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1. INTRODUCTION

Square contingency tables are frequently used in many fields, such as medicine, sociol-
ogy, and behavioral sciences. Several inter-rater reliability coefficients have been pro-
posed in the literature. The Cohen (1960) kappa coefficient is the most used agreement
index. Kappa coefficients provide useful information about the reliability of data. Nu-
merous extensions and generalizations of kappa coefficient have been proposed in the
literature. Depending on the scale type (nominal, ordinal, and interval) and the num-
ber raters, different coefficients should be used. For ordinal categories, weighted kappa
coefficient was suggested for use (Cohen, 1968). As alternatives to weighted kappa coef-
ficient, weighted version of Bangdiwala (1988) B and Gwet (2012) AC 2 coefficients were
also suggested. There has been also suggested measure of agreement OR(Ag ) coefficient
based on the odds ratio (Attanasio et al., 2010).

For the multi-rater studies, Light (1971) c which is the generalized form of Cohen’s
c, Fleiss (1971) c, and Hubert (1977) c can be used. von Eye and Mun (2005) adapted
the raw agreement, kappa coefficient, Brennan and Prediger (1981) cη coefficient for
multi-rater studies. Berry et al. (2007, 2008) suggested kappa coefficients for nominal
and ordinal square tables with multi-raters. Hubert’s c coefficient was also reformulated
for the ordinal tables (Warrens, 2005). Quatto (2004) proposed a procedure for testing
chance agreement among multiple raters.

Kappa coefficients are always applicable, easy to calculate and interpret, available in
general purpose statistical software packages, and they condense relevant information
into one coefficient. Besides, it is possible to summarize the rater agreement with a sin-
gle number. However, most authors have criticized it because of the limitations and
insufficiencies, such as: loss of information, unless c approaches 1, the measure does not
allow one to describe the structure of the joint frequency distribution, specific hypothe-
ses cannot be tested, and covariates cannot be taken into account (Kundel and Polansky,
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2003; Tanner and Young, 1985). Kappa coefficients have been criticized because of their
dependency on the rater prevalence (Kottner et al., 2011). Feinstein and Cicchetti (1990)
and Cicchetti and Feinstein (1990) made two well-known paradoxes with Cohen’s c: (1)
a low kappa can occur at a high agreement, and (2) unbalanced marginal distributions
produce higher values of kappa than more balanced marginal distributions.

Because of the insufficiency of kappa coefficients, most authors prefer to use log-
linear models. Instead of summarizing agreement, log-linear models analyze the struc-
ture of the agreement in the data (Tanner and Young, 1985). The log-linear model studies
give more detailed information about the data. There are specialized log-linear mod-
els for each different scale type (nominal, ordinal, and interval) and the type of model
changes according to the number raters.

In recent studies, researchers pay more attention to the assessment of more than
two rater’s agreement instead of two. Although there is a huge literature on inter-rater
reliability coefficients and the agreement models for two raters, the models are not suf-
ficient for the multi-rater studies. The existing models in multi-rater case are sometimes
insufficient to explain the structure of the data. In this article, we first present a re-
view about the inter-rater reliability coefficients and log-linear association plus agree-
ment models. Then, we propose different modifications to analyze the association plus
partial or global agreement. These models allow the distinguishability between adjacent
categories to vary according to their positions and allows to investigate the agreement
as global or as partial. For more clarification, we use two medical data sets to illustrate
the suggested modifications.

The inter-rater reliability coefficients are reviewed in Section 2. The log-linear mod-
els for two and multi rater studies are reviewed in Section 3. Section 4 presents the
suggested log-linear models to analyze the association plus partial or global agreement.
Section 5 presents the illustrative examples, followed by conclusion in Section 6.

2. INTER-RATER RELIABILITY COEFFICIENTS

Cohen’s weighted kappa coefficient was suggested for use in two rater studies with or-
dered categories. For the multi-rater studies, Light (1971), Hubert (1977), and Berry
et al. (2007) weighted kappa coefficients can be used.

Let ni j denote the number of objects, πi j denote the probability of cell (i , j ), and n
denote the total number of observations. Let πi . indicate the i th row total probability
and π. j indicate the j th column total probability in a R× R contingency table. The
weighted kappa coefficient cw is

cw =

∑R
i=1
∑R

j=1 wi jπi j −
∑R

i=1
∑R

j=1 wi jπi .π. j

1−
∑R

i=1
∑R

j=1 wi jπi .π. j

, (1)

where wi j are the weights with 0≤ wi j ≤ 1. The values of weights have been discussed
in many studies. The most popular weights for weighted kappa are the linear and the
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quadratic weights (Cicchetti and Allison, 1971; Fleiss and Cohen, 1973).
Light’s kappa coefficient is the arithmetic mean of all possible pairs of the raters.

Instead of using unweighted kappa coefficient, it is possible to calculate the weighted
version of Light’s c coefficient using of weighted kappas. Let h be the number of raters
and cw (i j ) be the weighted kappa coefficient among i th and j th raters. Lights’s L.cw
coefficient is given in Equation (2).

L.cw =
2

h(h − 1)

h−1
∑

i=1

h
∑

j=i+1

cw (i j ). (2)

Suppose there are three raters and R is the number of categories. Let pi , q j , and rk
be the marginal proportions and A= {ai j }, B = {bi j }, and C = {ci j } be the sub-tables.
The calculation of sub-tables and the marginal probabilities are given in Equation (3)
and (4), respectively.

ai j =
R
∑

k=1

πi j k bi j =
R
∑

k=1

π j i k ci j =
R
∑

k=1

π j k i , (3)

and

pi =
R
∑

j=1

R
∑

k=1

πi j k qi =
R
∑

j=1

R
∑

k=1

π j i k ri =
R
∑

j=1

R
∑

k=1

π j k i . (4)

The observed agreement P H
0 and the proportion agreement expected by chance P H

e
of Hubert’s weighted kappa coefficient are defined as

P H
0 =

1
3

R
∑

i=1

R
∑

j=1

�

1−
|i − j |
R− 1

�

(ai j + bi j + ci j ), (5)

and

P H
e =

1
3

R
∑

i=1

R
∑

j=1

�

1−
|i − j |
R− 1

�

(pi q j + pi r j + qi r j ). (6)

Then, Hubert’s weighted kappa coefficient is H .cw =
P H

0 −P H
e

1−P H
e

.
Berry et al. (2007, 2008) suggested a weighted kappa coefficient for three rater studies

with ordinal categories. P M
0 and P M

e are

P M
0 =

R
∑

i=1

R
∑

j=1

R
∑

k=1

wi j kπi j k , (7)

and
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P M
e =

R
∑

i=1

R
∑

j=1

R
∑

k=1

wi j k pi q j rk . (8)

Then Mielke, Berry, and Johnston’s weighted kappa coefficient is M .cw =
P M

0 −P M
e

1−P M
e

.
Here the weights wi j k are calculated from Equation (9).

wi j k = 1−
|i − j |+ |i − k|+ | j − k|

2(R− 1)
. (9)

3. LOG-LINEAR MODELS

Although it is possible to summarize the inter-rater reliability by the coefficients, most
authors prefer to use log-linear agreement models. Agreement models are suggested
to apply on the square contingency tables with nominal categories. The single way to
apply agreement models to the ordered tables is to ignore the ordered structure of the
variables. However, this will lead loss of information. In order to analyze the agreement
of ordered square contingency tables, the association models with agreement parameter
which analyze agreement and association together are suggested. In addition to analysis
of agreement, odds ratios may be calculated under fitted.

3.1. Log-linear models for two raters

Consider an R× R contingency table where the first rater is represented by X and the
second rater is represented by Y. In this two-way table, cross-classifies are multinomi-
nal sample of n subjects on two categorical responses. The independence, agreement,
uniform association (UA), and uniform association plus agreement (UAA) models are
summarized in Table 1.

TABLE 1
Log-linear models for R×R contingency tables.

Model Variable∗ Equation Df + Ref.
Independence N,O log mi j = λ+λ

X
i +λ

Y
j (R− 1)2 Agresti (1984)

Agreement N log mi j = λ+λ
X
i +λ

Y
j +δi j (R− 1)2 − 1 Tanner and Young (1985)

UA O log mi j = λ+λ
X
i +λ

Y
j +β× ui v j R2 − 2R Goodman (1979)

UAA O log mi j = λ+λ
X
i +λ

Y
j +β× ui v j +δi j R2 − 2R− 1 Agresti (1988)

* N: Nominal; O: Ordinal

+ df : Degrees of freedom

In Table 1, λ is an overall effect parameter, λX
i is the effect of variable X at i and λY

j

is the effect of variable Y at j with the constraints
∑R

i=1 λ
X
i =

∑R
j=1 λ

Y
j = 0. δi j in the

agreement model is the agreement parameter which is given in Equation (10).
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δi j =
¨

δ if i = j ,
0 otherwise.

(10)

In the association model, β is the association parameter, ui = i and v j = j are the
estimated score values. The UAA model has been extensively used to describe both
agreement and association among the raters.

To describe the variation of distinguishability between adjacent categories, non-uniform
association model (NUA) was suggested by Valet et al. (2007). Differently from the
uniform association model, this model includes (R− 1) association parameters βk ,k+1.
βk ,k+1 is the association parameter among the categories k and k + 1. NUA model al-
lows for the calculation of different values of odds ratios on the main diagonal. The
corresponding log-linear model is as given in Equation (11).

log mi j = λ+λ
X
i +λ

Y
j −
|i − j |

2
×

max(i , j )−1
∑

k=min(i , j )

βk ,k+1. (11)

The non-uniform association plus agreement model (NUAA) which is used to describe
both agreement and non-uniform association among raters is also discussed (Valet et al.,
2007). NUAA model can be written as

log mi j = λ+λ
X
i +λ

Y
j −
|i − j |

2
×

max(i , j )−1
∑

k=min(i , j )

βk ,k+1+δi j , (12)

where i , j = 1,2, ..., R. The agreement parameter is as defined in Equation (10). NUA
model has d f = R2 − 3R+ 2 and NUAA model has one more parameter than NUA
model.

Association between the variables of a square contingency table can be simply ex-
pressed using odds ratios. The odds ratio for adjacent categories is

θi ,i+1 =
mi ,i ×mi+1,i+1

mi+1,i ×mi ,i+1
, (13)

where i = 1,2, ..., (R− 1).

3.2. Association plus agreement models for multi-raters

Let X, Y, and Z be the raters of an R×R×R table which have ordered categories. The
independence model (M0), agreement model (M1) (Tanner and Young, 1985), uniform
association model (M2) (Agresti, 1984), and uniform association plus agreement mod-
els with different combinations of association and agreement parameters (M3-M7) have
been discussed for multi-raters (Melia and Diener-West, 1994; Lawal, 2003). These mod-
els are summarized in Table 2 for three-rater studies.
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TABLE 2
The independent, agreement, uniform association, and uniform association plus agreement models

for three-rater tables.

Model Equation
M0 log mi j k = λ+λ

X
i +λ

Y
j +λ

Z
k

M1 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k +δi j +δi k +δ j k +δi j k

M2 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k +β1 × ui v j +β2 × ui wk +β3 × v j wk +β4 × ui v j wk

M3 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k +β1 × ui v j +β2 × ui wk +β3 × v j wk +δi j +δi k +δ j k +δi j k

M4 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k +β1 × ui v j +β2 × ui wk +β3 × v j wk +δi j +δi k +δ j k

M5 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k +β1 × ui v j +β2 × ui wk +β3 × v j wk +δi j k

M6 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k +β1 × ui v j +β2 × ui wk +β3 × v j wk +β4 × ui v j wk +δi j +δi k +δ j k

M7 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k +β1 × ui v j +β2 × ui wk +β3 × v j wk +β4 × ui v j wk +δi j +δi k +δ j k +δi j k

In Table 2, ui = i , v j = j , and wk = k are the score values for X, Y, and Z, re-
spectively. β1 is the association parameter among X–Y, β2 is the association parameter
among X–Z, andβ3 is the association parameter among Y–Z. Hereδi j , δi k , andδ j k are
the partial agreement parameters that show the agreement among X–Y, X–Z, and Y–Z,
respectively. δi j k is the global agreement parameter that shows the agreement among X,
Y, and Z. The partial and global agreement parameters are given in Equations (14)–(17).

δi j =
¨

δ if i = j ,
0 otherwise

(14) δi k =
¨

δ if i = k ,
0 otherwise

(15)

δ j k =
¨

δ if j = k ,
0 otherwise

(16) δi j k =
¨

δ if i = j = k ,
0 otherwise

(17)

4. THE SUGGESTED NON-UNIFORM ASSOCIATION PLUS AGREEMENT MODELS
FOR MULTI-RATERS

Although there is a huge literature for two rater studies, there is not enough literature to
explain the association and agreement among multi-raters. In this article, several mod-
ifications of non-uniform association plus agreement models are developed for multi-
raters. Besides, instead of classical score values, a modification of score values are dis-
cussed.

4.1. Non-uniform association plus agreement models

Let X, Y, and Z be the raters with ordered categories (R≥ 3). δi j , δi k , and δ j k are the
agreement parameters defined as in Equations (14)–(17), respectively. Let βl ,l+1 be the
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association parameter between the adjacent categories l and (l + 1) of X and Y, ϕl ,l+1
be the association parameter between the adjacent categories l and (l + 1) of X and Z,
ωl ,l+1 be the association parameter between the adjacent categories l and (l + 1) of Y
and Z where l = 1,2, ...(R− 1). The association among all of the raters is called global
association. ε is the global association parameter which shows the association among
X, Y, and Z. Here the global association parameter is weighted by the weights as in
Equation (9). Differently from the non-uniform association model for two raters, here
the non-uniform association parameters are weighted by Cicchetti and Allison (1971)
linear weights. The suggested non-uniform association and non-uniform association
plus agreement models for three-raters are summarized in Table 3.

TABLE 3
The non-uniform association and non-uniform association plus agreement models for three-raters.

Model Equation and df

M8

log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |
R−1 ×

∑max(i , j )−1
l=min(i , j ) βl ,l+1 −

|i−k|
R−1 ×

∑max(i ,k)−1
l=min(i ,k) ϕl ,l+1

− | j−k|
R−1 ×

∑max( j ,k)−1
l=min( j ,k) ωl ,l+1

df = R3 − 6R+ 5

M9

log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |
R−1 ×

∑max(i , j )−1
l=min(i , j ) βl ,l+1 −

|i−k|
R−1 ×

∑max(i ,k)−1
l=min(i ,k) ϕl ,l+1

− | j−k|
R−1 ×

∑max( j ,k)−1
l=min( j ,k) ωl ,l+1 +δi j +δi k +δ j k

df = R3 − 6R+ 2

M10

log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |
R−1 ×

∑max(i , j )−1
l=min(i , j ) βl ,l+1 −

|i−k|
R−1 ×

∑max(i ,k)−1
l=min(i ,k) ϕl ,l+1

− | j−k|
R−1 ×

∑max( j ,k)−1
l=min( j ,k) ωl ,l+1 +δi j k

df = R3 − 6R+ 4

M11

log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |
R−1 ×

∑max(i , j )−1
l=min(i , j ) βl ,l+1 −

|i−k|
R−1 ×

∑max(i ,k)−1
l=min(i ,k) ϕl ,l+1

− | j−k|
R−1 ×

∑max( j ,k)−1
l=min( j ,k) ωl ,l+1 +δi j +δi k +δ j k +δi j k

df = R3 − 6R+ 1

M12

log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |
R−1 ×

∑max(i , j )−1
l=min(i , j ) βl ,l+1 −

|i−k|
R−1 ×

∑max(i ,k)−1
l=min(i ,k) ϕl ,l+1

− | j−k|
R−1 ×

∑max( j ,k)−1
l=min( j ,k) ωl ,l+1 −

|i− j |+|i−k|+| j−k|
2(R−1) × ε

df = R3 − 6R+ 4

M13

log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |
R−1 ×

∑max(i , j )−1
l=min(i , j ) βl ,l+1 −

|i−k|
R−1 ×

∑max(i ,k)−1
l=min(i ,k) ϕl ,l+1

− | j−k|
R−1 ×

∑max( j ,k)−1
l=min( j ,k) ωl ,l+1 −

|i− j |+|i−k|+| j−k|
2(R−1) × ε+δi j k

df = R3 − 6R+ 3

4.2. Global association plus agreement models

As ε is the global association parameter which shows the association among the three
raters (X, Y, and Z), the global association plus partial or global agreement models with



360 A. E. Yilmaz

linear weights are summarized in Table 4.

TABLE 4
The global association plus agreement models for three-raters.

Model Equation Df

M14 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |+|i−k|+| j−k|
2(R−1) × ε+δi j k R3 − 3R

M15 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |+|i−k|+| j−k|
2(R−1) × ε+δi j +δi k +δ j k R3 − 3R− 2

M16 log mi j k = λ+λ
X
i +λ

Y
j +λ

Z
k −

|i− j |+|i−k|+| j−k|
2(R−1) × ε+δi j +δi k +δ j k +δi j k R3 − 3R− 3

5. ILLUSTRATIVE EXAMPLES

5.1. The uterine cervix data set

The data in Table 5 is based on the data originally discussed by Holmquist et al. (1967).
This data set has also been analyzed in the studies of Landis and Koch (1977a), Becker
and Agresti (1992), and Saracbasi (2011). To investigate the variability in the classifica-
tion of carcinoma in situ of the uterine cervix, three pathologists classified 118 slides into
the 5 categories. Because the data contained sampling zero frequencies, the categories
were reclassified to the following categories: (1) Negative, (2) Atypical Squamous Hy-
perplasia, (3) Carcinoma in Situ + Squamous Carcinoma with Early Stromal Invasion
+ Invasive Carcinoma (Becker and Agresti, 1992; Landis and Koch, 1977a).

TABLE 5
Independent classification by three pathologists of most involved histological lesion.

C

A B 1 2 3
1 1 18 4 0

2 1 1 0
3 0 2 0

2 1 2 3 0
2 3 4 0
3 4 10 0

3 1 0 0 0
2 0 2 1
3 3 16 44

The weighted kappa coefficients among the pathologists are calculated and the re-
sults are summarized in Table 6. Landis and Koch (1977b) interpretation levels of kappa
are added to Table 6. The results show that there is a “substantial” agreement among
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the three pathologists. The agreement among B–C is less than the agreement among the
other pairs.

TABLE 6
The results of weighted kappa coefficients.

Pathologists Coefficient Estimate Level
A–B cw 0.713 Substantial
A–C cw 0.615 Substantial
B–C cw 0.497 Moderate
A–B–C L.cw 0.606 Substantial
A–B–C H .cw 0.605 Substantial
A–B–C M .cw 0.608 Substantial

Table 7 shows the goodness-of-fit test results and the parameter estimates of M0–
M16 when G2 =

∑

i j ni j log(ni j/mi j ) is the likelihood ratio-statistic (Sokal and Rohlf,
1981). According to the presented results, all the models, except M0 and M1, fit the
data sufficiently well. Akaike Information Criteria [AI C = G2 − 2df] and Bayesian
Information Criteria [BI C =G2− ln(n)df] can be used to select the best fitting model.

TABLE 7
The results of goodness-of-fit test and the parameter estimates for the models.

Model G2 Df P-value AIC BIC
M0 195.630 20 0.000 – –
M1 45.697 16 0.000 – –
M2 19.679 16 0.235 -12.321 -56.652
M3 14.830 13 0.318 -11.170 -47.189
M4 17.095 14 0.251 -10.905 -49.695
M5 15.936 16 0.457 -16.064 -60.395
M6 16.144 13 0.241 -9.856 -45.875
M7 13.877 12 0.309 -10.123 -43.371
M8 10.452 14 0.728 -17.548 -56.337
M9 5.693 11 0.893 -16.307 -46.785
M10 6.969 13 0.904 -19.031 -55.050
M11 5.267 10 0.873 -14.733 -42.440
M12 6.767 13 0.914 -19.233 -55.252
M13 6.734 12 0.875 -17.266 -50.514
M14 23.009 18 0.190 -12.991 -62.863
M15 19.238 16 0.256 -12.762 -57.093
M16 16.567 15 0.345 -13.433 -54.993

In order to discuss the structure of the models and to compare their results, the
models are classified as uniform association models (M1-M7), non-uniform association
models (M8-M13), and models with global association with linear weights (M14-M16).
According to the represented results in Table 7, the best fitting model among the uni-
form association models is M5, among the non-uniform association models is M12, and
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among the models with global association with linear weights is M14. The parameter
estimates of each three models are summarized in Table 8.

M5 contains the partial uniform association and global agreement parameters. Ac-
cording to the parameter estimates of M5, the highest association is between pathologists
A and B, and the lowest one is between B and C. There is an agreement (δ̂ > 0) among
the three pathologists. M12 contains the non-uniform association and global association
parameters. According to the parameter estimates of M12, there is a high association
between the three pathologists. There are positive associations (β̂12, β̂23 > 0) between
the adjacent categories of pathologists A and B. When there is a negative association
(ϕ̂12 < 0) between “negative” and “atypical squamous hyperplasia” of A and C, there is
a positive and higher association (ϕ̂23 > 0) between the “atypical squamous hyperplasia”
and “carcinoma in situ + squamous carcinoma with early stromal invasion + invasive
carcinoma”.

TABLE 8
The parameter estimates of M5, M10, and M14 models.

Model Parameter Estimate Std. Error P-value

M5

β1 1.390 0.391 0.000
β2 1.273 0.438 0.004
β3 0.331 0.339 0.330
δ 0.885 0.417 0.034

M12

β12 1.270 0.758 0.094
β23 0.329 0.897 0.714
ϕ12 -0.890 0.977 0.362
ϕ23 3.392 1.356 0.012
ω12 -0.020 0.770 0.980
ω23 0.277 1.110 0.803
ε 2.808 1.496 0.061

M14 ε 4.313 0.885 0.000
δ -0.178 0.616 0.772

Within all the represented models, the best fitting one is M14 which contains global
association and global agreement parameters. Based on the M14 results, there is a high as-
sociation, but disagreement (δ̂ < 0) among the three pathologists. The association plus
agreement models are expressed in terms of the conditional odds ratios. For M5 model,
the formulation of conditional log-odds ratios and calculated odds ratios are shown in
the following matrices. In the following matrix, l = 1 for θ̂ i j (k), l = 2 for θ̂ i( j )k , and

l = 3 for θ̂ (i) j k .
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log θ̂M 5 =































β̂l + δ̂ β̂l

β̂l β̂l
−−− −−−
β̂l + δ̂ β̂l − δ̂
β̂l −δ β̂l + δ̂
−−− −−−
β̂l β̂l

β̂l β̂l + δ̂































θ̂i j (k) =

























9.73 4.01
4.01 4.01
−−− −−−
9.73 1.66
1.66 9.73
−−− −−−
4.01 4.01
4.01 9.73

























θ̂i( j )k =

























8.65 3.57
3.57 3.57
−−− −−−
8.65 1.47
1.47 8.65
−−− −−−
3.57 3.57
3.57 8.65

























θ̂(i) j k =

























3.37 1.39
1.39 1.39
−−− −−−
3.37 0.57
0.57 3.37
−−− −−−
1.39 1.39
1.39 3.37

























For M12 model, the formulation of conditional log-odds ratios and calculated odds
ratios are shown in the following matrices. In the following matrix, α̂ = β̂ for θ̂ i j (k),

α̂ = ϕ̂ for θ̂ i( j )k and α̂ = ω̂ for θ̂ (i) j k . The odds ratios of the each category of a layer

are equal, such as: [θ̂i j (1) = θ̂i j (2) = θ̂i j (3)].

log θ̂M 12 =
�

α̂1,2 + ε̂/2 (α̂1,2 + α̂2,3)/2
(α̂1,2 + α̂2,3)/2 α̂2,3 + ε̂/2

�

θ̂i j (k) =
�

14.49 2.22
2.22 5.66

�

θ̂i( j )k =
�

1.67 3.49
3.49 120.98

�

θ̂(i) j k =
�

3.99 1.14
1.14 5.37

�

For M14 model, the conditional odds ratios are equal. By the M14 model, the for-
mulation of conditional log-odds ratios and calculated odds ratios are shown in the fol-
lowing matrices.

θ̂ i j k = θ̂ i j (k) = θ̂ i( j )k = θ̂ (i) j k .

log θ̂M 14 =































β̂/2+ δ̂ 0
0 β̂/2

−−−−− −−−−−
β̂/2+ δ̂ −δ̂
−δ̂ β̂/2+ δ̂

−−−−− −−−−−
β̂/2 0
0 β̂/2+ δ̂































θ̂i j k =

























7.23 1.00
1.00 8.64
−−− −−−
7.23 1.19
1.19 7.23
−−− −−−
8.64 1.00
1.00 7.23

























According to the odds ratios from the matrix above, when the pathologist A’s de-
cision is “negative” or “atypical squamous hyperplasia”; the odds of giving “atypical
squamous hyperplasia” decision rather than “negative” decision of pathologist B is 7.23
times higher than giving “atypical squamous hyperplasia” decision rather than “nega-
tive” decision of pathologist C. When the pathologist A’ decision is “carcinoma in situ
+ squamous carcinoma with early stromal invasion + invasive carcinoma”, the odds
of giving “atypical squamous hyperplasia” decision rather than “negative” decision of
pathologist B is 8.64 times higher than giving “atypical squamous hyperplasia” decision
rather than “negative” decision of pathologist C. Because odds ratios on main diagnosis
diverge from 1, decisions of pathologist are more similar than one level up category of
carcinoma in situ of uterine cervix. Thus, there is an agreement between their decisions.
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5.2. The liver metastases data set

The data in Table 9 is taken from Uebersax (1992). In order to investigate the liver metas-
tases, three tests were performed. The categories of liver metastases are: (1) Definitely
negative results, (2) Marginal results, (3) Definitely positive results.

TABLE 9
Independent classification by three tests of liver metastases.

Tests Tests Tests
T1 T2 T3 Obs. T1 T2 T3 Obs. T1 T2 T3 Obs.
1 1 1 36 2 2 1 12 3 1 3 1
1 1 2 22 2 2 2 25 3 2 1 1
1 2 1 26 2 2 3 5 3 2 2 7
1 2 2 22 2 3 1 1 3 2 3 10
1 3 1 3 2 3 2 5 3 3 1 3
1 3 3 1 2 3 3 10 3 3 2 13
2 1 1 13 3 1 1 1 3 3 3 66
2 1 2 14 3 1 2 1

TABLE 10
The results of goodness-of-fit test and the parameter estimates for the models.

Model G2 Df P-value AIC BIC
M0 400.050 20 0.000 – –
M1 134.956 16 0.000 – –
M2 32.732 16 0.008 – –
M3 40.972 13 0.000 – –
M4 51.171 14 0.000 – –
M5 51.639 16 0.000 – –
M6 32.215 13 0.002 – –
M7 24.474 12 0.018 – –
M8 19.758 14 0.138 -8.242 -60.001
M9 18.491 11 0.071 -3.509 -44.177
M10 19.758 13 0.101 -6.242 -54.304
M11 9.291 10 0.505 -10.709 -47.680
M12 19.188 13 0.117 -6.812 -54.874
M13 9.771 12 0.636 -14.229 -58.595
M14 43.558 18 0.001 – –
M15 52.412 16 0.000 – –
M16 41.621 15 0.000 – –

Table 10 shows the goodness-of-fit test results and the parameter estimates of M0–
M16. According to the presented results, only seven of seventeen models fit the data.
The models with uniform association parameters do not fit the data. In that case, non-
uniform association plus agreement models are good alternatives to uniform ones. Ac-
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cording to BIC results in Table 10, the best fitting model is non-uniform association
model (M8). Yet non-uniform association plus global agreement model (M13) is the
best fitting model according to AIC and goodness-of-fit test results.

6. CONCLUSIONS

In recent studies, interrater agreement analysis has grown extensively. There are differ-
ent ideas among the researchers when the subject is reliability or agreement. In practice,
because they summarize the rater agreement with a single number, some researchers pre-
fer using the kappa-like statistics. Some researchers criticize the kappa coefficients and
assert to use log-linear models instead of them. The main argument of the researchers
who prefer to use agreement models reveals pure agreement.

There is a huge literature for two-rater agrement studies. There are numerous mea-
sures of reliability and log-linear agreement models for each table structure and different
number of raters. To get more reliable results, researchers would like to take the advises
of more than two experts. When Landis and Koch (1977a) analyzed the uterine cervix
data set, they used pairwise agreement statistics between the raters. Becker and Agresti
(1992) applied log-linear models to the data among pairs of raters. Although one option
is to investigate agreement as pairs, it is not possible to analyze the overall agreement or
association.

Instead of investigating the agreement as pairs, Melia and Diener-West (1994) sug-
gested the seven models to analyze the agreement and association together. As we il-
lustrate in the liver metastases data set, these models are not always fit the data. In this
article, we proposed some modifications of log-linear models for the study of interrater
agreement in the case that has multi-raters with ordered categories. Because the existing
models are insufficient and do not explain data well, we focus on the non-uniform and
global associations, and also the partial and global agreement from the point of log-linear
models.

Each of the seventeen models contain different parameters, such as: global associ-
ation, partial uniform association, partial non-uniform association, partial agreement,
and global agreement. The best fitting model changes depend on the data set. As a result
of the analysis, all the models or more than one model can be found as statistically sig-
nificant. In that case, information criteria can be helpful to select the best fitting model.
Then, all interpretations can be made from the best fitting model. The conditional odds
ratios vary between these models.

Different models can also be chosen depend on the aim of the study. If the aim is to
interpret the associations as pairwise, M2-M7 can be useful. The proposed non-uniform
models allows the distinguishability between the categories to vary. It is possible to in-
terpret the association between the categories for each rater pair. For a more detailed
association contraction between the categories of the variable, M8-M13 can be preferable
to M2-M7. For a more detailed contraction of agreement or disagreement, the models
with partial agreement parameters can be used. M7 (within the models of uniform asso-
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ciation) and M11 (within the models of non-uniform association) give the most detailed
information about the positive or negative association and agreement or disagreement
of the raters.

In this article, we described the application of log-linear models for modeling agree-
ment that overcome some of the limitations of the kappa-like statistics. Rather than
summarizing agreement by a single number, log-linear models can be used the structure
of the agreement in the data. Although the coefficients have been proposed to use of two
or three raters, the log-linear models can be easily generalized for more than three raters.
The models can be extended for the tables which subjects are stratified by a covariate.

Log-linear models help us to interpret the square tables with odds ratios which are
calculated from expected values of best fitting model. To draw more reliable inferences,
c coefficient which is calculated from the expected values of best fitting model can be
helpful to summarize the table with only one value.
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SUMMARY

In square contingency tables, analysis of agreement between the row and column classifications is
of interest. In such tables, the kappa-like statistics are used as a measure of reliability. In addition
to the kappa coefficients, several authors discussed agreement in terms of log-linear models. Log-
linear agreement models are suggested for use to summarize the degree of agreement between
nominal variables. To analyze the agreement between ordinal categories, the association models
with agreement parameter can be used. In the recent studies, researchers pay more attention to the
assessment of agreement among more than two raters’ decisions, especially in areas of medical and
behavioral sciences. This article focuses on the approaches to study of uniform and non-uniform
association with inter-rater agreement for multi-raters with ordered categories. In this article, we
proposed different modifications of association plus agreement models and illustrate use of the
approaches over two numerical examples.

Keywords: Global agreement; Partial agreement; Uniform association; Non-uniform association;
Log-linear model; Ordinal scales.


