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1. INTRODUCTION

The reliability function R(t ) is defined as the probability of failure-free operation until
time t . Thus, if the random variable (rv) X denotes the lifetime of an item or a system,
then R(t ) = P (X > t ). Another measure of reliability under stress-strength setup is the
probability P = P (X > Y ), which represents the reliability of an item or a system of ran-
dom strength X subject to random stress Y . A lot of work has been done in the literature
for the point estimation and testing of R(t ) and P . For a brief review, one may refer to
Pugh (1963), Basu (1964), Bartholomew (1957, 1963), Tong (1974, 1975), Johnson (1975),
Kelly et al. (1976), Sathe and Shah (1981), Chao (1982), Chaturvedi and Surinder (1999),
Awad and Gharraf (1986), Tyagi and Bhattacharya (1989) and Chaturvedi and Rani
(1997, 1998), Chaturvedi and Tomer (2002, 2003), Chaturvedi and Singh (2006, 2008),
Chaturvedi and Kumari (2015, 2016), Chaturvedi and Vyas (2017), Chaturvedi and Mal-
hotra (2017) and Chaturvedi and Pathak (2012, 2013, 2014), Chaturvedi et al. (2018),
Kotz et al. (2003), Baklizi (2008a,b), Eryilmaz (2008a,b, 2010, 2011), Krishnamoorthy
et al. (2007), Krishnamoorthy et al. (2009), Krishnamoorthy and Lin (2010), Kundu and
Raqab (2009), Rezaei et al. (2010) and Saracoglu and Kaya (2007).

Constantine et al. (1986) derived UMVUE and MLE of P when X and Y follow
gamma distributions with shape parameters to be integer-valued. Huang et al. (2012)
generalized these results for the case when shape parameters are positive-valued. Liang
(2008) proposed a family of lifetime distributions, the positive exponential family, which
covers gamma distribution as specific case.

In the present paper, we consider estimation of R(t ) and P for the positive exponen-
tial family of distributions. We derive UMVUES and MLES. In order to obtain these
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estimators, the basic role is played by the estimators of powers of parameters. The es-
timator of probability density function (pdf) is derived, which is subsequently used to
estimate R(t ) and P . Thus, we have established an interrelationship between the three
estimation problems. In the present approach, the expressions for R(t ) and P are not
required. The case when all the parameters are unknown is also handled. The results of
Constantine et al. (1986) and Huang et al. (2012) are shown to be particular cases of our
results.

In Section 2, we derive UMVUES and MLES. In Section 3, we obtain MLES and
MOMES assuming all the parameters to be unknown. In Section 4, we present numeri-
cal findings along with an example on real data and finally in Section 6, we conclude our
study.

2. UMVUES AND MLES

The rv X follows a positive exponential family if its pdf is given by

f (x;θ) =
αxαν−1e−

xα

θ

Γ (ν)θν
; x > 0, θ,α, ν > 0. (1)

When ν = 1 and α= 1, f (x;θ) reduces to an exponential density, and to the Weibull
or gamma densities when ν = 1 or α= 1, respectively.

Let X1,X2, . . . ,Xn be a random sample of size n from the distribution given in (1).
Then, assuming ν and α are known, the likelihood function of the parameter θ given
the sample observations x = (x1, x2, . . . , xn) is

L(θ | x) =
�

α

Γ (ν)

�n 1
θnν

e
− 1
θ

n
∑

i=1
xαi

n
∏

i=1

xαν−1
i . (2)

The following theorem provides UMVUES of powers of θ.

THEOREM 1. For q ∈ (−∞,∞), the UMVUE of θq is given by:

eθq =







�

Γ (nν)
Γ (nν + q)

�

Sq ; nν + q > 0

0; otherwise

where β(a, b ) = Γ (a)Γ (b )
Γ (a+b ) is the beta function.

PROOF. It follows from (1) and factorization theorem (see, p.361 Rohtagi and Saleh,

2012) that S =
n
∑

i=1
X α

i is a sufficient statistic for θ and the pdf of S is

fs (s | θ) =
s nν−1

Γ (nν)θnν
exp

�

− s
θ

�

; ν > 0,θ > 0, s ≥ 0. (3)
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From (2), since the distribution of S belongs to exponential family, it is also complete
(see, p.367 Rohtagi and Saleh, 2012)]. The result now follows from (3) that

E[Sq] =
�

Γ (nν + q)
Γ (nν)

�

θq

2

In the following theorem, we obtain UMVUE of the sampled pdf at a specified point.

THEOREM 2. The UMVUE of the sampled pdf (1) at a specified point x is

ef (x;θ) =







αxαν−1

β(ν, (n− 1)ν)S ν

�

1− xα

S

�(n−1)ν−1
; xα < S

0; otherwise,

where β(a, b ) = Γ (a)Γ (b )
Γ (a+b ) is the beta function.

PROOF. We can write,

f (x;θ) =
αxαν−1

Γ (ν)θν

∞
∑

i=0

(−1)i

i !

� xα

θ

�i
.

Applying Theorem 1,

ef (x;θ) =
αxαν−1

Γ (ν)

∞
∑

i=0

(−1)i xαi
i !

(eθ−(ν+i)

=
αxαν−1

S νβ(ν, (n− 1)ν)

(n−1)ν−1
∑

i=0

(−1)i
�

(n− 1)ν − 1
i

�

� xα

S

�i

and the result follows. 2

THEOREM 3. The UMVUE of R(t ) is

eR(t ) =
¨

1− I tα
S
(ν , (n− 1)ν); tα < S

0; otherwise,

where Ix (p, q) = 1
β(p,q)

∫ x

0
y p−1(1− y)q−1d y; 0≤ y ≤ 1, x < 1, p, q > 0 is the incomplete

beta function.
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PROOF. We note that the expectation of
∫ ∞

t

ef (x;θ)d x with respect to S is R(t ).

Thus, applying Theorem 2,

eR(t ) =
∫ ∞

t

ef (x;θ)d x

=
α

β(ν , (n− 1)ν)S ν

∫ ∞

t
xαν−1

�

1− xα

S

�(n−1)ν−1
d x

and the result follows by substituting xα

S = z.
Let X and Y be two independent random variables with respective pdf

f (x;θ1) =
α1xα1ν1−1e−

xα1
θ1

Γ (ν1)(θ1)ν1
; x > 0,θ1,α1, ν1 > 0

and

f (y;θ2) =
α2yα2ν2−1e−

xα2
θ2

Γ (ν2)(θ2)ν2
; y > 0,θ2,α2, ν2 > 0 .

Let X1,X2, . . . ,Xn be a random sample of size n from f (x;θ1) and Y1,Y2, . . . ,Ym be

a random sample of size m from f (y;θ2). Define, S =
n
∑

i=1
X α1

i and T =
m
∑

i=1
Y α2

i . 2

THEOREM 4. The UMVUE of P is

eP =























































∫ 1

z=0

z ν1−1(1− z)(n−1)ν1−1

β(ν1, (n− 1)ν1)
I
(SZ)

α2
α1

T

(ν2, (m− 1)ν2)d z; S
1
α1 ≤ T

1
α2

∫
T
α1
α2
S

z=0

z ν1−1(1− z)(n−1)ν1−1

β(ν1, (n− 1)ν1)
I
(SZ)

α2
α1

T

(ν2, (m− 1)ν2)d z

+1− I
T
α1
α2
S

(ν1, (n− 1)ν1); S
1
α1 > T

1
α2

PROOF. It follows from Theorem 2 that

ef (x;θ1) =







α1xα1ν1−1

β(ν1, (n− 1)ν1)S ν1

�

1− xα1

S

�(n−1)ν1−1
; xα1 < S

0; otherwise

and

ef (y;θ2) =







α2yα2ν2−1

β(ν2, (m− 1)ν2)T ν2

�

1−
yα2

T

�(m−1)ν2−1
; yα2 < T

0; otherwise
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From the arguments similar to those used in Theorem 2,

eP =
∫ ∞

x=0

∫ x

y=0

ef (x;θ1) ef (y;θ2)d x d y

=
∫ min(S

1
α1 ,T

1
α2 )

x=0

α1xα1ν1−1

β(ν1, (n− 1)ν1)S ν1

�

1− xα1

S

�(n−1)ν1−1
I xα2

T
(ν2, (m− 1)ν2)d x. (4)

When S
1
α1 ≤ T

1
α2 , we substitute xα1

S = z and the first assertion follows. For S
1
α1 >

T
1
α2 , the integral in (4) can be expressed as the sum of integrals on (0,T

1
α2 ) and (T

1
α2 ),

(S
1
α1 ), then on substituting xα1

S = z, we get

eP =
∫

T
α1
α2
S

z=0

z ν1−1(1− z)(n−1)ν1−1

β(ν1, (n− 1)ν1)
I
(SZ)

α2
α1

T

(ν2, (m− 1)ν2)d z

+
∫ 1

z= T
α1
α2
S

z ν1−1(1− z)(n−1)ν1−1

β(ν1, (n− 1)ν1)
d z

and the second assertion follows. It is interesting to note that on putting α1 = α2 = 1,
we get the UMVUE of P (X > Y ) obtained by Huang et al. (2012). Hence we were able
to obtain a generalized expression of UMVUE of P (X > Y ) by a different yet simpler
approach. Assuming both shape parameters ν1 and ν2 to be integers, Constantine et al.
(1986) showed that UMVUE of P (X > Y ) can be expressed in terms of an incomplete
beta function and hypergeometric series. Following which, in Corollary 5, we derive
a generalized expression of UMVUE of P (X > Y ) when both the shape parameters ν1
and ν2 are integers. 2

COROLLARY 5. The UMVUE of P when the shape parameters ν1 and ν2 are integers is

eP =



























































































1
β(ν1, (n− 1)ν1)β(ν2, (m− 1)ν2)

(m−1)ν2−1
∑

i=0

(−1)i

ν2+ i

�

(m− 1)ν2− 1
i

�

·
∫ 1

0
z ν1−1(1− z)(n−1)ν1−1





(zS)
α2
α1

T





ν2+i

d z; S
1
α1 ≤ T

1
α2

1− 1
β(ν1, (n− 1)ν1)β(ν2, (m− 1)ν2)

(n−1)ν1−1
∑

i=0

(−1)i

ν1+ i

�

(n− 1)ν1− 1
i

�

·
∫ 1

0
z ν2−1(1− z)(m−1)ν2−1





(zT )
α1
α2

S





ν1+i

d z; S
1
α1 > T

1
α2
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PROOF. From Theorem 4, for S
1
α1 ≤ T

1
α2 ,

eP =
∫ 1

z=0

z ν1−1(1− z)(n−1)ν1−1

β(ν1, (n− 1)ν1)β(ν2, (m− 1)ν2)

·
∫

(SZ)
α2
α1

T

w=0
wν2−1(1−w)(m−1)ν2−1d wd z

and the first assertion follows by binomial expansion of (1−w)(m−1)ν2−1. For S
1
α1 > T

1
α2 ,

consider

eP =
∫ ∞

y=0

∫ ∞

x=y

ef (x;θ1) ef (y;θ2)d x d y

=
∫ T

1
α2

y=0

α2yα2ν2−1

β(ν2, (m− 1)ν2)T ν2

�

1−
yα2

T

�(m−1)ν2−1
[1− I yα1

S
(ν1, (n− 1)ν1)]d y

and the second assertion follows on substituting y
α2
T = z. It is interesting to note that

on putting α1 = α2 = 1, we get the UMVUE of P (X > Y ) obtained by Constantine
et al. (1986). Hence we were able to obtain another generalized expression of UMVUE
of P (X > Y ) by a different yet simpler approach when the shape parameters ν1 and ν2
are assumed to be integers. 2

THEOREM 6. The MLE of R(t ) is given by:

bR(t ) = 1−
γ
�

ν, nν tα

S

�

Γ (ν)

where γ (a, r ) =
∫ r

0
ya−1e−y d y is the lower incomplete gamma function.

PROOF. It can be easily seen from (2) that the MLE of θ is bθ= S
nν . From invariance

property of MLE, the MLE of sampled pdf is

bf (x;θ) =
αxαν−1

Γ (ν)

�nν
S

�ν
exp

§−nνxα

S

ª

.

Thus, bR(t ) =
∫ ∞

t

bf (x;θ)d x. 2
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THEOREM 7. The MLE of P is

bP = 1− 1
Γ (ν1)Γ (ν2)

∫ ∞

z=0
z ν2−1e−zγ






ν1,

nν1
�

zT
mν2

�

α1
α2

S






d z.

PROOF. We have

bP =
∫ ∞

y=0

∫ ∞

x=y

bf (x;θ1) bf (y;θ2)d x d y

=
∫ ∞

y=0

bRX (y) bf (y;θ2)d y

=
∫ ∞

y=0



1−
γ
�

ν1, nν1yα1

S

�

Γ (ν1)





α2yα2ν2−1

Γ (ν2)

�mν2
T

�ν2
exp

§−mν2yα2

T

ª

d y

and the theorem follows on substituting mν2yα2

T = z. 2

3. MLES AND MOMES WHEN ALL THE PARAMETERS ARE UNKNOWN

Now we discuss the case when all the three parameters α, ν and θ are unknown. For
MLES, the log-likelihood function of the parameters α, ν and θ given the sample obser-
vations x is

l (α, ν,θ | x) = n log(α)− n log(Γ (ν))− nν log(θ)− 1
θ

n
∑

i=1

xαi +(αν − 1)
n
∑

i=1

log(xi ) .

The MLES of α, ν and θ are given by the simultaneous solution of the following
three equations

∂ l
∂ α
=

n
α
− 1
θ

n
∑

i=1

xαi log(xi )+ ν
n
∑

i=1

log(xi ) = 0, (5)

∂ l
∂ ν
=
−n
Γ (ν)

dΓ (ν)
d ν
− n log(θ)+α

n
∑

i=1

log(xi ) = 0, (6)

∂ l
∂ θ
=
−nν
θ
+

n
∑

i=1
xαi

θ2
= 0. (7)

Since these non-linear equations don’t have a closed form solution, therefore we ap-
ply Newton-Raphson algorithm to compute MLES of α and ν . These values of MLES
of α and ν so obtained can be substituted in (7) to obtain MLE of θ. From (7), the MLE
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of θ is bθ =

n
∑

i=1
xbαi

nbν , where bα and bν are the MLES of α and ν respectively. It is to be noted
that from Theorem 6, Theorem 7 and invariance property of MLE, the MLE of R(t ) is
given as

bR(t ) = 1−
γ
�

bν, nbν t bα

S

�

Γ (bν)
,

where S =
n
∑

i=1
X bα

i and the MLE of P is given as

bP = 1− 1
Γ (bν1)Γ (bν2)

∫ ∞

z=0
z (bν2−1)e−zγ

�

bν1,
nbν1

�

zT
mbν2

�

bα1
bα2

S

�

d z,

where S =
n
∑

i=1
X bα1

i , T =
m
∑

i=1
Y bα2

i .

Next we derive the moment estimators of the parameters α, ν and θ of PEF. From
Equation (1), we obtain the r th moment as

E(X r ) =
∫ ∞

0

αx r+αν−1e−
xα

θ

Γ (ν)θν
d x

=
θ

r
α ar

Γ (ν)
,

on substituting xα

θ = u, where ar = Γ
� r
α + ν

�

. For r = 1,2,3 and denoting E(X r ) by
X r , we obtain the following equations

X 2a2
1 −X

2
a2Γ (bνM ) = 0, (8)

bθM −
�

X Γ (bνM )
a1

�

bαM

= 0, (9)

X
3

X 3
−

a3
1

a3Γ 2(bνM
= 0. (10)

These equations can be simultaneously solved using uniroot function in R software
to obtain MOMES of the parameters α, ν and θ of PEF.

4. SIMULATION STUDIES

Firstly, we conduct Monte Carlo simulation studies to compare the performance of eθq

and eθq for different sample sizes and powers of parameter θ. For ν = 3, we generate
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Figure 1 – MSE of the UMVUE and MLE of θq for different sample sizes and values of q .

10,000 samples each of size n from positive exponential family of distributions and re-
peat this procedure for several values of θ. Figure 1 shows the mean square error (MSE)
of the UMVUE and MLE of θq . From these figures we note that the MSE of the MLE
of θq is always greater than that of the UMVUE, however for large sample sizes these
estimators of θq are better and almost equally efficient.

As an estimation of bias, Figure 2 shows the differences eθq −θq and bθq −θq which
are nothing but the difference between the average estimate of UMVUE and MLE and
the true value of the parameter θq respectively. From these figures, it is clear that an
average estimate of eθq based on 10,000 samples lies very close to the true value of θq .
Certainly, it is consistent with the unbiasedness property of UMVUES. We may also
note that eθq overestimates for large values of θq but its bias decreases for large sample
sizes.

On similar lines, we perform simulation studies to compare the performance of eR(t )
and bR(t ) for different sample sizes. For t = 7 and α= ν = 2, we generate 10,000 samples
each of size n from positive exponential family of distributions and repeat this procedure
for several values of R(t ). Figure 3 shows the MSE of the UMVUE and MLE of R(t ).
From these figures we note that the MSE of the UMVUE of R(t ) is always greater than
that of the MLE, however for large sample sizes these estimators of R(t ) are better and
almost equally efficient. Figure 4 shows the estimated bias of eR(t ) and bR(t ) for different
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Figure 2 – Estimated bias of the UMVUE and MLE of θq for different sample sizes and values of q .

sample sizes. Similar to the results based on Figure 2, we can observe that eR(t ) lies very
close to the true parameter R(t ) and hence is in conformity with the unbiasedness prop-
erty of UMVUES. As far as MLES are concerned, bR(t ) overestimates for small values
of R(t ) and underestimates for large values of R(t ), however this bias in the estimates of
bR(t ) decreases as sample size increases.

Now, we compare the performance of eP and bP for different sample sizes. By Monte
Carlo simulation, for α1 = ν1 = 2 and α2 = ν2 = 3, we generate 10,000 samples each of
size n and m from positive exponential family of distributions and repeat this procedure
for several values of P . Figure 5 shows the MSE of the UMVUE and MLE of P . From
these figures we note that the MSE of the UMVUE of P is always greater than that of the
MLE, however for large sample sizes these estimators of P are better and almost equally
efficient. Note that this result has also been observed for estimators of R(t ) but not θq .
Figure 6 shows the estimated bias of eP and bP for different sample sizes. Similar to the

results based on Figure 2 and Figure 4, we can observe that eP lies very close to the true
parameter P and hence is in conformity with the unbiasedness property of UMVUES.
As far as MLES are concerned, bP overestimates for small values of P and underestimates
for large values of P , however this bias in the estimates of bP decreases as sample size
increases. It is interesting to note that this result has also been observed for estimators
of R(t ) but not θq .

Figure 7 shows the estimates of the pdf in (1) based on MLE and UMVUE which are
good approximations of the pdf.
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Figure 3 – MSE of the UMVUE and MLE of R(t ) for different sample sizes.

Figure 4 – Estimated bias of the UMVUE and MLE of R(t ) for different sample sizes.
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Figure 5 – MSE of the UMVUE and MLE of P for different sample sizes.

Figure 6 – Estimated bias of the UMVUE and MLE of P for different sample sizes.
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Figure 7 – MLE and UMVUE of sampled pdf.

5. AN EXAMPLE ON REAL DATA

This section deals with an example of real data to illustrate the proposed estimation
methods. This data represents the strength of single carbon fibres (measured in GPA)
and impregnated 1000-carbon fibres tows. Single fibres were tested under tension at
gauge lengths of 20mm (Data set I) and 10mm (Data set II) with sample sizes 69 and 63
respectively. Kundu and Gupta (2006) analyzed these data sets by fitting two-parameter
Weibull distribution. After subtracting 0.75 from each point of these data sets, Kundu
and Gupta (2006) observed that the Weibull distributions with equal shape parameters
fit to both these data sets. This has been confirmed in Figure 8 and Figure 9.

Let us assign the random variable X ∼ f (x;α1,θ1) to Data set I that has been repro-
duced in the following table.

Data Set I
1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 2.006
2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274
2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490 2.511 2.514 2.535
2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 2.697 2.726 2.770 2.773
2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090 3.096 3.128
3.233 3.433 3.585 3.585
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Figure 8 – The empirical and theoretical cdf of Weibull(α1,θ1)model.

Figure 9 – The empirical and theoretical cdf of Weibull(α2,θ2)model.
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Now let us assign the random variable Y ∼ f (y;α2,θ2) to Data set II that has been
reproduced in the following table.

Data Set II
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474 2.518
2.522 2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856
2.917 2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235
3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 3.493 3.501 3.537 3.554
3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020

The following Table 1 shows the different estimators of parameters α1 and θ1 of
Weibull model and its corresponding reliability function RX (t ) based on Data set I.
Similarly Table 2 shows the different estimators of parameters α2 and θ2 of Weibull
distribution and its corresponding reliability function RY (t ) based on Data set II.

Now, for the above two data sets, we obtain estimators of P = P (X > Y ) and the
results are presented in Table 3.

TABLE 1
The MLE, UMVUE and MOME of parameters α1 and θ1 of Weibull distribution and its

corresponding reliability function RX (t ) for time t = 2 based on Data set I.

bα1
bθ1

eθ1 bα1M

bθ1M
bRX (t ) eRX (t )

5.5049 214.1524 214.1515 5.7810 278.4287 0.8089 0.8111

TABLE 2
The MLE, UMVUE and Bayes estimator of parameters α2 and θ2 of Weibull distribution and its

corresponding reliability function R(t ) for time t = 2 based on Data set II.

bα2
bθ2

eθ2 bα2M

bθ2M
bRY (t ) eRY (t )

5.0462 422.7363 422.8160 5.7553 473.2841 0.9248 0.9259

TABLE 3
The MLE and UMVUE of P (X > Y ).

bP eP
0.2426 0.2409

6. CONCLUSION

A lot of work has been done in literature on the estimation of parametric functions of
various lifetime distributions. In the present paper, we have discussed a positive expo-
nential family of distributions which is quite useful in reliability theory. New techniques
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have been adopted to obtain the UMVUES of parametric functions. We have also de-
rived generalized expressions for the UMVUE of P (X > Y ) using a simple technique.

From the above numerical findings, it is interesting to observe that even though the
estimators of R(t ) and P based on MLE are biased estimators, their MSE is nearly same
and in fact smaller than the MSE of the estimators of R(t ) and P based on UMVUE,
most of the time. This indicates that the estimators of R(t ) and P based on MLE are
more efficient than the estimators of R(t ) and P based on UMVUE. Considering this
fact and the fact that computations of bP based on Theorem 7 are relatively simpler than
the computations of eP based on Theorem 4, the estimator of P (X > Y ) based on MLE is
recommended over UMVUE for estimating P (X > Y ). Following the same arguments,
the estimator of θq based on UMVUE is recommended over that of MLE for estimating
θq .
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SUMMARY

A positive exponential family of distributions is taken into consideration. Two measures of reli-
ability are discussed. Uniformly minimum variance unbiased estimators (UMVUES) and maxi-
mum likelihood estimators (MLES) are developed for the reliability functions. In addition to the
UMVUES and MLES, we derive the method of moment estimators (MOME). The performances
of two types of estimators are compared through Monte Carlo simulation.

Keywords: Positive exponential family of distribution; Point estimation; Uniformly minimum
variance unbiased estimator; Maximum likelihood estimator; Method of moment estimators;
Monte Carlo simulation.


