
STATISTICA, anno LXXVIII, n. 2, 2018

QUANTILE APPROACH OF DYNAMIC GENERALIZED
ENTROPY (DIVERGENCE) MEASURE

Vikas Kumar 1

Department of Applied Sciences, UIET, M. D. University, Rohtak-124001, India

Rekha Rani
Department of Applied Sciences, UIET, M. D. University, Rohtak-124001, India

1. INTRODUCTION

The current literature on information measures has focused mainly on divergence type
and entropy-type measure of information. Among the most popular measures of en-
tropy and divergence are the Shannon (1948) concept of information-theoretic entropy
and its generalization known as Kullback and Leibler (1951) measure of divergence. In
the literature, the potential applications of entropy and divergence measure can be found
in econometric estimation and hypothesis testing, income inequality and welfare eco-
nomics. Shannon entropy has been used to measure dispersion, risk, and volatility. The
average amount of uncertainty associated with the nonnegative continuous random vari-
able X can be measured using the differential entropy function

H (X ) =−
∫ ∞

0
f (x) log f (x)d x , (1)

a continuous counterpart of the Shannon (1948) entropy in the discrete case, where
f (x) denotes the probability density function (pdf) of the random variable X . There
have been attempts by several authors for the parametric generalizations of this mea-
sure. However, most of these extensions are purely mathematical formulations and not
much is known about their inter-relationships, inferential properties and their appli-
cations in other areas like statistics, thermo-dynamics, accountancy, image processing,
reliability, finance, economics and pattern recognition. One of the main extensions of
Shannon entropy was defined by Varma (1966). For a nonnegative random variable X ;
the generalized entropy (see Varma, 1966) of order (α,β) is given by

Hβ
α (X ) =

1
(β−α)

log
�∫ ∞

0
f α+β−1(x)d x

�

; β 6= α, β− 1<α <β, β≥ 1 . (2)
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Whenβ= 1, Hβ
α (X ) reduces to Hα(X ) =

1
(1−α) log

�∫∞
0 f α(x)d x

�

, the Renyi (1961)

entropy, and when β= 1 and α−→ 1, Hβ
α (X )−→H (X ) given in (1). Varma’s entropy

measure is much more flexible due to the parameters α andβ, enabling several measure-
ments of uncertainty within a given distribution and increase the scope of application.
In recent years, Varma’s entropy has been used by many researchers in the context of
information theory, we refer to Kayal and Vellaisamy (2011), and Kayal (2015a).

In survival analysis and life testing, the current age of the system under consideration
is also taken into account. The residual lifetime of the system when it is still operating
at time t is Xt = (X − t |X > t ); Ebrahimi (1996) proposed the entropy of the residual
lifetime Xt as

H (X ; t ) =−
∫ ∞

t

f (x)
F̄ (t )

log
f (x)
F̄ (t )

d x , t > 0. (3)

In analogy to Ebrahimi (1996), Baig and Dar (2008) have proposed the generalized
residual entropy (GRE) of order (α,β), through the relationship

Hβ
α (X ; t ) =

1
(β−α)

log

¨
∫∞

t f α+β−1(x)d x

F̄ α+β−1(t )

«

; β 6= α, β− 1<α <β, β≥ 1, (4)

and studied its properties. In actuarial science, generalized entropy given in (4) can be
presented as the pre-payment entropy of claims (losses) with a deductible t , for more
detail refer to, Kumar and Taneja (2011) and Kayal (2014).

In many realistic situations, the random variable is not necessary related to the fu-
ture, but they can also refer to the past, known as inactivity time. Based on this idea,
Di Crescenzo and Longobardi (2002) have studied measure on past entropy over (0, t )
given as

H̄ (X ; t ) =−
∫ t

0

f (x)
F (t )

log
f (x)
F (t )

d x. (5)

Similar to (5), generalized past entropy (GPE) of order (α,β) was given by

H̄β
α (X ; t ) =

1
(β−α)

log

(
∫ t

0 f α+β−1(x)d x

F α+β−1(t )

)

; β 6= α, β− 1<α <β, β≥ 1. (6)

Measures of uncertainty in context with past lifetime distributions have been studied
extensively in the literature, refer to Di Crescenzo and Longobardi (2004) and many
others.

All these theoretical results and applications are based on the distribution func-
tion. But, there are many situations, where distribution functions are not analytically
tractable. Quantile functions (QFs) have several properties that are not shared by dis-
tribution functions. For example, the sum of two QFs is again a QF. In many cases,
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QF is more convenient as it is less influenced by extreme observations, and thus pro-
vides a straightforward analysis with a limited amount of information. There are ex-
plicit general distribution forms for the QF of order statistics. It is easier to generate
random numbers from the QF. In reliability analysis, a single long-term survivor can
have a marked effect on mean life, especially in the case of heavy-tailed models which
are commonly encountered for lifetime data. In such cases, quantile-based estimates are
generally found to be more precise and robust against outliers. However, the use of QFs
in the place of F provides new models, alternative methodology, easier algebraic manip-
ulations, and methods of analysis in certain cases and some new results that are difficult
to derive by using distribution function (Gilchrist, 2000; Nair et al., 2013; Parzen, 1979).
Motivated by these, in the present study we consider the dynamic (residual and past) en-
tropy measures based on Varma’s entropy in terms of quantile functions. The present
paper introduce the generalized entropy of order (α,β) and divergence measure of order
(α,β) for residual and reversed residual (past) lifetime using the QFs and proved some
characterization results of these.

The rest of the paper is arranged as follows. In Section 2, we introduce the quantile-
based generalized entropy of order (α,β) in residual lifetime and various properties of
the measure are discussed. Section 3 proves some characterization results based on the
measure considered in Section 2. In Section 4, the quantile-based Varma’s entropy func-
tion in reversed residual (past) lifetime are discussed. In Section 5, we introduce and
study the quantile-based dynamic (residual and past both) divergence measure of order
(α,β) and their properties.

2. GENERALIZED QUANTILE ENTROPY FOR RESIDUAL LIFETIMES

A probability distribution can be specified either in terms of the distribution function
or by the quantile functions, de (QF) defined by

Q(u) = F −1(u) = inf{x | F (x)≥ u}, 0≤ u ≤ 1. (7)

When the distribution function F is continuous, we have from (7), F Q(u) = u,
where F Q(u) represents the composite function F (Q(u)). Defining the density quantile
function by f Q(u) = f (Q(u)) and the quantile density function by q(u) = Q ′(u),
where the prime denotes the differentiation. We have

q(u) f Q(u) = 1. (8)

Sunoj and Sankaran (2012) have considered the quantile version of Shannon entropy
and its residual form, defined as

Ḩ=
∫ 1

0
log q(p)d p, (9)

and

Ḩ(u) = Ḩ(X ;Q(u)) = log(1− u)+ (1− u)−1
∫ 1

u
log q(p)d p, (10)
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respectively. Then the quantile version of generalized entropy of order (α,β) of the
nonnegative X becomes

Ḩβ
α =

1
(β−α)

log
�∫ 1

0
(q(p))2−α−βd p

�

; β 6= α, β− 1<α <β, β≥ 1 . (11)

When β = 1 and α −→ 1, the measure (11) reduces to (9). From (4) and (8), gen-
eralized residual entropy (GRE) of order (α,β) is denoted by Ḩβ

α (X ;Q(u)) is defined
as

Ḩβ
α (u) = Ḩβ

α (X ;Q(u)) =
1

(β−α)
log

�

∫ ∞

Q(u)

f α+β−1(x)d x
(1− u)α+β−1

�

,

=
1

(β−α)
log

�∫ 1

u

( f Q(p))α+β−1q(p)d p
(1− u)α+β−1

�

,

=
1

(β−α)
log

�∫ 1

u

(q(p))2−α−βd p
(1− u)α+β−1

�

. (12)

The measure (12) may be considered as the generalized residual quantile entropy of
order (α,β) (GRQE (α,β)) measure. For different values of α and β, GRQE (α,β)
measure provides the spectrum of generalized information contained in the conditional
density about the predictability of an outcome of X until 100(1− u) precent point of
distribution. Rewriting the GRQE (α,β)measure (12) as

∫ 1

u
(q(p))2−α−βd p = (1− u)α+β−1e (β−α)Ḩ

β
α (u). (13)

Differentiating (13) with respect to u both sides and simplify, we obtain

q(u) =
e
�

β−α
2−α−β

�

Ḩβ
α (u)

(1− u)

¦

(α+β− 1)− (β−α)(1− u)Ḩ′βα (u)
©

�

1
2−α−β

�

. (14)

Since the GRE Hβ
α (X ; t ) does not determines the pdf f (x), refer to Baig and Dar

(2008). However Equation (14) provides a direct relationship between quantile density
function q(u) and Ḩβ

α (u), therefore Ḩβ
α (u) uniquely determines the underlying distribu-

tion. An important quantile measure useful in reliability analysis is the hazard quantile
function, which is defined as

K(u) = h(Q(u)) =
f Q(u)
(1− u)

=
1

(1− u)q(u)
. (15)

Next we obtain the upper (lower) bounds of generalized quantile entropy of order
(α, β) in terms of hazard quantile function.
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2.1. An upper bound to GRQE Ḩβ
α (u)

To find an upper bound to Ḩβ
α (u), we prove the following result.

THEOREM 1. If generalized residual quantile entropy Ḩβ
α (u) is increasing (decreasing)

in u, then

Ḩβ
α (u)≥ (≤)

�

α+β− 2
β−α

�

logK(u)−
log(α+β− 1)
(β−α)

, (16)

here K(u) is the hazard quantile function.

PROOF. Equation (12) can be written as

(β−α)Ḩβ
α (u) = log

∫ 1

u
(q(p))2−α−βd p − (α+β− 1) log(1− u).

Differentiating it both sides with respect to u, which gives

(β−α)Ḩ′βα (u) =
(α+β− 1)

∫ 1
u (q(p))

2−α−βd p − (1− u)(q(u))2−α−β

(1− u)
∫ 1

u (q(p))
2−α−βd p

. (17)

Case I: Let 0<α+β< 2. If Ḩβ
α (u) is increasing in u, then Equation (17) gives

∫ 1

u
(q(p))2−α−βd p ≥

�

1− u
α+β− 1

�

(q(u))2−α−β.

Using Equation (12) and simplifying, this gives

e (β−α)Ḩ
β
α (u) ≥

{(1− u)q(u)}2−α−β

α+β− 1
.

Using Equation (15) in above expression which leads to

Ḩβ
α (u)≥

�

α+β− 2
β−α

�

logK(u)−
log(α+β− 1)
(β−α)

.

Case II: Let α+β> 1. If Ḩβ
α (u) is increasing in u, then Equation (17) gives

∫ 1

u
(q(p))2−α−βd p ≤

�

1− u
α+β− 1

�

(q(u))2−α−β.

Using Equation (12) and simplify, we obtain

e (β−α)Ḩ
β
α (u) ≤

{(1− u)q(u)}2−α−β

α+β− 1
=
(K(u))α+β−2

α+β− 1
.
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which leads to

Ḩβ
α (u)≥

�

α+β− 2
β−α

�

logK(u)−
log(α+β− 1)
(β−α)

.

Similarly we can prove when Ḩβ
α (u) is decreasing in u. Now combining the above

two cases, we get the desired result. 2

REMARK 2. When β= 1 and α−→ 1 then (16) reduces to

Ḩ(u)≥ (≤) 1− logK(u)

bounds obtained by Sunoj and Sankaran (2012).

The following lemma show that the effect of monotone transformations on gener-
alized quantile entropy defined in (12), which will be used in proving the upcoming
theorems of next section.

LEMMA 3. Let X be a nonnegative and continuous random variables with quantile
function QX (.) and quantile density function qX (.). Let Y = φ(X ), with φ be a strictly
monotonic increasing, continuous and differentiable function, with derivativeφ′. Then for
all 0< u < 1, we have

Ḩβ
α (Y ;QY (u)) =

1
(β−α)

log
�∫ 1

u

(qX (p)φ
′(QX (p)))

2−α−βd p
(1− u)α+β−1

�

. (18)

PROOF. The proof is similar to Nanda et al. (2014). 2

REMARK 4. For any absolutely continuous random variable X , define Y = aX + b ,
where a, b > 0 are constants. Then

Ḩβ
α (Y ;QY (u)) = Ḩβ

α (X ;QX (u))+
�

2−α−β
β−α

�

loga.

Thus generalized quantile entropy defined in (12) is invariant under location but
not under scale transformation. Next, we see how the monotonicity of Ḩβ

α (X ,Q(u)) is
affected by increasing transformation. The following lemma help us to prove the results
on monotonicity of Ḩβ

α (X ,Q(u)).

LEMMA 5. Let f (u, x) : ℜ2
+ −→ ℜ+ and g : ℜ+ −→ ℜ+ be any two functions. If

∫∞
u f (u, x)d x is increasing and g (u) is increasing (decreasing) in u, then

∫∞
u f (u, x)g (x)d x

is increasing (decreasing) in u, provided the integrals exist.

THEOREM 6. Let X be a nonnegative and continuous random variable with quantile
function QX (.) and quantile density function qX (.). Define Y = φ(X ), where φ(.) is a
nonnegative, increasing and convex (concave) function.
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(i) For 0<α+β< 2, Ḩβ
α (Y ;QY (u)) is increasing (decreasing) in u whenever Ḩβ

α (X ;QX (u))
is increasing (decreasing) in u.

(ii) For α+β> 2, Ḩβ
α (Y ;QY (u)) is decreasing (increasing) in u whenever Ḩβ

α (X ;QX (u))
is increasing (decreasing) in u.

PROOF. (i) The probability density function of Y =φ(X ) is g (y) = f (φ−1(y))
φ ′(φ−1(y)) ; hence

density quantile function is g (QY (u)) =
1

qY (u)
= f (Q(u))

φ′Q(u) =
1

qX (u)φ′(QX (u))
. Thus we have

Ḩβ
α (Y ;QY (u)) =

1
β−α

log
�∫ 1

u

(qY (p))
2−α−βd p

(1− u)α+β−1

�

=
1

β−α
log

�∫ 1

u

(qX (p)φ
′(QX (p)))

2−α−βd p
(1− u)α+β−1

�

.

From the given condition we have 1
β−α log

�

∫ 1
u
(q(p))2−α−βd p
(1−u)α+β−1

�

is increasing in u, which

gives that log
�

∫ 1
u
(q(p))2−α−βd p
(1−u)α+β−1

�

is increasing in u.

We can rewrite as

(β−α)Ḩβ
α (Y ;QY (u)) =

�

log
�∫ 1

u

�

(qX (p))
2−α−β

(1− u)α+β−1

�

�

φ′(QX (p))
�2−α−β d p

��

. (19)

Since 0 < α+β < 2 and φ is non negative, increasing convex (concave), we have
[φ′(Q(p))]2−α−β is increasing (decreasing) and is non negative. Hence by Lemma 5,
(19) is increasing (decreasing). This prove (i). When α +β > 2, [φ′(Q(p))]2−α−β =

1
[φ′(Q(p))]α+β−2 is decreasing in p, since φ is increasing and convex. Hence we have

Ḩβ
α (Y ;QY (u)) =

1
(β−α)

�

log
�∫ 1

u

�

(qX (p))
2−α−β

(1− u)α+β−1

�

�

φ′(QX (p))
�2−α−β d p

��

is decreasing (increasing) in u. Hence prove. 2

Let X1,X2, . . .Xn denote the life times of the components in a series system. Assume
that the probability density function of life times is f (x) and the survival function is
F̄ (x). Then Y =min(X1,X2, . . . ,Xn) represents the lifetime of the system, whose com-
ponents are connected in series with probability density function g (x) = n[F̄ (x)]n−1 f (x)
and with survival function Ḡ(x) = [F̄ (x)]n . Here GRQE measure (12) of the series sys-
tem is independent of u, when Xi ’s are exponentially distributed.

THEOREM 7. If X1,X2, · · · ,Xn be independent random variables having exponential
distribution with parameters θi , i = 1,2, · · · , n, then the GRQE measure (12), of the ran-
dom variable Y = mi n(X1,X2, · · · ,Xn) is independent of u.
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REMARK 8. If X1,X2, ...,Xn are independent and identically distributed (i.i.d.) expo-
nential random variables with parameter θ, then

Ḩβ
α (Y ;QY (u)) =

�

α+β− 2
β−α

�

log nθ−
�

1
β−α

�

log(α+β− 1).

That is, GRQE (α,β) of the lifetime of a series system is independent of u and depends
only on the parameters α, β and the number of components of the system.

For some univariate continuous distributions, the expression (12) is evaluated as
given in Table 1, where β(a, b ) =

∫ 1
0 ua−1(1 − u)b−1d u,a > 0, b > 0 and γ (s , x) =

∫ x
0 t s−1e−t d t respectively denotes the beta function and incomplete gamma function.

3. CHARACTERIZATION RESULTS

By considering a relationship between the generalized residual quantile entropy measure
Ḩβ
α (u) and the hazard quantile function K(u), we characterize some lifetime distribu-

tions. We give the following theorem.

THEOREM 9. Let X be a nonnegative continuous random variable with hazard rate
quantile function K(u) and generalized residual quantile entropy (GRQE) Ḩβ

α (u) given by

Ḩβ
α (u) =

1
(β−α)

{log c +(α+β− 2) logK(u)} , for α+β> 2 (20)

if, and only if for

(i) c = 1
α+β−1 , X has exponential distribution,

(ii) c < 1
α+β−1 , X has Pareto distribution with quantile function

q(u) =
b
a
(1− u)−(1+

1
a ) ;a, b > 0, and

(iii) c > 1
α+β−1 , X has finite range distribution with quantile function

q(u) =
b
a
(1− u)

1
a−1) ; b > 0,a > 1.

PROOF. Let (20) be valid, then

1
(β−α)

log
�∫ 1

u

(q(p))2−α−βd p
(1− u)α+β−1

�

=
1

(β−α)
log

¦

c(K(u))(α+β−2)
©

.
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This gives

∫ 1

u
(q(p))2−α−βd p = c(1− u)α+β−1(K(u))α−1.

Substituting from (15) and simplifying, it gives

∫ 1

u
(q(p))2−α−βd p = c(1− u)(q(u))2−α−β.

Differentiating it with respect to u both sides and simplifying, we get

q ′(u)
q(u)

=
�

1− c
c(α+β− 1)− c

�

�

1
1− u

�

.

This gives

q(u) =A(1− u)
c−1

c(α+β−1)−c ,

where A is a constant. Thus the underlying distribution is exponential if c = 1
α+β−1 ,

Pareto distribution if c < 1
α+β−1 , and finite range distribution if c > 1

α+β−1 . The only if
part of the theorem is easy to prove. Hence proved. 2

REMARK 10. If c = 1, then Equation (20) is a characterization of uniform distribution.

4. GENERALIZED QUANTILE ENTROPY FOR PAST LIFETIME

Ruiz and Navarro (1996) defined a new term in reliability analysis known as inactivity
time by the conditional random variable t X = [t − X |X ≤ t ] which gives the time
elapsed from the failure of a component given that its lifetime is less than or equal to t .
The random variable t X is also known as reversed residual (past) life. The past lifetime
random variable t X is related with relevant ageing function, the reversed hazard rate
defined byµF (x) =

f (x)
F (x) . The quantile version of reversed hazard rate function (see Nair

and Sankaran, 2009) is given as

µ(u) =µ(Q(u)) = u−1 f (Q(u)) = [uq(u)]−1. (21)

The reversed hazard rate function is quite useful in the forensic science, where exact
time of failure (e.g. death in case of human beings) of a unit is of importance. Also
the measures of uncertainty in past lifetime distribution plays an important role in the
context of information theory, forensic sciences, and other related fields. Sunoj et al.
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(2013) have considered the quantile version of Shannon past entropy, which is defined
as

Ḩ̄(u) = Ḩ(X ;Q(u) = log u + u−1
∫ u

0
log q(p)d p, (22)

From (6) and (8), generalized past entropy (GPE) of order (α,β) denoted by Ḩ̄β
α (X ;Q(u))

is defined as

Ḩ̄β
α (u) = Ḩ̄β

α (X ;Q(u)) =
1

(β−α)
log

�∫ u

0

( f Q(p))α+β−1q(p)d p
uα+β−1

�

,

=
1

(β−α)
log

�∫ u

0

(q(p))2−α−βd p
uα+β−1

�

. (23)

The measure (23) may be considered as the generalized past quantile entropy (GPQE)
of order (α,β). Rewriting the GPQE of order (α,β) (23) as

∫ u

0
(q(p))2−α−βd p = uα+β−1e (β−α)Ḩ̄

β

α (u). (24)

Differentiating (24) with respect to u both sides and simplify, we obtain

q(u) =
e
�

β−α
2−α−β

�

Ḩ̄
β

α (u)

u

n

(α+β− 1)+ (β−α)uḨ̄′
β

α (u)
o

�

1
2−α−β

�

. (25)

Equation (25) provides a direct relationship between quantile density function q(u)
and Ḩ̄β

α (u), therefore Ḩ̄β
α (u) uniquely determines the underlying distribution.

To find an upper bound to Ḩ̄β
α (u), we state the following result.

THEOREM 11. If generalized past quantile entropy of order (α,β) (Ḩ̄β
α (u) is increasing

(decreasing) in u, then

Ḩ̄β
α (u)≤ (≥)

�

α+β− 2
β−α

�

logµ(u)−
log(α+β− 1)
(β−α)

, (26)

here µ(u) is the reversed hazard quantile function.

The proof is similar to that of Theorem 1 and hence is omitted.
In the following theorem we characterize the power distribution, when GPQE (α,β)

is expressed in terms of quantile reversed hazard rate function. We give the following
result.
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THEOREM 12. Let X be a non-negative continuous random variable with distribu-
tion function F (x) and the quantile reversed hazard rate µ(u), then the generalized past
quantile entropy (GPQE (α,β)) is expressed as

Ḩ̄β
α (u) =

1
(β−α)

{log c +(α+β− 2) logµ(u)} , (27)

if and only if X has power distribution function.

PROOF. The quantile reversed hazard rate of power distribution is µ(u) = b u−
1
b

a .

Taking c =
�

b
(α+β−1)(b−1)+1

�

gives the if part of the theorem. To prove the only if part,
consider (27) to be valid. Using (21) and (23) , it gives

∫ u

0
(q(p))2−α−βd p = c u(q(u))2−α−β. (28)

Differentiating both sides with respect to u, we obtain

q′(u)
q(u)

=
�

c − 1
c(α+β− 1)− c

�

1
u

.

This gives

q(u) =Au
c−1

c(α+β−1)−c =Au
1
b −1,

which characterizes the power distribution function. 2

REMARK 13. If c = 1, then Equation (27) is a characterization of the uniform distribu-
tion.

5. QUANTILE-BASED GENERALIZED DIVERGENCE MEASURE OF ORDER (α,β)

Discrimination or divergence measures play an important role in measuring the dis-
tance between two probability distribution functions. They have great importance in
information theory, reliability theory, genetics, economics, approximations of probabil-
ity distributions, signal processing and pattern recognition. Let X and Y be two non-
negative random variables with density functions f and g , and survival functions F̄ and
Ḡ respectively. Several divergence measures have been proposed for this purpose which
the most fundamental one is Kullback-Leibler (1951). The information divergence of
order (α,β) (Varma, 1966) between two distributions is defined by

Dβ
α (X ,Y ) =

1
α−β

log
∫ ∞

0
f (x)

�

f (x)
g (x)

�α+β−2

d x ; α 6=β,β≥ 1,β− 1<α <β. (29)
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When β= 1, Dβ
α (X ,Y ) reduces to

Dα(X ,Y ) =
1

α− 1
log

∫ ∞

0
f (x)

�

f (x)
g (x)

�α−1

d x,

the Renyi divergence measure, and when β= 1 and α−→ 1,

Dβ
α (X ,Y )−→D( f , g ) =

∫ ∞

0
f (x) log

f (x)
g (x)

d x

is the Kullback-Leibler information between f and g .

Recently, Sankaran et al. (2016) and Sunoj et al. (2017) respectively introduced quan-
tile versions of the Kullback-Leibler and Renyi divergence measures and studied its prop-
erties. Following with Sankaran et al. (2016), the quantile-based divergence measure of
order (α,β) is defined as

Ḑβ
α (X ,Y ) =

1
(α−β)

�

log

¨

∫ 1

0

�

f (Q1(p))
g (Q1(p))

�α+β−2

f (Q1(p))d (Q1(p))
«�

,

=
1

(α−β)

�

log
�∫ 1

0
{q1(p)g (Q1(p))}

2−α−β d p
��

. (30)

Now using the relationship F ((Q1(u)) = u, we have F −1(u) =Q1(u), which gives

G(F −1(u)) =G(Q1(u)). (31)

Differentiating (31) both sides with respect to u, we obtain

d
d u
(G(F −1(u))) =

d
d u
(G(Q1(u))) = g (Q1(u))q1(u),

which is equivalent to

d
d u
(Q−1

2 (Q1(u)) = g (Q1(u))q1(u). (32)

Using (32) in (30), we get

Ḑβ
α (X ,Y ) =

1
(α−β)

�

log

¨

∫ 1

0

�

d
d p
(Q−1

2 (Q1(p)))
�2−α−β

d p

«�

. (33)

The measure (33) may be considered as the quantile divergence measure of order (α,β)
between the two random variable X and Y in terms of their quantile functions. Denote
Q3(u) =Q−1

2 (Q1(u)), which is the quantile function of F (G−1). Then (33) simplifies to

Ḑβ
α (X ,Y ) =

1
(α−β)

�

log
�∫ 1

0
(q3(p))

2−α−βd p
��

, (34)
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where q3(u) = Q ′3(u) is the quantile density function of Q3(u). Recently, Sunoj et al .
(2017) have introduced the quantile versions of the cumulative Kullback-Leibler diver-
gence measures.

EXAMPLE 14. Let X and Y be two nonnegative exponential random variables with
quantile functions respectively by Q1(u) =−

1
λ1

log(1−u), λ1 > 0 and Q2(u) =−
1
λ2

log(1−

u), λ2 > 0. Then Q3(u) =Q−1
2 (Q1(u)) = 1− (1− u)

λ2
λ1 and q3(u) =

λ2
λ1
(1− u)

λ2
λ1
−1.

The quantile divergence measure of order (α,β) (34) is given by

Ḑβ
α (X ,Y ) =

1
(α−β)






log







�

λ2
λ1

�2−α−β

( λ2
λ1
− 1)(2−α−β)+ 1












.

EXAMPLE 15. Suppose X and Y be follow Pareto II random variables with QFs respec-

tively by Q1(u) = (1− u)−
1
p1 − 1, p1 > 0 and Q2(u) = (1− u)−

1
p2 − 1, p2 > 0. Then

Q3(u) =Q−1
2 (Q1(u)) = 1− (1− u)

p2
p1 and q3(u) =

p2
p1
(1− u)

p2
p1
−1. Hence

Ḑβ
α (X ,Y ) =

1
(α−β)






log







�

p2
p1

�2−α−β

( p2
p1
− 1)(2−α−β)+ 1












.

EXAMPLE 16. Assume that there are two distributions with QFs Q1(u) = c1uλ1(1−
u)−λ2 , c1,λ2 > 0 and Q2(u) = c2u

1
λ3 , c2,λ3 > 0. Here, Q1(u) and Q2(u) are the QFs of

Davies and power distributions, respectively. Simple calculation then shows that

q3(u) = λ3

�

c1

c2

�λ3

uλ1λ3(1− u)−λ1λ3

�

λ1

u
+

λ2

1− u

�

. (35)

Substituting (35) in (34), one can easily obtain Ḑβ
α (X ,Y ). In particular, we assume that

λ1 = λ2 = 1. Then the quantile divergence measure of order (α,β) is given by

Ḑβ
α (X ,Y ) =

(2−α−β)
(α−β)

logλ3+λ3
(2−α−β)
(α−β)

log(
c1

c2
)

+
1

(α−β)
logβ[(λ3− 1)(2−α−β)+ 1, (λ3+ 1)(α+β− 2)+ 1].

EXAMPLE 17. Consider the QFs of Govindarajulu and inverted (reciprocal) exponen-
tial distribution as Q1(u) = 2u− u2 and Q2(u) =−

λ
log u , where λ > 0. Then, q3(u) can be

obtained as

q3(u) =
�

2λ(1− u)
(2u − u2)2

�

e−
�

λ

2u−u2

�

.
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Thus, from (34), we have

Ḑβ
α (X ,Y ) =

(2−α−β)
(α−β)

log(2λ)+
1

(α−β)

× log
∫ 1

0

�

(1− u)
(2u − u2)2

�2−α−β
e−

�

λ(α+β−2)
2u−u2

�

d u,

(36)

which is not easy to evaluate analytically. In this case, one may use Mathematica software to
compute (36) numerically.

EXAMPLE 18. Let X1 and X2 be the two random variables with QFs Q1(u) = λ1 +
1
λ2
(uλ3 − (1− u)λ4) and Q2(u) =

2u
λ2
+ (λ1−

1
λ2
), respectively, where λi > 0, i = 1,2,3,4.

Note that X1 and X2 follow generalized lambda distribution and uniform distribution, re-
spectively, with support (λ1+

1
λ2

,λ1−
1
λ2
), simple calculations lead to

Q3(u) =
1
2

�

uλ3 − (1− u)λ4 + 1
�

.

Thus, we have

q3(u) =
1
2

�

λ3uλ3−1+λ4(1− u)λ4−1
�

.

From (34), we obtain

Ḑβ
α (X ,Y ) =

(α+β− 2)
(α−β)

log2+
1

(α−β)
log

�∫ 1

0
(λ3uλ3−1+λ4(1− u)λ4−1)(2−α−β)d u

�

,

which can be easily computed numerically.

EXAMPLE 19. Let us consider van Staden- Loots and uniform distributions with quan-
tile functions Q1(u) = λ1 + λ2[(

(1−λ3
λ4
)(uλ4 − 1)− ( λ3

λ4
){(1− u)λ4 − 1}] and Q2(u) = u,

respectively, where λi > 0 for i= 1,2,3,4. Here,

Q3(u) = λ1+λ2[(
(1−λ3

λ4
)(uλ4 − 1)− (

λ3

λ4
){(1− u)λ4 − 1}]

and

q3(u) = λ2[(1−λ3)u
λ4−1+λ3(1− u)λ4−1].

Thus, from (34), we have

Ḑβ
α (X ,Y ) =

(2−α−β)
(α−β)

logλ2+
1

(α−β)

× log
�∫ 1

0

�

(1−λ3)u
λ4−1+λ3(1− u)λ4−1

�(2−α−β)
d u
�

,

which can be easily computed numerically.
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EXAMPLE 20. Let X1 and X2 be two random variable with respectively QFs Q1(u) =
c1 u
(1−u) and Q2(u) = c2u

1
c3 , ci > 0, i = 1, 2, 3. Then, it is easy to be obtain that

Q3(u) =
�

c1

c2

�c3

u c3(1− u)−c3

and

q3(u) = c3

�

c1

c2

�c3

u c3−1(1− u)−(c3+1).

Using these in (34), we obtain

Ḑβ
α (X ,Y ) =

(2−α−β)
(α−β)

log c3+
c3(2−α−β)
(α−β)

log
�

c1

c2

�

+
1

(1−α)
logβ[(c3− 1)(2−α−β)+ 1, (c3+ 1)(α+β− 2)+ 1].

The discrimination measure (29) is not appropriate in reliability and life-testing stud-
ies as the current age of a system needs to be included. The Varma’s divergence between
two residual lifetime Xt = (X − t |X > t ) and Yt = (Y − t |Y > t ) can be defined by

Dβ
α (X ,Y ; t ) =

1
(α−β)



log

 

∫ ∞

t

f (x)
F̄ (t )

�

f (x)/F̄ (t )

g (x)/Ḡ(t )

�α+β−2

d x

!



 . (37)

For more details we refer to Maya and Sunoj (2008), Sunoj and Linu (2012) and Kayal
(2015b). The quantile version of Varma’s redidual divergence measure of order (α,β)
between two random variables Xt and Yt is defined by

Ḑβ
α (X ,Y, u) =

1
(α−β)



log

(

∫ 1

u

�

f (Q1(p))
1− u

�α+β−1� Ḡ(Q(u))
g (Q1(p))

�α+β−2

q1(p)d p

)





=
1

(α−β)

�

log

¨

(1−G(Q1(u)))
α+β−2

(1− u)α+β−1

∫ 1

u
{q1(p)g (Q1(p))}

2−α−β d p

«�

=
1

(α−β)

�

log

¨

(1−Q−1
2 (Q1(u)))

α+β−2

(1− u)α+β−1

∫ 1

u
(q3(p))

2−α−β d p

«�

=
1

(α−β)

�

log

¨

(1−Q3(u))
α+β−2

(1− u)α+β−1

∫ 1

u
(q3(p))

2−α−βd p

«�

.

(38)

Cox (1972) introduced and studied a dependence structure among two distributions,
which is referred to as the proportional hazard (PH) model. This model is extensively
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used in biomedical applications, reliability engineering and survival analysis. In the fol-
lowing we obtain a characterization result of proportional hazard (PH) model through
the quantile generalized residual divergence measure of order (α,β) given in (38). Under
this model, the survival functions of the random variables X and Y are related by

Ḡ(x) = [F̄ (x)]θ, θ > 0, (39)

where θ is a positive constant.

THEOREM 21. The quantile-based generalized residual divergence measure of order
(α,β) (Ḑβ

α (X ,Y, u)) is independent of u, for (θ− 1)(2− α−β) + 1 > 0, if and only if
X and Y satisfy the Cox’s PH model.

PROOF. Assume that Cox’s PH model is satisfy. In case of Cox PH model, Q2(u) =
Q1(1− (1− u)

1
θ ), for some constant θ > 0, we obtain Q3(u) = 1− (1− u)θ and q3(u) =

θ(1− u)θ−1, refer to Nair et al. (2013). On using this condition, we have

Ḑβ
α (X ,Y, u) =

1
(α−β)

�

log

¨

(1−Q3(u))
α+β−2

(1− u)α+β−1

∫ 1

u
(q3(p))

2−α−βd p

«�

=
1

(α−β)

�

log
�

θ2−α−β(1− u)(θ−1)(α+β−1)−θ
∫ 1

u
(1− p)(θ−1)(2−α−β)d p

��

=
1

(α−β)

�

log
�

θ2−α−β

(θ− 1)(2−α−β)+ 1

��

,

which is independent of u.

Conversely, suppose Ḑβ
α (X ,Y, u) = constant. Then using (38), we have

log

¨

(1−Q3(u))
α+β−2

(1− u)α+β−1

∫ 1

u
(q3(p))

2−α−βd p

«

=C (α−β),

this gives
∫ 1

u
(q3(p))

2−α−βd p = e c(α−β)(1− u)α+β−1(1−Q3(u))
2−α−β. (40)

Differentiating (40) with respect to u, we get, after simplification

(α+β− 1)
�

(1− u)q3(u)
1−Q3(u)

�α+β−2

+(2−α−β)
�

(1− u)q3(u)
1−Q3(u)

�α+β−1

= e−c(α−β). (41)

Substituting p(u) = (1−u)q3(u)
1−Q3(u)

and e−c(α−β) =C1 in (41), this gives

(α+β− 1) (p(u))α+β−2+(2−α−β)(p(u))α+β−1 =C1,
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which leads to p(u) = θ, a constant. This means that

− d
d u

log(1−Q3(u)) =
θ

1− u
. (42)

Integrating (42) with respect to u between the limits 0 to u, we get log(1−Q3(u)) =
θ log(1− u), and hence Q3(u) =Q−1

2 (Q1(u)) = 1− (1− u)θ, which completes the proof
of the theorem. 2

Due to duality it is natural to study the dynamic divergence measure of order (α,β)
between past lifetimes. Thus the generalized divergence measure of order (α,β) between
the past lives t X = [t −X |X ≤ t ] and t Y = [t −Y |Y ≤ t ] is given by

D̄β
α (X ,Y ; t ) =

1
(α−β)

�

log

¨

∫ t

0

f (x)
F (t )

�

f (x)/F (t )
g (x)/G(t )

�α+β−2

d x

«�

. (43)

Given that at time t units are found to be down, D̄β
α (X ,Y ; t )measures the informa-

tion distance between two past lifetimes t X and t Y . Similar to Ḑβ
α (X ,Y, u), a quantile

version of divergence measure of order (α,β) between two past lifetime random vari-
ables t X and t Y is obtained as

Ḑ̄
β
α (X ,Y, u) =

1
(α−β)

�

log

¨

(G(Q1(u)))
α+β−2

uα+β−1

∫ u

0
f (Q1(p))

�

f (Q1(p))
g (Q1(p))

�α+β−2

× q1(p)d p
ª�

=
1

(α−β)

�

log

¨

(Q−1
2 (Q1(u)))

α+β−2

uα+β−1

∫ u

0
{q1(p)g (Q1(p))}

2−α−β d p

«�

=
1

(α−β)

�

log

¨

(Q3(u))
α+β−2

uα+β−1

∫ u

0
(q3(p))

2−α−βd p

«�

.

(44)

EXAMPLE 22. We consider a parallel system of n components with lifetimes Xi , i =
1, · · ·n, which are independent and identically distributed (i.i.d.) each with distribution
function F (x). The lifetime of the parallel system is given by Y =max(X1,X2, .......X) with
distribution function is given by

G(x) = [F (x)]n .

Hence Xi and Y satisfy the proportional reversed hazard (PRH) model. For PRH model,
we have Q2(u) =Q1(u

1
n ), for some positive integer n, we obtain Q3(u) = un and q3(u) =
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nun−1. On using this condition, the corresponding quantile-based divergence measure of
order (α,β) for two past lifetimes is given by

Ḑ̄
β
α (X ,Y, u) =

1
(α−β)

log
�

n2−α−β

(n− 1)(2−α−β)+ 1

�

.

EXAMPLE 23. Let X and Y be two random variables with power function having

QFs respectively by Q1(u) = u
1

b1 ; b1 > 0 and Q2(u) = u
1

b2 ; b2 > 0. Then Q3(u) =

Q−1
2 (Q1(u)) = u

b2
b1 and q3(u) = (

b2
b1
)u

b2
b1
−1. Hence the quantile divergence measure of

order (α,β) between two past lifetime random variables (44), is given by

Ḑ̄
β
α (X ,Y, u) =

1
(α−β)






log







�

b2
b1

�2−α−β

( b2
b1
− 1)(2−α−β)+ 1












.

Next, we give a characterization problem for proportional reversed hazard (PRH)
model.

THEOREM 24. A necessary and sufficient condition for Ḑ̄
β
α (X ,Y, u) to be independent

of u, for (θ− 1)(2−α−β)+ 1> 0, is that X and Y satisfy the PRH model.

The proof is similar to that of Theorem 21 and hence omitted.

REMARK 25. For β= 1 and α→ 1, (38) reduces to

ḐX /Y (u) = Ḑ(X /Y ;Q(u)) = log
�

1−Q3(u)
1− u

�

− (1− u)−1
∫ 1

u
log q3(p)d p, (45)

the quanlite-based residual Kullback-Leibler relative entropy, refer to Sankaran et al. (2016).

REMARK 26. The results in the present paper also hold for Renyi’s entropy (1961) and
Renyi’s divergence information measure, when β= 1.

6. CONCLUSION

Residual and past lifetime is an important concepts in many discipline. The residual
lifetime is defined as the remaining time to an event given that the survival time X of a
patient is at least t . In several clinical studies, particularly when the associated diseases
are chronic or/and incurable, it is great concern to patients to know residual lifetime.
The present work introduced an alternative approach to generalized dynamic (residual
and past both) entropy and divergence measure of order (α,β) using quantile functions.
The results obtained in this article are general in the sense that they reduce to some of
the results for quantile-based Shannon entropy and K-L divergence information measure
obtained by Sunoj and Sankaran (2012) and Sankaran et al. (2016), when β = 1 and
α tends to 1. Also, we have studied some characterization results based on proposed
measures and study their certain properties and application in reliability engineering.
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SUMMARY

In the present paper, we propose a quantile version of generalized entropy measure for residual and
past lifetimes and study their properties. Lower and upper bounds of the proposed measures are
derived. Some of the quantile lifetime distributions have been characterized. We also introduce
quantile versions of the generalized divergence measure of Varma between two residual and two
past lifetime random variables. Some properties of this measure are studied and a characterization
of the proportional (reversed) hazards model is given.

Keywords: Quantile function; Varma’s entropy; Divergence measure; Hazard quantile function;
PH Model.


