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1. INTRODUCTION

A p-dimensional copula is a function C : [0,1]p → [0,1] that satisfies

i) C
�

u1, . . . , ui−1, 0, ui+1, . . . , up

�

= 0 for all 1≤ i ≤ p and 0≤ uk ≤ 1, k = 1, . . . , p,
k 6= i . That is, the copula is zero if any one of its arguments is zero;

ii) C (1, . . . , 1, u, 1, . . . , 1) = u for 0 < u < 1 in each of the p arguments. That is, the
copula is equal to u if one argument is u and all others are equal to 1;

iii) for any ai , bi ordered like ai ≤ bi , i = 1, . . . , p,

2
∑

i1=1

· · ·
2
∑

ip=1

(−1)i1+···+ip C
�

u1,i1
, . . . , up,ip

�

≥ 0,

where u j ,1 = a j and u j ,2 = b j for j = 1, . . . , p. That is, the copula is non-decreasing
in p dimensions.

The concept of copulas was introduced by Sklar (1959). His fundamental theorem
states the following:

Let F be a p-dimensional cumulative distribution function with marginal
distribution functions Fi , i = 1, . . . , p. Then there exists a copula C such
that

F
�

x1, . . . , xp

�

=C
�

F1 (x1) , . . . , Fp

�

xp

��

.
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Conversely, for any univariate cumulative distribution functions F1, . . . , Fp

and any copula C , the function F is a p-dimensional cumulative distribu-
tion function with marginals F1, . . . , Fp . Furthermore, if F1, . . . , Fp are con-
tinuous, then C is unique.

There are several proofs of Sklar’s theorem (Moore and Spruill, 1975): see Carley
and Taylor (2002) for a proof using the notion of checkerboard copula; Rüschendorf
(2009) for a proof using distributional transforms; Durante et al. (2013) for a topological
proof; Faugeras (2013) for a proof using probabilistic continuation and two consistency
results; Oertel (2015) for a proof based on the use of right quantile functions.

Sklar’s theorem has also been extended to other contexts: see Mayor et al. (2007) for
a discrete extension involving copula-like operators defined on a finite chain; Durante
et al. (2012) for an extension when at least one component of the copula is discrete;
Montes et al. (2015) for an extension when there is imprecision about the marginals;
Schmelzer (2015) for an extension for minitive belief functions.

There are two extreme types of dependence exhibited by a copula. A copula C is
said to exhibit independence if

C
�

u1, . . . , up

�

= u1 · · · up

for all 0≤ u1, . . . , up ≤ 1. A copula C is said to exhibit complete dependence if

C
�

u1, . . . , up

�

=min
�

u1, . . . , up

�

for all 0≤ u1, . . . , up ≤ 1.
Sklar (1959)’s theorem allows one to model dependence between two or more vari-

ables by means of a copula. Many parametric, non-parametric and semi-parametric
models have been proposed for copulas, including methods for constructing models for
copulas. Most of the proposed models have been parametric models. There are fewer
non-parametric models and even fewer semi-parametric models.

Applications of copulas are too numerous to list. Most applications have been based
on parametric models for copulas. There are not many applications based on non-
parametric or semi-parametric models. Furthermore, the parametric models used have
been very limited (for example, Archimedean copulas). This is possibly due to the prac-
titioners not being aware of the range of parametric copulas available.

The aim of this paper is to provide an up-to-date and a comprehensive collection of
known parametric copulas. We feel that such a review is timely because most models
for copulas have been proposed in the last few years. We feel also that such a review
could serve as an important reference, encourage more of the copulas being applied and
encourage further developments of copulas.

There are several books and review papers written on copulas. For books, we refer
the readers to Dall’Aglio et al. (1991), Rüschendorf et al. (1996), Beneš and Stěpán (1997),
Joe (1997), Drouet-Mari and Kotz (2001), Cuadras et al. (2002), Cherubini et al. (2004),
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Genest (2005a), Genest (2005b), McNeil et al. (2005), Schweizer and Sklar (2005), Alsina
et al. (2006), Malevergne and Sornette (2006), Salvadori et al. (2007), Nelsen (2006), Bal-
akrishnan and Lai (2009), Jaworski et al. (2010), Mai and Scherer (2012), Jaworski et al.
(2013), Rüschendorf (2013), Joe (2014), Mai and Scherer (2014) and Durante and Sempi
(2015). An appendix to Salvadori et al. (2007) written by Durante has a list of families
of copulas, with graphs and level curves.

For review papers, we refer the readers to Schweizer (1991), Nelsen (2002), Em-
brechts et al. (2003), Kolev et al. (2006), Genest and Nešlehová (2007), Genest et al.
(2009), Kolev and Paiva (2009), Manner and Reznikova (2012) and Patton (2012). But
to the best of our knowledge, none of these have provided an up-to-date and a compre-
hensive review of the kind given in this paper.

Because of the length of this paper, we have not given details of copulas like proba-
bilistic interpretations, analytical properties, estimation methods and simulation algo-
rithms. These details can be read from the cited references. For many of the given copu-
las, details like analytical properties, estimation methods and simulation algorithms have
not been worked out. Also many of the given copulas are not implemented in R or any of
its contributed packages. These could be some open problems for the reader. Some other
open problems are: selection criteria between two or more copulas; characterizations
of copulas; efficient estimation methods; efficient simulation algorithms; estimation of
copulas under misspecification; change point estimation of copulas; Bayesian copulas;
copula density estimation; time series models based on copulas; compatibility of cop-
ulas; copula calibration; bounds for copulas; transformations to improve fits of copu-
las like those in Michiels and de Schepper (2012); extreme value behaviors of bivariate
and multivariate copulas; further measures of asymmetry for bivariate and multivariate
copulas like those in Rosco and Joe (2013); further tests for symmetry for bivariate and
multivariate copulas like those in Genest and Nešlehová (2014); development of com-
prehensive R contributed packages for copulas; applications to novel areas of current
interest; and so on. There are also many problems associated with copula processes,
time varying copulas, space varying copulas, and copulas varying with respect to both
time and space, concepts not discussed in this paper. Further open problems are stated
throughout.

The copulas are grouped into five sections. The Archimedean copula, its particular
cases and related copulas are given in Section 2. The elliptical copula and its particular
cases are given in Section 3. The EFGM copula, its particular cases and related copulas
are given in Section 4. The extreme value copula, its particular cases and related copulas
are given in Section 5. Other copulas are given in Section 6. The copulas within each
section are presented in chronological order. The list is by no means complete, but we
believe we have covered most of the important parametric copulas.
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2. ARCHIMEDEAN COPULA

After the work on associativity by Ling (1965), who continued a long line of investiga-
tions started by Abel (1826), Archimedean copulas were defined by

C
�

u1, . . . , up

�

=ψ
� p
∑

i=1

ψ−1 (ui )
�

,

where ψ : [0,1] → [0,∞) is a real valued function satisfying (−1)k d kψ(x)/d k x ≥ 0
for all x ≥ 0 and k = 1, . . . , p − 2 and (−1)p−2ψp−2(x) is non-increasing and convex.
For more on this definition, see McNeil and Nešlehová (2009). The use of Archimedean
copulas was popularised by Genest and MacKay (1986). In the bivariate case, the Kendall
tau rank correlation coefficient and the tail dependence coefficient are

1+ 4
∫ 1

0

ψ(t )
ψ′(t )

d t

and

2− 2 lim
t→0

ψ
′(t )

ψ′(2t )
,

respectively. Particular cases of the Archimedean copula include Clayton’s copula in
Section 2.3, Plackett’s copula in Section 2.1, Nelsen’s copula in Section 2.6, the AMH
copula in Section 2.2, Gumbel’s copula in Section 5.1 and Frank copula in Section 2.4.

Extensions of the Archimedean copula include hierarchical/nested Archimedean
copulas studied by Joe (1997), Whelan (2004), McNeil et al. (2005), Hofert (2008), Mc-
Neil (2008), Hering et al. (2010) and Savu and Trede (2010). An asymmetric Archimedean
copula due to Wei and Hu (2002) is

C
�

u1, . . . , up

�

=ψ
�

ψ−1 ◦φ
�

k
∑

i=1

ψ−1 (ui )
�

+
p
∑

i=k+1

ψ−1 (ui )
�

for 2≤ k ≤ p, whereφ : [0,1]→ [0,∞) satisfies the same properties asψ. An extension
due to Durante et al. (2007) is

C (u1, u2) =φ
−1 (φ (min (u1, u2))+ψ (max (u1, u2))) ,

where φ : [0,1] → [0,∞) is continuous, strictly decreasing, convex and ψ : [0,1] →
[0,∞) is continuous, decreasing such that ψ(1) = 0 and ψ−φ is increasing. Another
extension due to Durante et al. (2007) is

C (u1, u2) =φ
−1 (φ (min (u1, u2))ψ (max (u1, u2))) ,

where φ : [0,1]→ [0,1] is continuous, increasing, log-concave and ψ : [0,1]→ [0,1] is
continuous, increasing such that ψ(1) = 1 and φ/ψ is increasing.
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Archimedean copulas have received widespread applications. Some recent applica-
tions have included: bivariate rainfall frequency distributions (Zhang and Singh, 2007a);
correlation smile matching for collateralized debt obligation tranches (Prange and Scherer,
2009); Collateralized Debt Obligations pricing (Hofert and Scherer, 2011); life expectancy
estimation (Lee et al., 2011); risk assessment of hydroclimatic variability on groundwater
levels in the Manjara basin aquifer in India (Reddy and Ganguli, 2012); modeling of wind
speed dependence in system reliability assessment (Xie et al., 2012); models of tourists’
time use and expenditure behavior with self-selection (Zhang et al., 2012); simulation of
multivariate sea storms (Corbella and Stretch, 2013).

2.1. Plackett’s copula

Plackett (1965) has defined the copula

C (u1, u2) =
1+(θ− 1) (u1+ u2)−

Æ

[1+(θ− 1) (u1+ u2)]
2− 4θ(θ− 1)u1u2

2(θ− 1)

for θ > 0. Independence corresponds to θ= 1. The Spearman’s rank correlation coeffi-
cient is θ+1

θ−1 −
2θ
(θ−1)2 .

Recent applications of Plackett’s copula have included: analysis of extreme rainfall at
several stations in Indiana (Kao and Govindaraju, 2008); frequency analysis of droughts
in China (Song and Singh, 2010).

2.2. AMH copula

The Ali-Mikhail-Haq copula due to Ali et al. (1978) is defined by

C
�

u1, . . . , up

�

= (1−α)
� p
∏

i=1

�

1−α
ui
+α

�

−α
�−1

for −1 ≤ α ≤ 1. Independence corresponds to α = 0. In the bivariate case, the Kendall
tau rank and Spearman’s rank correlation coefficients are

3α− 2
3α

−
2(1−α)2 log(1−α)

3α2

and

12(1+α)dilog(1−α)− 24(1−α) log(1−α)
α2

−
3(α+ 12)

α
,

respectively, where dilog(·) denotes the dilogarithm function defined by

dilog(x) =
∫ x

1

log t
1− t

d t .
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The former takes values in (−0.1817,0.3333). The latter takes values in (−0.271, 0.478).
The copula exhibits positively quadrant dependence, likelihood ratio dependence and
positively regression dependence. Recent applications of the copula have included esti-
mation in coherent reliability systems (Eryilmaz, 2011).

2.3. Clayton’s copula

Clayton (1978), Cook and Johnson (1981) and Oakes (1982) have defined the copula

C
�

u1, . . . , up

�

=
� p
∑

i=1

u−αi − p + 1

�−1/α

for α > 0. Independence corresponds to α → 0. Complete dependence corresponds
to α → ∞. The copula exhibits monotone regression dependence. It is one of the
most popular copulas. Its recent applications have included: analysis of bivariate trun-
cated data (Wang, 2007); tail dependence estimation in financial market risk management
(Shamiri et al., 2011); probable modeling of hydrology data (Bekrizadeh et al., 2013); es-
timation of failure probabilities in hazard scenarios (Salvadori et al., 2016).

2.4. Frank’s copula

Frank (1979) has defined the copula

C (u1, u2) = logα

�

1+
(αu1 − 1) (αu2 − 1)

α− 1

�

for α > 0. Positive dependence corresponds to 0< α < 1, independence corresponds to
α → 1 and negative dependence corresponds to α > 1. The copula exhibits positively
likelihood ratio dependence if 0<α < 1. The p-variate version is

C
�

u1, . . . , up

�

= logα













1+

p
∏

i=1

(αui − 1)

(α− 1)p−1













for α≥ 0.
Frank’s copula has received many applications. Some recent applications have in-

cluded: intensity-duration model of storm rainfall (de Michele and Salvadori, 2003); an-
alytical calculation of storm volume statistics (Salvadori and de Michele, 2004a); char-
acterization of temporal structure of storms (Salvadori and de Michele, 2006); model-
ing of higher-order correlations of neural spike counts (Onken and Obermayer, 2009);
drought frequency analysis (Wong, 2013); modeling of acoustic signal energies (García
and González-Lópeza, 2014).
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2.5. Order statistics copula

There are several order statistics copulas. One due to Schmitz (2004) is

C (u1, u2) =
¨

u2−
�

(1− u1)
1/n + u1/n

2 − 1
�n

, if 1− (1− u1)
1/n < u1/n

2 ,

u2, if 1− (1− u1)
1/n ≥ u1/n

2

for n an integer greater than or equal to one. The Kendall tau rank and Spearman’s rank
correlation coefficients are

1
2n− 1

and

3− 12n
�2n

n

�

n
∑

k=0

(−1)k

2n− k

�

2n
n+ k

�

+
12(−1)n (n!)3

(3n)!
,

respectively. This copula is related to the Clayton copula, see Section 2.3.

2.6. Nelsen (2006)’s copulas

Nelsen (2006) has assembled a range of different copulas. Some of them are

C
�

u1, . . . , up

�

= exp



1−
¨

1+
p
∑

i=1

�

(1− log ui )
θ− 1

�

«
1
θ





for θ≥ 1 with independence corresponding to θ= 1;

C (u1, u2) =
�

1+

�

(1+ u1)
−α− 1

��

(1+ u2)
−α− 1

�

2−α− 1

�−1/α

− 1

for α > 0;

C (u1, u2) =−
1
θ

log
�

1+
[exp (−θu1)− 1] [exp (−θu2)− 1]

exp(−θ)− 1

�

for −∞<θ <∞ with independence corresponding to θ→ 0;

C (u1, u2) =
θ2u1u2− (1− u1) (1− u2)
θ2− (θ− 1)2 (1− u1) (1− u2)

for 1≤ θ <∞;

C (u1, u2) = u1u2 exp [−θ log u1 log u2]
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for 0<θ≤ 1 with independence corresponding to θ→ 0;

C (u1, u2) =
u1u2

�

1+
�

1− uθ1
��

1− uθ2
��1/θ

for 0<θ≤ 1;

C (u1, u2) =
1
2

h

S +
p

S2+ 4θ
i

for 0≤ θ <∞, where

S = u1+ u2− 1−θ
�

1
u1
+

1
u2
− 1

�

;

C (u1, u2) =







1+

�

(1+ u1)
−θ− 1

��

(1+ u1)
−θ− 1

�

2−θ− 1







−1/θ

for −∞<θ <∞;

C (u1, u2) = 1+θ
�

log
�

exp
�

θ

u1− 1

�

+ exp
�

θ

u2− 1

���−1

for 2≤ θ <∞;

C (u1, u2) = θ
�

log
�

exp
�

θ

u1

�

+ exp
�

θ

u2

�

− exp(θ)
��−1

for 0<θ <∞;

C (u1, u2) =
¦

log
�

exp
�

u−θ1

�

+ exp
�

u−θ2

�

− exp(1)
�©−1/θ

for 0<θ <∞;

C (u1, u2) =
�

1−
�

1− uθ1
�

uθ/22 −
�

1− uθ2
�

uθ/21

�1/θ

for 0≤ θ < 1;

C (u1, u2) = 1−
�

(1− u1)
θ+(1− u2)

θ− (1− u1)
θ (1− u2)

θ
�1/θ

for 1≤ θ <∞;

C (u1, u2) =
�

uθ1 uθ2 − 2
�

1− uθ1
��

1− uθ2
��1/θ
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for 0<θ≤ 1/2;

C (u1, u2) =
§

1+
�

�

u−1
1 − 1

�θ+
�

u−1
2 − 1

�θ
�1/θ

ª−1

for 1≤ θ <∞;

C (u1, u2) =
�

1+
h

�

u−1/θ
1 − 1

�θ
+
�

u−1/θ
2 − 1

�θ
i1/θ

�θ

for 0<θ≤ 1;

C (u1, u2) =
�

1−
h

�

1− u1/θ
1

�θ
+
�

1− u1/θ
2

�θ
i1/θ

�θ

for 1≤ θ <∞; and

C (u1, u2) = 1−
�

1−
n

�

1− (1− u1)
θ
�1/θ
+
�

1− (1− u2)
θ
�1/θ
− 1

oθ
�1/θ

for 1≤ θ <∞.
This list of copulas also appears in Section 2.6 of Alsina et al. (2006). All of the

copulas in the list are Archimedean copulas. Some of these copulas are due to Joe and
Hu (1996). The original references for these copulas can be found in Alsina et al. (2006).

2.7. Ahmadi-Clayton copula

Let θi ≥ 0, i = 1, . . . , p be such that θi ≥ θi−1, i = 2, . . . , p. Let ni , i = 1, . . . , p be
integers summing to n. Let Π denote a permutation matrix with each row and each
column containing only one element equal to one and the remaining elements equal to
zero. Javid (2009) has defined the following extension of the Clayton copula

C (u1, . . . , un) =
p
∏

i=1





ni
∑

j=ni−1+1

u−θi
j − ni + ni−1+ 1





−1/θi

,

where (z1, . . . , zn)
T =Π (u1, . . . , un)

T . This copula contains Clayton’s copula in Section
2.3 as a particular case.

3. ELLIPTICAL COPULAS

A random vector X =
�

X1,X2, . . . ,Xp

�T
is said to have an elliptical distribution if the

characteristic function ψX−µ(t ) of X−µ is a function of the quadratic form tTΣt, that
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is, ψX−µ(t ) =φ
�

tTΣt
�

(Cambanis et al., 1981; Fang et al., 1990). Elliptical distributions
can also be defined by the joint density function of X taking the form

f (x) =C g
�

(x−µ)T Σ−1 (x−µ)
�

,

where C is a normalizing constant and g is a scaling function. If X is an elliptical ran-
dom vector then the joint distribution of

�

F1 (X1) , F2 (X2) , . . . , Fp

�

Xp

��

is said to be
an elliptical copula. Kendall’s tau rank correlation coefficient for elliptical copulas is
2
π arcsin

�

ρi , j

�

, where ρi , j = σi , j/
�

σiσ j

�

(Frahm et al., 2003). Suppose that 1− Fi (x) =
λi (x)x

−η for i = 1,2, . . . , p, where λi (x) are slowly varying functions and η is a tail
index. Then the tail dependence coefficient for elliptical copulas (Frahm et al., 2003) is

∫ f (ρi , j )

0

uη
p

u2− 1
d u

∫ 1

0

uη
p

u2− 1
d u

,

where

f
�

ρi , j

�

=

√

√

√
1+ρi , j

2
.

The Spearman’s correlation coefficient for elliptical copulas (Fang et al., 2002) is

12
∫ ∞

−∞

∫ ∞

−∞
Qg (x)Qg (y) f (x, y)d xd y − 3,

where

Qg (x) =
1
2
+

π(p−1)/2

Γ ((p − 1)/2)

∫ x

0

∫ ∞

u2

�

y − u2�
p−1

2 −1 g (y)d yd u.

The Gaussian copula in Section 3.1 and the t copula in Section 3.2 are particular
cases of elliptical copulas. Other particular cases include Kotz type copula and Pearson
type VII copula.

Meta elliptical copulas are extensions due to Fang et al. (2002). If X is an elliptical
random vector then

�

F −1
1

�

Qg (X1)
�

, F −1
2

�

Qg (X2)
�

, . . . , F −1
p

�

Qg

�

Xp

���

is said to be a
meta elliptical random vector. Kendall’s tau rank correlation coefficient for meta ellip-
tical copulas is the same as those for elliptical copulas. Applications of meta elliptical
copulas have included frequency analysis of multivariate hydrological data (Genest et al.,
2007).
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3.1. Gaussian copula

Let Φ(·) denote the cumulative distribution function of a standard normal random vari-
able and let Φ−1(·) denote its inverse. The Gaussian copula with correlation matrix Σ is
defined by

C
�

u1, . . . , up

�

= ΦΣ
�

Φ−1 (u1) , . . . ,Φ
−1
�

up

��

,

where ΦΣ denotes the joint cumulative distribution function of a p-variate normal ran-
dom vector with zero means and correlation matrix Σ. If p = 2 and the correlation
coefficient is ρ then the tail dependence coefficient is zero. The Kendall tau rank corre-
lation coefficient is 2

π arcsinρ. A perturbed version of the Gaussian copula is presented
in Fouque and Zhou (2008). A bivariate normal copula is discussed in Meyer (2013).

Because of the popularity of the normal distribution, Gaussian copula has been the
most applied copula. Two oldest references are: Frees and Valdez (1998) on the “bro-
ken heart” phenomenon in insurance; Li (2000) giving an application to credit deriva-
tive pricing. Some recent applications have included: quantitative trait linkage analysis
(Li et al., 2006); reliability-based design optimization of problems with correlated input
variables (Noh et al., 2009); modeling of functional disability data (Dobra and Lenkoski,
2011); analysis of secondary phenotypes in case-control genetic association studies (He
and Li, 2012); stochastic modeling of power demand (Lojowska et al., 2012); long-term
wind speed prediction (Yu et al., 2013).

3.2. t copula

Let tν (·) denote the cumulative distribution function of a Student’s t random variable
with degree of freedom ν and let t−1

ν (·) denote its inverse. Let Gν (·) denote the cumu-
lative distribution function of

p

ν/χ 2
ν and let G−1

ν (·) denote its inverse. Let zi (ui , s) =
t−1
νi
(ui )/G−1

νi
(s) for i = 1, . . . , p. Luo and Shevchenko (2012) have defined the t copula

with degrees of freedom
�

ν1, . . . , νp

�

and correlation matrix Σ as

C
�

u1, . . . , up

�

=
∫ 1

0
ΦΣ
�

z1 (u1, s) , . . . , zp

�

up , s
��

d s , (1)

where ΦΣ denotes the joint cumulative distribution function of a p-variate normal ran-
dom vector with zero means and correlation matrix Σ. Copulas of several multivariate
t distributions are particular cases of (1). If p = 2, ν1 = ν2 = ν and the correlation coeffi-
cient is ρ then the tail dependence coefficient is 2tν+1

�

−
p
ν + 1

p

1−ρ/
p

1+ρ
�

. The
Kendall tau rank correlation coefficient is 2

π arcsinρ. Note that the Kendall tau rank
correlation coefficient is independent of ν and is the same as that for Gaussian copula.
Estimation of t copulas is difficult. An open problem here is to develop efficient algo-
rithms for estimation of t copulas.
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Marginal tails of financial data are heavy tailed and hence they should be fitted by
a distribution like the Student’s t distribution, not the Gaussian distribution. Also de-
pendence in joint extremes of multivariate financial data suggests a dependence structure
allowing for tail-dependence. Hence, t copulas have become popular for modeling de-
pendencies in financial data. Some recent applications have been: analysis of nonlinear
and asymmetric dependence in the German equity market (Sun et al., 2008); estimation
of large portfolio loss probabilities (Chan and Kroese, 2010); risk modeling for future
cash flow (Pettere and Kollo, 2011). See also Dakovic and Czado (2011).

4. EFGM COPULAS

Eyraud-Farlie-Gumbel-Morgenstern copula (Eyraud, 1936; Farlie, 1960; Gumbel, 1958,
1960; Morgenstern, 1956; Nelsen, 2006) is defined by

C (u1, u2) = u1u2 [1+φ (1− u1) (1− u2)] (2)

for −1 ≤ φ ≤ 1. The Pearson correlation is φ/3. Independence corresponds to φ = 0.
The copula exhibits positively quadrant dependence, likelihood ratio dependence and
positively regression dependence if 0≤φ≤ 1. The p-variate version of (2) is

C
�

u1, . . . , up

�

= u1 · · · up



1+
p
∑

k=2
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1− u j1

�

· · ·
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1− u jk

�





for −1 ≤ θ j1,..., jk
≤ 1 for all j1, . . . , jk . Independence corresponds to θ j1,..., jk

= 0 for all
j1, . . . , jk .

Several extensions of the Eyraud-Farlie-Gumbel-Morgenstern copula exist in the lit-
erature. An extension proposed by Ibragimov (2009) is
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<∞ such that
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Independence corresponds to ai1,...,ic
= 0 for all i1, . . . , ic .

Two extensions proposed by Bekrizadeh et al. (2012) are

C (u1, u2) = u1u2 [1+θ (1− uα1 ) (1− uα2 )]
n
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and
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for α > 0, θ j1,..., jk
> 0 and n ≥ 0. Independence corresponds to θ = 0 and θ j1,..., jk

= 0,
respectively, for all j1, . . . , jk . The Spearman’s rank correlation coefficient of the former
is

12
n
∑

r=1

�

n
r

�

θr





Γ (r + 1)Γ
�

2
α

�

αΓ
�

r + 1+ 2
α

�





2

.

EFGM copulas are some of the most popular copulas. Recent applications have
included: modeling of directional dependence in exchange markets (Jung et al., 2008);
modeling of directional dependence of genes (Kim et al., 2009); risk models with con-
stant dividend barriers (Cossette et al., 2011); modeling of Brazilian HIV data (Louzada
et al., 2012).

4.1. Rodríguez-Lallena and Úbeda-Flores’s copula

Sarmanov (1966), Kim and Sungur (2004) and Rodríguez-Lallena and Úbeda Flores (2004)
have defined the copula

C (u1, u2) = u1u2+θ f (u1) g (u2) (3)

for 0≤ θ≤ 1 and f , g : [0,1]→R such that

i) f (0) = f (1) = g (0) = g (1) = 0;

ii) f and g are absolutely continuous;

iii) min(αδ,βγ )≥−1, where α = inf
¦

f
′(u) : u ∈A

©

< 0, β = sup
¦

f
′(u) : u ∈A

©

> 0, γ = inf
¦

g
′(v) : v ∈ B

©

< 0, δ = sup
¦

g
′(v) : v ∈ B

©

> 0,

A=
¦

0≤ u ≤ 1 : f
′(u) exists

©

and B =
¦

0≤ v ≤ 1 : g
′(v) exists

©

.

The Kendall tau rank and Spearman’s rank correlation coefficients are

8
∫ 1

0
f (t )d t

∫ 1

0
g (t )d t (4)

and

12
∫ 1

0
f (t )d t

∫ 1

0
g (t )d t , (5)
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respectively. The copula can exhibit a variety of dependence structures, including left
tail decreasing, right tail increasing, stochastically increasing, left corner set decreasing,
right corner set increasing and positively likelihood ratio dependence. A recent appli-
cation of (3) is to the Bayes premium in a collective risk model (Hernández-Bastida and
Pilar Fernández-Sánchez, 2012).

Many authors have studied special cases of (3) in detail. A special case given in
Rodríguez-Lallena and Úbeda Flores (2004) is

C (u1, u2) = u1u2+θua
1 u b

2 (1− u1)
c (1− u2)

d

for a, b , c , d ≥ 1. Rodríguez-Lallena and Úbeda Flores (2004) have shown that this is a
copula if and only if

− 1
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,
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For this special case, (4) and (5) simplify to 8θB(a+1, c+1)B(b+1, d+1) and 12θB(a+
1, c + 1)B(b + 1, d + 1), respectively. Independence corresponds to θ= 0.
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Special cases also include the EFGM copulas. Two special cases due to Huang and
Kotz (1999) are

C (u1, u2) = u1u2+θu1u2 (1− u1)
γ (1− u2)

γ

for 0≤ θ≤ 1 and γ ≥ 1; and

C (u1, u2) = u1u2+θu1u2

�

1− uγ1
� �

1− uγ2
�

for 0≤ θ≤ 1 and γ ≥ 1/2. The Pearson correlation coefficients are 12θ(γ+2)−2(γ+1)−2

and 3θγ 2(γ + 2)−2, respectively. A special case due to Lai and Xie (2000) is

C (u1, u2) = u1u2+θu p
1 u p

2 (1− u1)
q (1− u2)

q

for 0 ≤ θ ≤ 1. Its Pearson correlation coefficient is 12θB2(p, q). Two special cases due
to Jung et al. (2007) are

C (u1, u2) = u1u2+θuα1 uβ2 (1− u1) (1− u2)

and

C (u1, u2) = u1u2+θu1u2 (1− u1)
α (1− u2)

β

for α ≥ 1, β ≥ 1 and −1 ≤ θ ≤ 1. Independence for all these special cases corresponds
to θ= 0.

Based on (3), Kim et al. (2009) have introduced the three-dimensional EFGM copula

C (u1, u2, u3) = u1u2u3 [1+θ13 (1− u1) (1− u3)] [1+θ23 (1− u2) (1− u3)]
· [1+θ12 (1− u1) (1− u2)] [1+θ13u1 (1− u3)]
· [1+θ23u2 (1− u3)] .

Independence corresponds to θ13 = 0, θ23 = 0 and θ12 = 0.

4.2. NQR copulas

Nelsen et al. (1997) have shown that

C (u1, u2) = u1u2+A1u1u2
2 (1− u1)

2 (1− u2)+A2u1u2 (1− u1)
2 (1− u2)

2

+B1u2
1 u2

2 (1− u1) (1− u2)+B2u2
1 u2 (1− u1) (1− u2)

2 (6)

is a copula if A1, A2, B1 and B2 are in
�

(u1, u2) ∈R2 : u2
1 − u1u2+ u2

2 −3u1+3u2 = 0
	

or
�

(u1, u2) ∈R2 : −1≤ u1 ≤ 2,−2≤ u2 ≤ 1
	

. In particular,

C (u1, u2) = u1u2 {1+(1− u1) (1− u2) [a+ b (1− 2u1) (1− 2u2)]} (7)
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is a copula if either −1 ≤ b ≤ 1/2 and | a |≤ b + 1 or 1/2 ≤ b ≤ 2 and | a |≤p
6b − 3b 2. The Kendall tau rank and Spearman’s rank correlation coefficients of (6) are

A1+A2+B1+B2
18 + A2B1−A1B2

450 and A1+A2+B1+B2
12 , respectively. The copula can exhibit positively

quadrant dependence, left tail dependence, right tail dependence and stochastically in-
creasing dependence. Independence in (6) corresponds to A1 = 0, A2 = 0, B1 = 0 and
B2 = 0. Independence in (7) corresponds to a = 0 and b = 0. Some of the EFGM copulas
are particular cases of (6).

4.3. Cubic copula

Durrleman et al. (2000) have defined a copula referred to as a cubic copula by

C (u1, u2) = u1u2 [1+α (u1− 1) (u2− 1) (2u1− 1) (2u2− 1)]

for −1 ≤ α ≤ 2. Independence corresponds to α = 0. The Kendall tau rank and Spear-
man’s rank correlation coefficients are both equal to zero for any α. This copula is ac-
tually a particular case of Rodríguez-Lallena and Úbeda-Flores’s copula in Section 4.1.
Cubic copulas have been used to model rainfall data from Belgium and the USA (Evin
and Favre, 2008).

4.4. Polynomial copula

A polynomial copula of degree m due to Drouet-Mari and Kotz (2001) is defined by

C (u1, u2) = u1u2



1+
∑

k≥1,q≥1,k+q≤m−2

θk ,q

(k + 1)(q + 1)
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uk
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�

�
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2 − 1

�



 (8)

for k ≥ 1 and q ≥ 1, where

0≤min





∑

k≥1,q≥1

qθk ,q

(k + 1)(q + 1)
,
∑

k≥1,q≥1

kθk ,q

(k + 1)(q + 1)



≤ 1.

Independence corresponds to θk ,q = 0 for all k and q . Some of the EFGM copulas are
particular cases of (8).

4.5. Bernstein copulas

Let α
�

k1/m1, . . . , kp/mp

�

be real constants for 1≤ ki ≤ mi , i = 1, . . . , p. Also let

Pki ,mi
(ui ) =

�

mi

ki

�

uki
i (1− ui )

mi−ki
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for i = 1, . . . , p. Sancetta and Satchell (2004) have defined Bernstein copula as
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· · ·
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But Bernstein copulas seem to have been known at least as early as Li et al. (1997). If
p = 2 and m1 = m2 = m then Spearman’s rank correlation coefficient is

12
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Some of the EFGM copulas are particular cases of (9).
Sancetta and Satchell (2004) describe applications of this copula as approximations

for multivariate distributions. Some recent applications have included: dependence
modeling in non-life insurance (Diers et al., 2012); modeling of nonlinear dependence
structures between petrophysical properties (Hernández-Maldonado et al., 2012); joint
distribution of wind direction and quantity of rainfall in the North of Spain and the
joint distribution of wind directions in two nearby buoys at the Atlantic ocean (Car-
nicero et al., 2013).

4.6. Fischer and Köck’s copulas

Fischer and Köck (2012) have proposed three further extensions of the EFGM copula.
The first of them is defined by

C (u1, u2) = u1u2

h

1+θ
�

1− u
1
r

1

��

1− u
1
r

2

�ir
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for r ≥ 1 and −1 ≤ θ ≤ 1. Independence corresponds to θ = 0. The second is defined
by

C (u1, u2) = 2−r

¨
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for 1 ≤ α,β ≤ 2, −1 ≤ θ ≤ 1 and r ≥ 1. Independence corresponds to α = β = 1 and
θ= 0. The third and the final one is defined by

C (u1, u2) = u1u2
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for r ≥ 1 and −1 ≤ θ1,θ2 ≤ 1. Independence corresponds to θ1 = 0 and θ2 = 0. Some
of the EFGM copulas are particular cases of these copulas for r = 1.

4.7. Bozkurt’s copulas

Bozkurt (2013) has proposed four extensions of the EFGM copula. The first of these is
defined by

C (u1, u2) = βu1u2

�

1+α (1− u1)
2 (1− u2)

�

+(1−β)u1u2 [1+α (1− u1) (1− u2)]
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.

The particular case for β= 0 is the EFGM copula. The second is defined by

C (u1, u2) = βu1u2
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The third one is defined by

C (u1, u2) = βu1u2
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The fourth and the final one is defined by

C (u1, u2) = βu1u2 [1+α (1− u1)
p (1− u2)

p]
+(1−β)u1u2 [1+α (1− u1)

q (1− u2)
q]
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For all four copulas independence corresponds to α = 0. The Pearson correlation coef-
ficients for the four copulas in the given order are

α(2−β)
6

,

α(2+β)
6

,

3α
�

4βp2(q + 1)+ 4(1−β)q2(p + 1)+ p2q2
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(p + 2)2(q + 2)2

and

12α

�

1−β
(q2+ 3q + 2)2

+
β

(p2+ 3 p + 2)2

�

,

respectively.

5. EXTREME VALUE COPULAS

Let A : [0,1]→ [1/2,1] be a convex function satisfying max(w, 1−w) ≤ A(w) ≤ 1 for
all w ∈ [0,1]. The extreme value copula due to Pickands (1981) is defined by

C (u1, u2) = exp
�

log (u1u2)A
�

log u2

log (u1u2)

��

. (10)
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Independence corresponds to A(w) = 1 for all w ∈ [0,1]. Complete dependence
corresponds to A(w) = max(w, 1− w). The Kendall tau rank correlation coefficient,
Spearman’s rank correlation coefficient and the tail dependence coefficient are

∫ 1

0

t (1− t )A′(t )
A(t )

d t ,

12
∫ 1

0

1

[1+A(t )]2
d t

and

2 [1−A(1/2)] ,

respectively.
Some popular models for A(·) are

A(w) =
�

wθ+(1−w)θ
�1/θ

due to Gumbel (1960), where θ≥ 1 (see Section 5.1);

A(w) = 1−
�

w−θ+(1−w)−θ
�−1/θ

due to Galambos (1975), where θ≥ 0;

A(w) = 1− (θ+φ)w +θw2+φw3

due to Tawn (1988), where θ≥ 0, θ+ 3φ≥ 0, θ+φ≤ 1 and θ+ 2φ≤ 1;

A(w) = (1−φ1) (1−w)+ (1−φ2)w +
�

(φ1w)1/θ+(φ2(1−w))1/θ
�θ

due to Tawn (1988), where 0<θ≤ 1 and 0≤φ1,φ2 ≤ 1;

A(w) = wΦ
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1
θ
+
θ

2
log

w
1−w

�

+(1−w)Φ
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1
θ
− θ

2
log

w
1−w

�

due to Hüsler and Reiss (1989), where θ≥ 0 andΦ(·) denotes the cumulative distribution
function of a standard normal random variable;

A(w) = 1−
�

(φ1(1−w))−1/θ+(φ2w)−1/θ
�−θ

due to Joe (1990), where θ > 0 and 0≤φ1,φ2 ≤ 1;

A(w) =
∫ 1

0
max

�

(1−β)(1−w)t−β, (1−δ)w(1− t )−δ
�

d t
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due to Joe et al. (1992) and Coles and Tawn (1994), where (β,δ) ∈ (0,1)2 ∪ (−∞, 0)2;
and

A(w) = w tξ+1

 √
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√
1+ ξ
1−ρ2

�
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�1/ξ
−ρ

�

!

+(1−w)tξ+1
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1−w
w

�1/ξ
−ρ

�

!

due to Demarta and McNeil (2005), where−1<ρ< 1, ξ > 0 and tν (·) denotes the cumu-
lative distribution function of a Student’s t random variable with ν degrees of freedom.
Others include Marshall and Olkin’s copula in Section 5.2, Gumbel’s copula in Section
5.1 and Galambos’s copula in Section 5.3.

The p-variate generalization of (10) is

C
�

u1, . . . , up

�

= exp













p
∑

i=1

log ui A













log u1
p
∑

i=1

log ui

, . . . ,
log up−1
p
∑

i=1

log ui

























,

where A(·) is a convex function on the (p−1)-dimensional simplex satisfying the condi-
tion max

�

w1, . . . , wp

�

≤A
�

w1, . . . , wp

�

≤ 1 for all
�

w1, . . . , wp

�

in the (p−1)-dimensional
simplex. p-variate versions for most of the given bivariate models for A(·) can be easily
deduced. A p-variate version of the model for A(·) due to Demarta and McNeil (2005)
is given in Nikoloulopoulos et al. (2009).

Other important contributions to extreme value copulas include: Ressel (2013), ex-
plaining how the stable tail dependence function of extreme value copulas is character-
ized in higher dimensions; Mai and Scherer (2011) on bivariate extreme value copulas
having a Pickands dependence measure with two atoms; Chapter 1 in Joe (1997) giving
an excellent introduction on extreme value copulas.

Extreme value copulas are very popular. Some recent applications have included:
analysis of the risk dependence for foreign exchange data (Lu et al., 2008); modeling of
maxima sampled via a network of non-independent gauge stations (Durante and Sal-
vadori, 2010); multivariate extreme value models for floods (Salvadori and de Michele,
2010); empirical evidence from Asian emerging markets (Hsu et al., 2012); multivariate
assessment of droughts (de Michele et al., 2013); multivariate return period calculation
(Salvadori et al., 2013); modeling of oil and gas supply disruption risks (Gülpinar and
Katata, 2014); analysis of dependencies between exchange rates and exports of Thailand
(Praprom and Sriboonchitta, 2014); multivariate analysis and design in coastal and off-
shore engineering (Salvadori et al., 2014); multivariate assessment of the structural risk
in coastal and offshore engineering (Salvadori et al., 2015); multivariate real-time assess-
ment of droughts (Salvadori and de Michele, 2015).
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5.1. Gumbel’s copula

The Gumbel-Barnett copula due to Gumbel (1960) and Barnett (1980) is defined by

C (u1, u2) = u1+ u2− 1+(1− u1) (1− u2)exp [−φ log (1− u1) log (1− u2)]

for 0≤φ≤ 1. Independence corresponds toφ= 0. Another copula also due to Gumbel
(1960) and Hougaard (1984) is

C
�

u1, . . . , up

�

= exp


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

−
� p
∑

i=1

(− log ui )
φ

�
1
φ







(11)

for φ ≥ 1. Now independence corresponds to φ = 1. The Pearson correlation coeffi-
cient and tail dependence coefficient in the bivariate case are (φ− 1)/φ and 2− 21/φ,
respectively. Furthermore, (11) is the only copula that is an Archimedean copula as well
as an extreme value copula, see Sections 2 and 5. This is shown in Genest and Rivest
(1989).

Some recent applications of these copulas have included: frequency analysis (Sal-
vadori and de Michele, 2004b); checking adequacy of dam spillway (de Michele et al.,
2005); trivariate flood frequency analysis (Zhang and Singh, 2007b); cost analysis of
complex system under preemptive-repeat repair discipline (Ram and Singh, 2010); es-
timation of return period and design (Salvadori et al., 2011).

5.2. Marshall and Olkin’s copula

Marshall and Olkin (1967) have defined the copula

C (u1, u2) =







u1−α
1 u2, if uα1 ≥ uβ2 ,

u1u1−β
2 , if uα1 < uβ2

(12)

for 0 ≤ α,β ≤ 1. Independence corresponds to α = β = 0. Complete dependence
corresponds to α = β = 1. The Kendall tau rank and Spearman’s rank correlation
coefficients are αβ

α+β−αβ and 3αβ
2α+2β−αβ , respectively. The tail dependence coefficient is

min(α,β). A multivariate version of (12) is also presented in Marshall and Olkin (1967).
An excellent reference on Marshall and Olkin’s copula is Chapter 3 of Mai and Scherer
(2012).

Some recent applications of Marshall and Olkin’s copula have included: pricing of
CDO contracts (Bernhart et al., 2013); modeling of cross-border bank contagion (Os-
metti and Calabrese, 2013). A wide range of other applications can be found in Cheru-
bini et al. (2015).
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5.3. Galambos’s copula

Galambos (1975) has defined the copula

C (u1, u2) = u1u2 exp
n

�

(1− u1)
−θ+(1− u2)

−θ
�−1/θ

o

for θ≥ 0. A p-variate version is

C
�

u1, . . . , up

�

= exp

(

∑

S∈S
(−1)|S |

�

∑

i∈S

(1− ui )
−θ
�−1/θ)

for θ≥ 0, whereS is the set of all nonempty subsets of {1,2, . . . , p}. Independence cor-
responds to θ= 0. Complete dependence corresponds to θ→∞. A recent application
of Galambos’ copula is the analysis of the meteorological drought characteristics of the
Sharafkhaneh gauge station, located in the northwest of Iran (Mirabbasi et al., 2012).

5.4. Cuadras and Augé’s copula

Cuadras and Augé (1981) have defined the copula

C (u1, u2) = [min (u1, u2)]
θ (u1u2)

1−θ (13)

for 0≤ θ ≤ 1. Independence corresponds to θ = 0. Complete dependence corresponds
toθ= 1. The Pearson, Kendall tau rank and Spearman’s rank correlation coefficients are

3α
4−α , α

2−α and 3α
4−α , respectively. This copula is a particular case of Marshall and Olkin’s

copula in (12) for α=β= θ.
A p-variate version of (13) due to Cuadras (2009) is

C
�

u1, . . . , up

�

=min
�

u1, . . . , up

�

p
∏

i=2

u
∏i−1

j=1(1−θi j )
(i)

for 0≤ θi j ≤ 1, where u(1) ≤ · · · ≤ u(p) are the sorted values of u1, . . . , up . Independence
corresponds to θi j = 0 for all i and j . Complete dependence corresponds to θi j = 1 for
all i and j .

The copula due to Cuadras and Augé (1981) has been used for plant-specific dynamic
failure assessment (Meel and Seider, 2006).

5.5. Lévy-frailty copulas

Let u(1) ≤ u(2) ≤ · · · ≤ u(p) denote sorted values of u1, u2, . . . , up and let ai , i = 0,1, . . . , p−
1 denote some real numbers. Mai and Scherer (2009) have shown that

C
�

u1, . . . , up

�

=
p
∏

i=1

uai−1

(i) (14)
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is a valid copula if and only if a0 = 1 and {ai} are p-monotone; that is, ∆ j−1ak ≥ 0 for
all k = 0,1, . . . , p − 1 and j = 1,2, . . . , p − k, where

∆ j ak =
j
∑

i=0

(−1)i
�

j
i

�

ak+i

for j ≥ 0 and k ≥ 0. Copulas defined by (14) are referred to as Lévy-frailty copulas.
Independence corresponds to ai = 1 for all i . Complete dependence corresponds to
a0 = 1 and ai = 0 for all i > 0. The copulas in Sections 5.4 and 5.2 are particular cases
of (14). An interesting analytical and probabilistic extension of (14) is provided in Mai
et al. (2016).

5.6. Durante and Salvadori’s copulas

Let 0 ≤ λi , j ≤ 1, λi , j = λ j ,i and
p
∑

j=1, j 6=i

λi , j ≤ 1. Durante and Salvadori (2010) have

shown that

C
�

u1, . . . , up

�

=
� p
∏

i=1

ui

�1−
∑p

j=1, j 6=i λi , j
∏

i< j

�

min
�

ui , u j

��λi , j

are valid copulas. Independence corresponds to λi , j = 0 for all i and j . These copulas
contain Cuadras and Augé’s copula in Section 5.4 and Marshall and Olkin’s copula in
Section 5.2 as particular cases.

6. OTHER COPULAS

6.1. Fréchet’s copula

Fréchet copula due to Fréchet (1958) is defined by

C (u1, u2) = a min (u1, u2)+ (1− a− b )u1u2+ b max (u1+ u2− 1,0)

for 0≤ a, b ≤ 1 and a+ b ≤ 1. Independence corresponds to a = b = 0. Complete de-
pendence corresponds to a = 1. The Kendall tau rank and Spearman’s rank correlation
coefficients are (a− b )(2+ a+ b )/3 and a− b , respectively.

An equivalent copula due to Mardia (1970) is defined by

C (u1, u2) =
θ2(1+θ)

2
min (u1, u2)+

�

1−θ2� u1u2

+
θ2(1−θ)

2
max (u1+ u2− 1,0)
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for −1≤ θ≤ 1. Another equivalent copula considered by Gijbels et al. (2010) is

C (u1, u2) =
γθ2(1+θ)

2
min (u1, u2)+

�

1− γθ2� u1u2

+
γθ2(1−θ)

2
max (u1+ u2− 1,0)

for −1≤ θ ≤ 1 and γ ≤ 1/θ2. For the former, independence corresponds to θ = 0 and
complete dependence corresponds to θ = 1. For the latter, independence corresponds
to θ= 0 and complete dependence corresponds to θ= 1 and γ = 1.

Recent applications of the Fréchet copula have included: modeling of floods (Du-
rante and Salvadori, 2010); computation of the rainbow option prices and stop-loss pre-
miums (Zheng et al., 2011). The copulas in Section 6.16 are multivariate generalizations
of the Fréchet’s copula.

6.2. Raftery copula

Raftery (1984) introduced the copula defined by

C (u1, u2) =



















u1−
1−θ
1+θ

u
1

1−θ
1

�

u
− θ

1−θ
2 − u

1
1−θ

2

�

, if u1 ≤ u2,

u2−
1−θ
1+θ

u
1

1−θ
2

�

u
− θ

1−θ
1 − u

1
1−θ

1

�

, if u1 > u2

for 0≤ θ < 1. See also Nelsen (1991). Complete dependence corresponds to θ= 0. The
Kendall tau rank and Spearman’s rank correlation coefficients are 2θ

3−θ and θ(4−3θ)
(2−θ)2 , re-

spectively. Applications of this copula have included semiparametric density estimation
(Liebscher, 2005).

6.3. Brownian motion copula

A Brownian motion copula due to Darsow et al. (1992) is defined by

C (u1, u2) =
∫ u1

0
Φ

�p
tΦ−1 (u2)−

p
sΦ−1(x)

p
t − s

�

d x

for t > s , where Φ(·) denotes the cumulative distribution function of a standard normal
random variable. Independence corresponds to t − s → ∞. Complete dependence
corresponds to t − s → 0. Recent applications of this copula have included in option
pricing (Cherubini and Romagnoli, 2009). A survey of copulas and processes related to
the Brownian motion can be found in Sempi (2016) and references therein.
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6.4. Koehler and Symanowski’s copula

Let V = {1,2, . . . , p} denote an index set, let V denote the power set of V and let I
denote the set of all I ∈ V with |I | ≥ 2. For all subsets I ∈ I , let αI ≥ 0 and αi ≥ 0
for all i ∈V be such that αi+ = αi +

∑

I∈I
αI > 0 for all i ∈ I . Koehler and Symanowski

(1995) have shown that

C
�

u1, . . . , up

�

=

∏

i∈V

ui

∏

I∈I





∑

i∈I

∏

j∈I , j 6=i

u
α j+

j − (| I | −1)
∏

i∈I

uαi+
i





αI

is a valid copula. Independence corresponds to αI = 0 for all I . An application is de-
scribed to the joint distribution of the times for the occurrence of first eye opening,
eruption of incisor teeth and testes decent for male pubs (Koehler and Symanowski,
1995).

6.5. Shih and Louis’s copula

Shih and Louis (1995) have defined the copula

C (u1, u2) =







(1−ρ)u1u2+ρmin (u1, u2) , if ρ> 0,

(1+ρ)u1u2+ρ (u1− 1+ u2)Θ (u1− 1+ u2) , if ρ≤ 0,

where Θ(a) = 1 if a ≥ 0 and Θ(a) = 0 if a < 0. Independence corresponds to ρ = 0.
Complete dependence corresponds to ρ= 1. Shih and Louis (1995) describe an applica-
tion to modeling of AIDS data.

6.6. Joe’s copulas

Joe and Hu (1996) have proposed several copulas. Here, we discuss some of them. The
first of these is defined by

C (u1, u2) =
�

1+
�

�

u−a
1 − 1

�b +
�

u−a
2 − 1

�b�
1
b

�− 1
a

for a > 0 and b ≥ 1. The second is defined by

C (u1, u2) =
�

u−a
1 + u−a

2 − 1−
�

�

u−a
1 − 1

�−b +
�

u−a
2 − 1

�−b�−
1
b

�− 1
a
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for a ≥ 0 and b > 0. The third (Joe, 1997, see also page 153) is defined by

C (u1, u2) = 1−
�

1−
�

�

1− u−a
1

�−b +
�

1− u−a
2

�−b − 1
�− 1

b

�
1
a

for a ≥ 1 and b > 0. Another copula presented in Joe (1997) is

C (u1, u2) = exp
§

−
�

θ−1
2 log

�

exp
�

−θ2 (log u1)
θ1
�

+ exp
�

−θ2 (log u2)
θ1
�

− 1
��

1
θ1

ª

for θ1 ≥ 1 and θ2 ≥ 1. These copulas allow for positive dependence only. The first two
have tail dependence coefficients equal to 2− 21/b and 2−1/b , respectively.

Further copulas due to Joe (1993) are given in Section 2.6. A recent application of
copulas due to Joe is portfolio risk analysis with Asian equity markets (Ozun and Cifter,
2007).

6.7. Linear Spearman copula

Joe (1997), page 148 has defined the linear Spearman copula as that given by

C (u1, u2) =







































[u1+θ (1− u1)] u2, if u2 ≤ u1, 0≤ θ≤ 1,

[u2+θ (1− u2)] u1, if u2 > u1, 0≤ θ≤ 1,

(1+θ)u1u2, if u1+ u2 < 1, −1≤ θ≤ 0,

u1u2+θ (1− u1) (1− u2) , if u1+ u2 ≥ 1, −1≤ θ≤ 0.

Independence corresponds to θ = 0. Complete dependence corresponds to θ = 1. The
Kendall tau rank and Spearman’s rank correlation coefficients are θ [2+θsign(θ)]/3
and θ, respectively. The tail dependence coefficient is θ. This copula has been used
for covariance estimation of the six popular stocks: Credit Suisse Group, UBS, Nestle,
Novartis, Sulzer, Swisscom (Hürlimann, 2004a).

6.8. Burr copulas

Frees and Valdez (1998) have defined what is referred to as a Burr copula (Burr, 1942) as

C (u1, u2) = u1+ u2− 1+
�

(1− u1)
−1/α+(1− u2)

−1/α− 1
�−α

for α > 0, which is the survival copula associated with a Clayton copula. The Kendall
tau rank correlation coefficient is 1/(2α+ 1). An extension of this copula provided by
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de Waal and van Gelder (2005) is

C (u1, u2) = u1+ u2− 1+
�

(1− u1)
−1/α+(1− u2)

−1/α− 1
�−α

+β
¨

�

(1− u1)
−1/α+(1− u2)

−1/α− 1
�−α

+
�

2 (1− u1)
−1/α+ 2 (1− u2)

−1/α− 3
�−α

+
�

2 (1− u1)
−1/α+(1− u2)

−1/α− 2
�−α

−
�

(1− u1)
−1/α+ 2 (1− u2)

−1/α− 2
�−α

«

for α > 0 and −1 ≤ β ≤ 1. Frees and Valdez (1998)’s copula is the particular case
for β = 0. In both copulas, complete dependence corresponds to α →∞. Frees and
Valdez (1998) discuss a range of application areas (including stochastic ordering, fuzzy
logic, and insurance pricing) of the Burr copula. de Waal and van Gelder (2005) use the
generalization for joint modeling of wave heights and wave periods measured at White
Rose, Canada from severe storms.

6.9. Archimax copulas

Let φ(·) be as defined in Section 2 and let A(·) be as defined in Section 5. Capéraà et al.
(2000) have shown that

C (u1, u2) =φ
−1
�

min
�

φ(0), [φ (u1)+φ (u2)]A
�

φ (u1)
φ (u1)+φ (u2)

���

is a copula. It is referred to as the Archimax copula. Extreme value copulas in Section
5 and Archimedean copulas in Section 2 are particular cases of Archimax copulas. Mul-
tivariate Archimax copulas have developed in Charpentier et al. (2014). Bacigal et al.
(2011) have used this copula to model the joint distribution of the flow rates of two
rivers in Hungary as well as the joint distribution of flow rates and the corresponding
flow volumes.

6.10. Knockaert’s copula

Knockaert (2002) has defined a copula by

C (u1, u2) = u1u2+
ε

4π2mn

n

cos [2π (mu2−∆)]+ cos [2π (nu1−∆)]

−cos [2π (nu1+mu2−∆)]− cos [2π∆]
o
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for ε=−1,1, 0≤∆≤ 2π and m, n = . . . ,−2,−1,0,1,2, . . .. Independence corresponds
to m→∞ or n→∞. Applications of this copula to signal processing are discussed in
Knockaert (2002) and Davy and Doucet (2003).

6.11. Hürlimann’s copula

Let 0 ≤ θi j ≤ 1 for i = 1, . . . , p and j = 1, . . . , p. Hürlimann (2004b) has proposed the
copula

C
�

u1, . . . , up

�

=
1
cp







p
p
∏

i=1

ui +
p
∑

r=2

∑

i1 6=···=ir





r
∏

j=2

θi1 i j

1−θi1 i j



 min
1≤ j≤r

ui j





∏

k∈{i1,...,ir }
uk











,

where

cp =
p
∑

i=1

∏

j 6=i

1
1−θi j

.

Independence corresponds to θi j = 0 for all i and j . Complete dependence corresponds
to θi j → 1 for all i and j . An application is given to the evaluation of the economic
risk capital for a portfolio of risks using conditional value-at-risk measures (Hürlimann,
2004b).

6.12. Power variance copula

Andersen (2005) and Massonnet et al. (2009) have introduced the power variance copula
as that defined by

C (u1, u2) = exp





v
θ(1− v)



1−

(

2
∑

j=1

�

1+θ
�

1− 1
v

�

log u j

�
1

1−v

− 3

)1−v








for θ ≥ 0 and 0 ≤ v ≥ 1. The particular case for v → 1 is the inverse Gaussian copula
defined by

C (u1, u2) = exp







1
θ
−





1
θ
+

2
∑

j=1

log u j

§

log u j −
2
θ

ª





1/2






forθ≥ 0. Independence corresponds toθ→∞. An application discussed in Massonnet
et al. (2009) is the joint distribution of infection times of the four udder quarters of a cow.
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6.13. Fischer and Hinzmann’s copulas

Fischer and Hinzmann (2006) have defined a copula by

C (u1, u2) = {α [min (u1, u2)]
m +(1−α) [u1u2]

m}1/m

for 0 ≤ α ≤ 1 and −∞ < m < ∞. Independence corresponds to α = 0 and m =
1. Complete dependence corresponds to α = 1 and m = 1. The particular case for
m = −1 is known as the harmonic mean copula. The Kendall tau rank correlation
coefficient, Spearman’s rank correlation coefficient and the tail dependence coefficient
for this particular case are

α−4 �18α2− 12α− 4α3−α4+
�

24α− 12α2− 12
�

log(1−α)
�

,

α−4 �12α− 30α2+ 22α3− 3α4+
�

12− 36α+ 36α2− 12α3� log(1−α)
�

and α, respectively.

6.14. Roch and Alegre’s copula

Roch and Alegre (2006) have proposed the copula

C (u1, u2)

= exp
�

1−
h

�

((1− log u1)
α− 1)δ +((1− log u2)

α− 1)δ
�1/δ
+ 1

i1/α
�

for α > 0 and δ ≥ 1. Independence corresponds to α = 1 and δ = 1. An application
is given to the pairwise joint distribution of daily equity returns for sixteen companies
of the Spanish stock market (Abertis, Acciona, Acerinox, ACS, Aguas de Barcelona, Al-
tadis, Banco Popular, Bankinter, BBVA, Corp Alba, Endesa, FCC, NHHoteles, Repsol,
Santander and Telefónica).

The copulas in this section and Section 6.13 are based on power transformations of
a copula. This method is discussed in detail in Theorem 3.3.3 in Nelsen (2006).

6.15. Fourier copulas

Ibragimov (2009) has defined Fourier copulas as

C (u1, u2) =
∫ u1

0

∫ u2

0
[1+ g (x, y)]d xd y,

where

g (x, y) =
N
∑

j=1

�

α j sin
�

2π
�

β j
1 x +β j

2y
��

+ γ j cos
�

2π
�

β j
1 x +β j

2y
���
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for N ≥ 1, −∞ < α j ,γ j <∞ and β j
1,β j

2 ∈ {. . . ,−1,0,1, . . .} arbitrary numbers such

that β j
1+β

j
2 6= 0 for all j1, j2 ∈ {1, . . . ,N} and

1+
N
∑

j=1

�

α jδ j + γ jδ j+N

�

≥ 0

for −1≤ δ1, . . . ,δ2N ≤ 1. Independence corresponds to α j = 0 and γ j = 0 for all j . An
alternative form for g (x, y) due to Lowin (2010) is

g (x, y) =
N
∑

i=−N

N
∑

j=−N

¦

αi , j sin [2π (i x + j y)]+ γi , j cos [2π (i x + j y)]
©

.

In this case, the Kendall tau rank and Spearman’s rank correlation coefficients are

− 1
2π2

N
∑

i=−N

N
∑

j=−N

4γi , j + γ
2
i , j + 2α2

i , j

i j

and

− 3
π2

N
∑

i=−N

N
∑

j=−N

γi , j

i j
,

respectively. Fourier copulas have been used to provide characterizations for higher
order Markov processes (Ibragimov, 2009).

6.16. Yang et al.’s copula

Let Ui , i = 1, . . . , n be uniform [0,1] random variables. Suppose there exists a uniform
[0,1] random variable U such that Ui , i = 1, . . . , n are independent conditionally on U .
Suppose also that Ui and U have the joint cumulative distribution function

ai ,1 min (ui , u)+ ai ,3ui u + ai ,2 max (ui + u − 1,0)

for 0 ≤ ai ,1,ai ,2,ai ,3 ≤ 1 and ai ,1 + ai ,2 + ai ,3 = 1. For ( j1, . . . , jn), where ji ∈ {1,2,3},
write

C ( j1,..., jn ) (u1, . . . , un) =max
�

min
1≤i≤n, ji=1

ui + min
1≤i≤n, ji=3

ui − 1,0
�

∏

1≤i≤n, ji=2

ui .

Yang et al. (2009) have shown that the joint distribution of (U1, . . . , Un) can be expressed
as

C (u1, . . . , un) =
3
∑

j1=1

· · ·
3
∑

jn=1

�

n
∏

i=1

ai , ji

�

C ( j1,..., jn ) (u1, . . . , un) ,



310 S. Nadarajah et al.

which is a copula. Two applications to actuarial science are given: one to the joint-life
status where the future lifetimes of the individuals in the group are correlated by the
copula; the other to the individual risk models with the individual risks’ dependency
modeled by the copula (Yang et al., 2009).

6.17. Zhang’s copula

Zhang (2009) has proposed a copula defined by

C
�

u1, . . . , up

�

=
p
∏

j=1

min
1≤d≤D

�

u
a j ,d

d

�

for a j ,d ≥ 0 and a1,d + · · ·+ ap,d = 1 for all d = 1, . . . , D . Independence corresponds
to a j , j = 1 for all j . Complete dependence corresponds to a j ,d = 1/p for all j and
d . Two applications are provided: the joint distribution of indemnity payment and
allocated loss adjustment expense for insurance claims; the joint distribution of daily
average temperatures at three different locations in the United States (Raleigh/Durham,
Saint Louis and Madison).

6.18. Andronov’s copula

Let x = q(u) denote the root of the equation

u = 1− 1
p

p−1
∑

j=0

p − j
j !

x j exp(−x).

If for example p = 2 then q(u) = −W (−2(1− u)exp(−2))− 2, where W (·) denotes
Lambert’s W function (Corless et al., 1996). Andronov (2010) has shown that

C
�

u1, . . . , up

�

= 1−
p−1
∑

j=0

1
j !

q j (u1)exp [−q (u1)]+
p
∑

i=0

q (u1) · · · q
�

ui−1

�

p(p − 1) · · · (p − i + 2)

·
p−i
∑

j=0

1
j !

�

q j �ui−1

�

exp
�

−q
�

ui−1

��

− q j (ui )exp [−q (ui )]
	

is a valid copula. This copula was motivated by the joint distribution of failure times of
the elements of a system (Andronov, 2010).
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6.19. Cube copula

Holman and Ritter (2010) have defined what is referred to as a Cube copula as

C (u1, u2)

=







































q2u1u2, if u1 ≤ a, u2 ≤ a,

u1 [q2a+ q1 (u2− a)] , if u1 ≤ a < u2,

u2 [q2a+ q1 (u1− a)] , if u2 ≤ a < u1,

q2a2+ q1a (u1+ u2− 2a)+ q0 (u1− a) (u2− a) , if u1 > a, u2 > a

for some suitable constants q0, q1, q2 and a. This copula is related to the linear Spearman
copula in Section 6.7. The Spearman’s rank correlation coefficient is

3(a− 1)4q0+ 3(a− 2)2a2q2− 12a(a− 1)3(a+ 1)q1− 3.

An application to hedge fund returns is provided (Holman and Ritter, 2010).

6.20. Generalized beta copula

Let γ (a, x) and Ix (a, b ) denote the incomplete gamma function ratio and the incomplete
beta function ratio defined by

γ (a, x) =
1
Γ (a)

∫ x

0
t a−1 exp(−t )d t

and

Ix (a, b ) =
1

B(a, b )

∫ x

0
t a−1(1− t )b−1d t ,

respectively, where

Γ (a) =
∫ ∞

0
t a−1 exp(−t )d t

and

B(a, b ) =
∫ 1

0
t a−1(1− t )b−1d t

denote the gamma and beta functions, respectively. Let γ−1(a, x) and I−1
x (a, b ) denote

the inverse functions of γ (a, x) and Ix (a, b )with respect to x. With these notation, Yang
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et al. (2011) have defined the generalized beta copula as

C
�

u1, . . . , up

�

=
∫ ∞

0

p
∏

i=1

γ−1

 

I−1
ui
(pi , q)

θ−θI−1
ui
(pi , q)

, pi

!

θ−q−1 exp(−1/θ)
Γ (q)

dθ.

The particular case for p = 2 has the tail dependence coefficient

IB1/q (p1,q)/[B1/q (p1,q)+B1/q (p2,q)] (q + p2, p1)

+IB1/q (p2,q)/[B1/q (p1,q)+B1/q (p2,q)] (q + p1, p2) .

The particular case for pi = 1 for all i is

C
�

u1, . . . , up

�

=
� p
∑

i=1

ui − p + 1

�

+
∑

i1<i2

�

�

1− ui1

�− 1
q +

�

1− ui2

�− 1
q − 1

�−q

+ · · ·+(−1)p
� p
∑

i=1

(1− ui )
− 1

q − p + 1

�−q

, (15)

a copula due to Al-Hussaini and Ateya (2006). One of the Burr copulas in Section 6.8 is
a particular case of (15) for p = 2.

An application is given to the joint distribution of bodily injury (BI) liability pay-
ments and the time-to-settlement using auto injury data from the Insurance Research
Council’s (IRC) Closed Claim Survey (Yang et al., 2011).

6.21. Sanfins and Valle’ copula

Let x =ψm(u) denote the root of the equation

u = x
m−1
∑

j=0

(−1) j
(log x) j

j !

and let

rm−1 (u1, . . . , um) =ψ` (u`)
m−1
∑

j=0

(−1) j
[logψ` (u`)]

j

j !
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if ψ` (u`) =min [ψ1 (u1) , . . . ,ψm (um)]. For every
�

u1, . . . , up

�

such that u = ψ1 (u1) ≥
· · · ≥ψp

�

up

�

, let

Hp

�

u1, . . . , up

�

= up

−ψp

�

up

�

p−1
∑

j=1

�

− logψ j

�

u j

�� j

j !
Jp− j

�

− logψ j+1

�

u j+1

�

, . . . ,− logψp

�

up

��

,

where Jm is given by the recurrence relation

Jm (x1, . . . , xm) =
m−1
∑

j=0

x j
m

j !
−

m−1
∑

j=0

x j
j

j !
Jm− j

�

x j+1, . . . , xm

�

for m ≥ 1 with J1 ≡ 1. Under these assumptions, Sanfins and Valle (2012) have shown
that

C
�

u1, . . . , up

�

=Hp

�

u1, r1 (u1, u2) , r2 (u1, u2, u3) , . . . , rp−1

�

u1, . . . , up

��

is a valid copula. The Kendall tau rank and Spearman’s rank correlation coefficients of
this copula converge to zero as p→∞.
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SUMMARY

Copulas are used to specify dependence between two or more random variables. The last few
years have seen a surge of developments of parametric models for copulas. Here, we provide an
up-to-date and a comprehensive review of known parametric copulas as well as applications and
open problems. This review is believed to be the first of its kind.
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