10 -4.642 -3.437 -2.651 -1.864 0.935 1.138 1.295 1.471
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3. BAYES ESTIMATION

In Bayesian inference, a loss function L
�

θ, bθ
�

describes the loss incurred by making an

estimate bθ when the true value of the parameter is θ. Here, we consider two different
loss functions: first is the squared error loss function which is symmetric and second
is the linear-exponential (Linex) loss function which is an asymmetric function. In the
literature, the most commonly used loss function is the squared error. The symmetric
nature of this function gives equal weight to overestimation as well as underestimation.
However, for many situations, overestimation may be more serious than underestima-
tion or vice-versa (see, for example, Feynman, 1987). Therefore, in order to make statis-
tical inferences more practical and applicable, we often need to choose an asymmetric
loss function. Many authors have considered asymmetric loss functions in reliability
and life testing. See, for example, Basu and Ebrahimi (1991), Ahmadi et al. (2005), Ren
et al. (2006), Raqab et al. (2007), Soliman and Al-Aboud (2008), Asgharzadeh and Fallah
(2011), Kundu and Raqab (2012), Asgharzadeh et al. (2015).

One of the most popular asymmetric loss function is the Linex loss function

L
�

θ, bθ
�

= e c
�

bθ−θ
�

− c
�

bθ−θ
�

− 1, (7)

where c 6= 0. This loss function was introduced by Varrian (1975) and was extensively
discussed by Zellner (1986). The sign and magnitude of the shape parameter c represents
the direction and degree of asymmetry, respectively. If c > 0, overestimation is more
serious than underestimation, and vice-versa. When c is close to zero,

L
�

θ, bθ
�

=
∞
∑

k=0

c k
�

bθ−θ
�k

k!
− c

�

bθ−θ
�

− 1=
∞
∑

k=2

c k
�

bθ−θ
�k

k!
≈ c2

2

�

bθ−θ
�2

.

Hence, when c is close to zero, the Linex loss is approximately equal to the squared error
loss and therefore almost symmetric.

The posterior expectation of the Linex loss function (7) is

Eθ
�

L
�

θ, bθ
��

= e c bθEθ
�

e−cθ
�

− c
�

bθ− Eθ(θ)
�

− 1, (8)

where Eθ(·) denotes the posterior expectation with respect to the posterior pdf of θ.
The Bayes estimator of θ under the Linex loss function, denoted by bθBL, is the value of
bθ which minimizes (8). It is

bθBL =−
1
c

ln
¦

Eθ
�

e−cθ
�©

,

provided that the expectation Eθ [exp(−cθ)] exists and is finite.
Under the assumption that both the parameters µ and σ are unknown, specifying a

general joint prior for µ and σ leads to computational complexities for the Bayes esti-
mators. To solve this problem and simplify the Bayesian analysis, we can consider the
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joint prior pdf as a product of a conditional pdf of µ for given σ (which is taken to be
the N

�

µ0,σ2
�

pdf, where µ0 ∈ ℜ is known) and a square-root inverted-gamma pdf for
σ which has the form

π(σ) =
ab

Γ (b )2b−1
σ−2b−1 exp

�

− a
2σ2

�

, (9)

where σ > 0, a > 0 and b > 0. Note that the choice of a square-root inverted-gamma
prior for σ is equivalent to selecting a gamma prior for λ = 1/σ2. An improper prior
for σ is π(σ)∝ σ−1 (An improper prior is one that does not integrate to 1. There are
no unique improper priors for a given prior. For the prior in (9), there are uncountably
infinite ways of defining improper priors. The improper priors need not be particular
cases of (9).) For more details on the square-root inverted-gamma distribution, see Raqab
and Madi (2002), Wu et al. (2006) and Soliman and Al-Aboud (2008).

So, the joint prior pdf of µ and σ can be written as

π(µ,σ) =π(µ|σ)π(σ)∝ σ−2b−2 exp
�

−1
2σ2

�

a+(µ−µ0)
2�
�

.

Now, by multiplying the likelihood function in (1) by the joint prior pdf, the poste-
rior pdf of µ and σ can be derived as

π (µ,σ |x) ∝ σ−n−2b−2 exp
�

−1
2σ2

�

(n− 1)s2+ n (x −µ)2
�

�

·exp
�

−1
2σ2

�

a+(µ−µ0)
2�
�

h(µ,σ)

= σ−1 exp
�

−n+ 1
2σ2

�

µ−
nx +µ0

n+ 1

�2�

(10)

·σ−2( n
2+b)−1 exp

�

−1
2σ2

�

a+(n− 1)s2+
n (x −µ0)

2

n+ 1

��

h(µ,σ),

where

x =
1
n

n
∑

i=1

xi , s2 =
1

n− 1

n
∑

i=1

(xi − x)2

and

h(µ,σ) =
�

n−1
∏

i=1

�

1−Φ
�

xi −µ
σ

��

�−1

. (11)

The Bayes estimator of any function ofµ and σ , say k(µ,σ), under the squared error
loss is

bkBS (µ,σ) = Eπ [k(µ,σ)|x] =
∫ ∞

0

∫ ∞

−∞
k(µ,σ)π (µ,σ |x)dµdσ ,
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where Eπ(·) denotes the expectation with respect to the joint posterior pdf π (µ,σ |x) in
(10). This can not be reduced to a closed form.

3.1. Importance sampling method

Here, we consider the importance sampling method to generate samples from the pos-
terior distribution and then compute the Bayes estimators ofµ and σ under the squared
error and Linex loss functions.

Based on the joint posterior pdf of µ and σ , (10) can be written as

π (µ,σ |x)∝ g1 (µ|σ ,x) g2 (σ |x) h(µ,σ), (12)

where g1 (µ|σ ,x) denotes a normal pdf with mean nx+µ0
n+1 and variance σ2

n+1 . Also g2 (σ |x)
denotes a square-root inverted-gamma pdf with shape parameter n

2 + b and scale param-

eter
h

a+(n− 1)s2+ n(x−µ0)
2

n+1

i

, and h(µ,σ) is given by (11).

Since g2 (σ |x) is a square-root inverted-gamma pdf, it is simple to generate σ . Then,
by using the generated σ , µ can be simulated from g1 (µ|σ ,x) for a given x. Now, sim-
ilarly to Kundu and Pradhan (2009) and Kundu and Howlader (2010), we can use the
importance sampling procedure to compute Bayes estimators. Using (12), the Bayes
estimator of k(µ,σ) can be written as

bkBS (µ,σ) = Eπ [k(µ,σ)|x] =

∫ ∞

0

∫ ∞

−∞
k(µ,σ)h(µ,σ) g1 (µ|σ ,x) g2 (σ |x)dµdσ

∫ ∞

0

∫ ∞

−∞
h(µ,σ)g1 (µ|σ ,x) g2 (σ |x)dµdσ

=
Eπ′ [k(µ,σ)h(µ,σ)]

Eπ′ [h(µ,σ)]
,

where Eπ′(·) denotes the expectation with respect to the joint pdf

π′ (µ,σ |x) = g1 (µ|σ ,x) g2 (σ |x) .

Now, the Bayes estimator of k(µ,σ) can be approximated by

bkBS (µ,σ) =

1
N

N
∑

i=1

k (µi ,σi ) h (µi ,σi )

1
N

N
∑

i=1

h (µi ,σi )

for a random sample (µ1,σ1) , . . . , (µN ,σN ) generated fromπ′ (µ,σ |x). Here, by making
an adjustment toπ, we compensate for sampling fromπ′ instead ofπ. The distribution
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π′ is referred to as the importance distribution. The distribution π is referred to as the
nominal distribution.

Therefore, Bayes estimators can be computed using the following algorithm:

step 1. Generate σ1 from g2 (σ |x) and µ1 from g1 (µ|σ1,x).

step 2. Repeat step 1, N times to obtain (µ1,σ1) , . . . , (µN ,σN ).

step 3. Bayes estimators of µ and σ under the squared error loss function are

bµM C
BS =

N
∑

i=1

µi wi , bσM C
BS =

N
∑

i=1

σi wi .

The estimators based on the Linex loss function are

bµM C
BL =−

1
c

ln

�

N
∑

i=1

e−cµi wi

�

, bσM C
BL =−

1
c

ln

�

N
∑

i=1

e−cσi wi

�

,

where

w j =
h
�

µ j ,σ j

�

∑N
j=1 h

�

µ j ,σ j

� (13)

for j = 1,2, . . . ,N .
We implemented the above algorithm in the R software (R Development Core Team,

2016), using our own codes. The samples needed for construction of highest posterior
density (HPD) credible intervals were also generated by using our own codes in the R
software. All computational procedures for this paper were implemented using our own
codes in the R software. None of the contributed packages in the R software were used.

3.2. HPD credible intervals

To construct HPD intervals, we use the Monte Carlo procedure proposed by Chen and
Shao (1999). Given the Monte Carlo samples

�

µ j ,σ j

�

, j = 1,2, . . . ,N , we compute the
HPD interval for µ as follows:

Step 1. Sort
¦

µ j , j = 1, . . . ,N
©

as

µ(1) ≤µ(2) ≤ · · · ≤µ(N ).

Step 2. Compute the 100(1−α) percent credible intervals

Li (N ) =
�

eµ(
i

N ), eµ
�

i+[(1−α)N ]
N

��
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for i = 1,2, . . . ,N − [(1−α)N ], where

eµ(γ ) =











µ(1), if γ = 0,

µ(i), if
i−1
∑

j=1

w j < γ ≤
i
∑

j=1

w j .

Here, [(1−α)N ] denotes the integer part of (1−α)N .

Step 3. The 100(1−α) percent HPD interval is the one with the smallest interval width
among all Li (N )’s.

The same procedure can be applied to calculate the HPD interval for σ .

4. BAYESIAN PREDICTION

Suppose that we observe only the n upper record observations XU (1) = x1,XU (2) =
x2, . . . ,XU (n) = xn , and the aim is to predict the s th upper record value, s > n. Let
Y ≡XU (s) be the s th upper record value.

The conditional distribution of Y given X = (x1, x2, . . . , xn) is just the distribution
of Y given XU (n) = xn , due to the well-known Markovian property of record statistics.
It follows (see Arnold et al. (1998)) that

f (y|xn ;µ,σ) =
[H (y)−H (xn)]

s−n−1

Γ (s − n)
f (y;µ,σ)

1− F (xn ;µ,σ)
,

where y > xn and H (y) =− ln [1− F (y)]. For the normal distribution, f (y|xn ;µ,σ) is
given by

f (y|xn ;µ,σ) =



ln





1−Φ
�

xn−µ
σ

�

1−Φ
�

y−µ
σ

�









s−n−1
φ
�

y−µ
σ

�

σΓ (s − n)
�

1−Φ
�

xn−µ
σ

�� .

The Bayes predictive pdf of Y , f ∗s (y|xn), can be calculated as

f ∗s (y|xn) =
∫ ∞

0

∫ ∞

−∞
f (y|xn ;µ,σ)π (µ,σ |x)dµdσ . (14)

Substituting (12) into (14), the Bayes predictive pdf f ∗s (y|xn) can be obtained as

f ∗s (y|xn)∝
∫ ∞

0

∫ ∞

−∞
f (y|xn ;µ,σ) g1 (µ|σ ,x) g2 (σ |x) h(µ,σ)dµdσ .
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4.1. Bayesian point prediction

The Bayesian point predictors of Y under the squared error loss function, ÒYSEP , and
under the Linex loss function, ÒYLEP , are

ÒYSEP =
∫ ∞

xn

y f ∗s (y|xn)d y (15)

and

ÒYLEP =−
1
c

ln

�

∫ ∞

xn

e−cy f ∗s (y|xn)
�

d y. (16)

Since f ∗s (y|xn) can not be expressed in closed form, (15) and (16) can not computed
explicitly. As before, based on the Monte Carlo sample {(µi ,σi ) , i = 1,2, . . . , M}, a sim-
ulation consistent estimator of f ∗s (y|xn) can be obtained as

bf ∗s (y|xn) =
M
∑

i=1

f (y|xn ;µi ,σi )wi , (17)

where wi , i = 1,2, . . . ,N are as defined in (13). By using (17), ÒYSEP and ÒYLEP can be
computed as

ÒYSEP =
∫ ∞

xn

y
M
∑

i=1

f (y|xn ;µi ,σi )wi d y =
M
∑

i=1

wi I (xn ,µi ,σi )

and

ÒYLEP =−
1
c

ln

�

∫ ∞

xn

e−cy
M
∑

i=1

f (y|xn ;µi ,σi )wi d y

�

=−1
c

ln

�

M
∑

i=1

wi J (xn ,µi ,σi )
�

,

where

I (xn ,µ,σ) =
∫ ∞

xn

y



ln





1−Φ
�

xn−µ
σ

�

1−Φ
�

y−µ
σ

�









s−n−1
φ
�

y−µ
σ

�

σΓ (s − n)
�
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4.2. Bayesian interval prediction

Bayesian prediction intervals can be obtained from the Bayes predictive pdf f ∗ (y|x).
Bayesian prediction bounds can be obtained by evaluating

P (Y > λ|xn) =
∫ ∞

λ

f ∗s (y|xn)d y

for some positive λ. Now, the 100(1− α) percent Bayesian prediction interval for Y is
given by (L (x) , U (x)), where L (x) and U (x) can be obtained by solving the following
non-linear equations simultaneously

P (Y > L (x) |xn) =
∫ ∞

L(x)
f ∗s (y|xn)d y = 1− α

2

and

P (Y >U (x) |xn) =
∫ ∞

U (x)
f ∗s (y|xn)d y =

α

2
.

By substituting bf ∗s (y|xn) in (17) for f ∗s (y|xn), we can obtain the Bayesian prediction
bounds L (x) and U (x) from the following equations:

1− α
2
=

M
∑

i=1

wi K (L (x) ,µi ,σi ) ,
α

2
=

M
∑

i=1

wi K (U (x) ,µi ,σi ) ,

where

K (L,µ,σ) =
∫ ∞

L



ln
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
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φ
�

y−µ
σ

�

σΓ (s − n)
�
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�
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��d y.

5. REAL DATA ANALYSIS

In this section, we consider a real data set to illustrate all the estimation and prediction
methods described in the preceding sections. The data are the total annual rainfall in
inches during March recorded at Los Angeles Civic Center from 1997 to 2006 (see the
website of Los Angeles Almanac, www.laalman-ac.com/weather/we08aa.htm):

0.00, 4.06, 1.24, 2.82, 1.17, 0.32, 4.31, 1.17, 2.14, 2.87.

We observed that the normal distribution with µ= 2.01 and σ = 1.483 fits to above
data set. We checked the validity of the normal distribution based on the Kolmogorov-
Smirnov (K-S) test. The K-S distance was 0.198 and the corresponding p-value was 0.827.
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From this data, we observe the three upper record values as 0.00, 4.06, 4.31. For
this record data, we estimated µ and σ using MLE, BLUE of Balakrishnan and Chan
(1998) and Bayes estimators. For computing Bayes estimators and predictors, since we
do not have any prior information, we assume that the prior on σ is improper. Sinceµ0
is the location hyper parameter, without loss of generality, we assume that µ0 = 0. The
integrals I , J in Section 4.1 and K in Section 4.2 were computed numerically using the
function integrate in the R software (R Development Core Team, 2016). integrate is based
on QUADPACK routines dqags and dqagi by R. Piessens and E. deDoncker-Kapenga,
available from Netlib. The number of subdivisions for integration was taken to be 100.

Figure 1 plots the p-value of the K-S test versus c when Bayes estimator is used with
the Linex loss function. Also plotted are the p-values corresponding to the MLE, BLUE
and Bayes estimator with the squared error loss function. We see that BLUE has the
smallest p-value and MLE has the second smallest p-value. The p-values for Bayes esti-
mators are larger. The asymmetric Linex loss always produces larger p-values than the
squared error loss.
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Figure 1 – p-value of the K-S test versus c of the Linex loss function.



28 A. Asgharzadeh et al.

We also computed CIs for µ and σ . The 95 percent HPD intervals using the Monte
Carlo method were (1.95,2.11) and (1.481,1.500) for µ and σ , respectively. The 95 per-
cent CIs based on the BLUEs through the pivotal quantities R1 and R2 were (1.91,2.22)
and (1.476,1.511) forµ and σ , respectively. We see that the former intervals are shorter.
All of the intervals contain the MLEs ofµ and σ based on the complete sample (µ= 2.01
and σ = 1.483).
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Figure 2 – Estimates of last record versus c of the Linex loss function.

Let us now compare the Bayesian prediction and the BLUP given by Balakrishnan
and Chan (1998). In order to make the comparison, the first two upper records are used
to predict the last one. Based on the first two upper records, the BLUP of = XU (3) was
4.51. Now, under the assumption that the prior distribution is as before, we computed
the Bayesian point predictors with respect to the two loss functions. Figure 2 plots the
predicted value versus c when Bayes estimator is used with the Linex loss function. Also
plotted are the predicted values corresponding to the BLUP and Bayes estimator with
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the squared error loss function. We see that BLUP is the furthest from the exact record.
The one based on the squared error loss function is the second furthest from the exact
record. The predictions given by the asymmetric Linex loss are the closest to the exact
record.

We also computed the 95 percent Bayesian prediction interval of the last record. It
was (4.22,4.56), containing the exact value.

6. SIMULATION AND DISCUSSION

In this section, different estimation and prediction methods are compared using a Monte
Carlo simulation. We compare the performances of the MLEs, the BLUEs and Bayes
point estimators (with respect to the squared error and Linex loss functions) in terms
of biases, and mean squared errors (MSEs). We also compare two CIs, namely, the CIs
based on BLUEs, asymptotic MLEs, bootstrapping and the HPD intervals based on the
Monte Carlo method in terms of average confidence lengths, and coverage probabilities.
For computing Bayes estimators and predictors, we assume two priors:

Prior 1: µ0 = 0, a = 0, b = 0,
Prior 2: µ0 = 0, a = 2, b = 3.

Obviously, prior 2 is more informative than prior 1.
The simulations were performed as follows:

1. simulate n upper record values from the standard normal distribution;

2. compute the MLEs, BLUEs and Bayes estimators based on the squared error and
Linex loss functions. For the Linex loss function, we took c =−1,0.1,1;

3. compute the 95 percent CIs based on BLUEs, asymptotic MLEs, bootstrapping
and the 95 percent HPD intervals based on Monte Carlo simulations;

4. iterate over steps 1 to 3 ten thousand times.

This scheme gives for a given n the biases and MSEs of the MLEs, BLUEs and Bayes
estimators. It also gives for a given n the average confidence lengths and coverage proba-
bilities of the intervals based on BLUEs, asymptotic MLEs, bootstrapping and the HPD
intervals based on Monte Carlo simulations.

Figure 3 plots the biases and MSEs of the estimators ofµ andσ versus n = 5,6, . . . , 10.
Figure 4 plots the confidence lengths and coverage probabilities of the estimators of µ
and σ versus n = 5,6, . . . , 10.

We can observe the following from Figure 3: the biases for the BLUE are the closest
to zero as expected; the biases for the other estimators generally decrease to zero as n
increases; of these, the MLEs have the largest biases, the Bayes estimators based on the
squared error loss have the second largest biases and the Bayes estimators based on the
Linex loss have the smallest biases; the MSEs of all the estimators generally decrease to
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zero as n increases; the BLUEs have the largest MSEs, the MLEs have the second largest
MSEs, the Bayes estimators based on the squared error loss have the third largest MSEs
and the Bayes estimators based on the Linex loss have the smallest MSEs; the use of prior
2 leads to smaller biases and smaller MSEs.
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Figure 3 – Biases and MSEs versus n: bias forµ (top left), bias for σ (top right), MSE forµ (bottom
left) and MSE for σ (bottom right).

We can observe the following from Figure 4: confidence length generally decreases
with increasing n; they appear largest for the BLUE CIs, second largest for the asymp-
totic MLE intervals, third largest bootstrap based intervals, fourth largest for the HPD
intervals based on prior 1 and smallest for the HPD intervals based on prior 2; coverage
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probabilities appear furthest from the nominal level for the BLUE CIs and closest to the
nominal level for the HPD intervals based on prior 1 and prior 2.
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Figure 4 – Confidence lengths and coverage probabilities versus n: coverage length forµ (top left),
coverage length for σ (top right), coverage probability forµ (bottom left) and coverage probability
for σ (bottom right).

In the context of computational complexities, the Bayesian point estimators are easy
to compute. They do not involve solving of non-linear equations. The MLEs involve
solving of non-linear equations through some iterative processes. Also BLUEs require
the construction of special tables based on means, variances, and covariances of record
statistics.
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To see how the Bayes predictors based on priors 1 and 2 compare to each other,
we also carried out a Monte Carlo simulation. We simulated a sample of ten upper
record values from the standard normal distribution and used the first four to predict
the s th record for s = 5,6, . . . , 10. We computed the Bayesian point estimators based
on the squared error and Linex loss functions. We also computed 95 percent Bayesian
PIs based on the squared error and Linex loss functions. The biases, MSEs, confidence
lengths and coverage probabilities for every s were computed over ten thousand itera-
tions as described before. Figure 5 plots the biases and MSEs of the predictors versus
s = 5,6, . . . , 10. Figure 6 plots the confidence lengths and coverage probabilities of the
Bayesian PIs versus s = 5,6, . . . , 10.

We can observe the following from Figure 5: the biases generally increase with in-
creasing s ; the biases appear larger when the squared error loss is used and smaller when
the Linex loss is used; the use of prior 2 leads to smaller biases; the MSEs generally in-
crease with increasing s ; the MSEs appear larger when the squared error loss is used and
smaller when the Linex loss is used; the use of prior 2 leads to smaller MSEs.

We can observe the following from Figure 6: confidence length generally increases
with increasing s ; they appear larger for prior 1 and smaller for prior 2; coverage proba-
bilities appear further from the nominal level for prior 1 and closer to the nominal level
for prior 2.
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Figure 5 – Biases and MSEs versus s : bias (left) and MSE (right).
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Figure 6 – Coverage lengths and coverage probabilities versus s : coverage length (top left) and
coverage probability (right).

Finally, we repeated the simulations for Figures 3 and 4 by contaminating the sim-
ulated samples. Instead of simulating a sample of size n from the standard normal dis-
tribution, we simulated a sample of size (n− 1) from the standard normal distribution
and a sample size 1 from the Student’s t distribution with one degree of freedom. We
then computed the biases, MSEs, confidence lengths and coverage probabilities as be-
fore. Plots of them versus n showed a similar pattern to Figures 3 and 4: excluding the
BLUEs, the MLEs had the largest biases, the Bayes estimators based on the squared error
loss had the second largest biases and the Bayes estimators based on the Linex loss had the
smallest biases; the BLUEs had the largest MSEs, the MLEs had the second largest MSEs,
the Bayes estimators based on the squared error loss had the third largest MSEs and the
Bayes estimators based on the Linex loss had the smallest MSEs; the use of prior 2 led to
smaller biases and smaller MSEs; confidence lengths appeared largest for the BLUE CIs
and smallest for the HPD intervals based on prior 2; coverage probabilities appeared fur-
thest from the nominal level for the BLUE CIs and closest for the HPD intervals based
on prior 2; and so on. But the magnitude of the biases, MSEs and confidence lengths
were larger when compared to Figures 3 and 4. Also the coverage probabilities were
further away from the nominal level when compared to Figure 4.

7. CONCLUSIONS

We have considered Bayesian estimation and prediction for normal distribution based on
upper record values. Under the squared error and Linex loss functions, we have derived
Bayes estimators of the location and scale parameters using Monte Carlo simulations. It
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is observed that the Bayes estimators have clear advantages over the MLEs and BLUEs
and that the Linex loss is superior to the squared error loss. We also used Monte Carlo
simulations to compute Bayesian predictors of future records. Once again the Linex loss
gave better predictions than the squared error loss.
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SUMMARY

Based on record data, the estimation and prediction problems for normal distribution have been
investigated by several authors in the frequentist set up. However, these problems have not been
discussed in the literature in the Bayesian context. The aim of this paper is to consider a Bayesian
analysis in the context of record data from a normal distribution. We obtain Bayes estimators
based on squared error and linear-exponential (Linex) loss functions. It is observed that the Bayes
estimators can not be obtained in closed forms. We propose using an importance sampling method
to obtain Bayes estimators. Further, the importance sampling method is also used to compute
Bayesian predictors of future records. Finally, a real data analysis is presented for illustrative pur-
poses and Monte Carlo simulations are performed to compare the performances of the proposed
methods. It is shown that Bayes estimators and predictors are superior than frequentist estimators
and predictors.

Keywords: Bayesian prediction; Best linear unbiased estimators; Maximum likelihood estimators;
Record data.


