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1. INTRODUCTION

Random sampling is well known as an unrestricted method of collecting the units from a
population. However, if collecting the units and measuring the characteristic of interest
on them is expensive (or risky or painful), then one is compelled to look for alternative
sampling methods which are capable of accommodating observational economy consid-
erations. McIntyre (1952) first used a judgement method to rank the randomly chosen
units within each of independent groups of units and devised a method of final selec-
tion of units from the groups of units based on their ranks and termed this method as
ranked set sampling (RSS). Chen et al. (2004) have discussed extensively about the obser-
vational economy considerations accommodated in RSS as defined by McIntyre (1952).
For more details, see Shaibu and Muttlak (2004), Al-Rawwash et al. (2010) and Samuh
(2017). Ranking by judgement method is not suitable if there is a fear that ranking er-
ror which is otherwise known as imperfect ranking creeps in the ranking process of the
units. In such situations Stokes (1977) introduced a scheme of sampling the units based
on the measurements made on an easily measurable auxiliary variable X which is jointly
distributed with the variable Y of primary interest, whose measurement is expensive and
thereby defined the RSS in the following manner. Choose n2 units randomly from the
population and arrange them in the random order in n sets of n units each. Rank units
within each set based on the measurement made on the auxiliary variable X of the units.
Then from the i th set choose the unit ranked i and measure the variable Y of primary
interest on this unit for i = 1,2, . . . , n. Clearly, the observation obtained from the i th
set is the concomitant of i th order statistic of X -observations in that set and we write it
as Y[i :n]i for i = 1,2, . . . , n. Then the observations Y[1:n]1,Y[2:n]2, . . . ,Y[n:n]n are said to
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constitute the ranked set sample (r s s ) as proposed by Stokes. The sampling procedure
as described above to obtain the r s s is known as the Stokes method of RSS.

Since there is potential difference in the approaches and mathematical preciseness
in the RSS methods proposed by McIntyre (1952) and Stokes (1977), rather than calling
both procedures as RSS, we prefer to call the RSS method proposed by Stokes as induced
ranked set sampling (IRSS) all through this paper. We may further call the sample arising
due to IRSS as induced ranked set sample (i r s s ).

It is to be noted that contrary to general perception, concomitants of order statis-
tics generated from IRSS are not causing any disadvantage but create advantages by the
mathematical rigour we observe on their distributions for devising inference procedures
on the parameters involved in the distribution of Y . Distribution theory of concomi-
tants of order statistics in applying IRSS method in inference problems is available in
David (1973), Bhattacharya (1984) and David and Nagaraja (1998, 2003). For some re-
cent survey on IRSS, one may refer to Chen et al. (2004), Chacko and Thomas (2007,
2008, 2009), Ahmad et al. (2010), Lesitha et al. (2010), Lesitha and Thomas (2013), Singh
and Mehta (2013) and Philip and Thomas (2015).

Taking the advantage of recent developments on the theory of order statistics of inde-
pendent non-identically distributed (INID) random variables as portrayed in Vaughan
and Venables (1972), Balakrishnan (1988), Balakrishnan et al. (1992), Bapat and Beg
(1989a, 1989b), Beg (1991) and Samuel and Thomas (1998), some applications of these
theories in parameter estimation have been illustrated in Sajeevkumar and Thomas (2005)
and Thomas and Sajeevkumar (2005). One difficulty experienced in the large scale appli-
cations of the results of Thomas and Sajeevkumar (2005) and Sajeevkumar and Thomas
(2005) in further inference problems is about the tediousness involved in the evaluation
of the covariance between different pairs of order statistics using the permanent expres-
sion (for details, see Vaughan and Venables, 1972) for the joint probability density func-
tion (pdf) of two order statistics of INID random variables. However, if we make use
of McIntyre (1952) method of RSS involving selection of units belonging to different
populations for inference problems, then we are redeemed from the burden of obtain-
ing the values of the covariances as those covariances are zero in a r s s due to the reason
that the observations in the r s s occur from independent samples. With this theoretical
background Priya and Thomas (2013, 2016) have defined RSS when units from different
univariate populations are to be considered and used the resulting r s s observations to
estimate the common parameters of several univariate distributions.

Eryilmaz (2005) first derived the expression for the cumulative distribution func-
tion (cdf) of concomitants of order statistics of INID random variables. It may be noted
that for using concomitants of order statistics of INID random variables, we require the
pdf of those concomitants. Thus Veena and Thomas (2015) have derived the marginal
pdfs and joint pdfs of concomitants of order statistics of INID random variables using
permanents. For some of the applications of concomitants of order statistics of INID
random variables in estimation, see Veena and Thomas (2015). But there is a limitation
in large scale applications of the results of Veena and Thomas (2015) as the expansion of
the permanent expression for the joint pdf of different pairs of concomitants of order
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statistics and computation of those covariances turns out to cause unbearable burden.
However, like the extension made by Priya and Thomas (2013, 2016) to McIntyre’s RSS
to the case when units from different univariate populations are inducted in the sam-
pling scheme, if one extend IRSS scheme and the pdf representation of concomitants of
order statistics of INID random variables as given in Veena and Thomas (2015), then
the resulting i r s s relieves the user from the burden of computation of covariances of
different pairs of observations while applying IRSS to inference problems. This has mo-
tivated the authors to define IRSS to the case when units from several populations are
to be inducted in the sample. It is to be noted that unlike the possibility of occurrence
of imperfect ranking in the extended method of RSS proposed by Priya and Thomas
(2013, 2016), such imperfect ranking never creeps in the proposed extended method of
IRSS in this paper.

In Section 2, the procedure for the induced ranked set sampling when there are sev-
eral populations is described. In Section 3, best linear unbiased estimation of a common
threshold parameter θ2 of two bivariate Pareto distributions is discussed based on an
i r s s of size n, when a sample of size n1 is drawn from a bivariate Pareto population
with shape parameter a1 and a sample of size n2 is drawn from another bivariate Pareto
distribution with shape parameter a2, where n = n1+ n2. The best linear unbiased esti-
mator (BLUE) of θ2 based on a lower extreme induced ranked set sample (l e i r s s ) along
with its variance is also obtained in this section. Further, in this section, the relative
precision of these BLUEs of θ2 is discussed in relation to an existing BLUE based on
concomitants of order statistics. The results of the third section are illustrated with a
real life data in Section 4.

2. INDUCED RANKED SET SAMPLING WHEN THERE ARE SEVERAL POPULATIONS

In certain problems of investigation such as crop cutting experiments wherein average
yield has to be estimated from a region where different high yielding varieties of a cereal
(like rice or wheat) are cultivated so that the mean yield may be more or less identical for
those varieties, but the distribution of the yield characteristic differs from one variety
to another. For similar descriptions, see Sajeevkumar and Thomas (2005) and Thomas
and Sajeevkumar (2005). The extended version of the IRSS which we like to introduce
applies to the above mentioned type of situations.

To introduce the IRSS we assume that there are k independent bivariate populations
all having a common support set and on the units from each population there are two
measurable characteristics X and Y of which X is easily measurable without any cost
while the measurement on the characteristic Y of primary interest is costly (or painful).
Now we define the following.

DEFINITION 1. Draw randomly n sets of n units each from the given k populations
(k ≥ 2) such that each set consists of ni units drawn randomly from the ith population for
i = 1,2, . . . , k with n =

∑k
i=1 ni . Measure the characteristic X (an auxiliary variable) on the

units which can be measured easily and rank the units within each set based on the measured



60 P. Y. Thomas and A. Philip

values of X on the units. Now from the j th set choose the unit which is ranked j among its
units for the measurement of the characteristic Y of primary interest and let it be denoted
by Y[ j :n] j for j = 1,2, . . . , n. Then Y[ j :n] j , j = 1,2, . . . , n are said to constitute the i r s s and
the sampling scheme which generates this sample is called IRSS from the populations.

Suppose that each of the given k populations is infinite such that the bivariate charac-
teristic (Xi ,Yi ) on the units of i th population has an absolutely continuous bivariate dis-
tribution with joint cdf Fi (x, y) and joint pdf fi (x, y) for i = 1,2, . . . , k. Let the marginal
cdf of Xi be FXi

(x) with marginal pdf fXi
(x) and the marginal cdf of Yi be FYi

(y) with
marginal pdf fYi

(y), where i = 1,2, . . . , k. If we apply IRSS from the k populations
as specified above using Definition 1, then the observation Y[r :n]r is distributed identi-
cally as concomitant of the r th order statistic of X -observations in the pooled sample of
all n =

∑k
i=1 ni observations, comprising of ni independent observations drawn from

Fi (x, y) for i = 1,2, . . . , k. Then from Veena and Thomas (2015), the pdf of Y[r :n]r is
given by

fY[r :n]r
(y) =

1
(r − 1)!(n− r )!

∫ ∞

−∞
pe r

�

a b c
�

r−1 n−r 1
d x, (1)

where pe r
�

a b c
�

r−1 n−r 1
denotes the permanent of a square matrix of order n in which

the first (r−1) columns are the (r−1) copies of the vector a= (FX1
(x), . . . , FX1

(x), FX2
(x),

. . . , FX2
(x), . . . , FXk

(x), . . . , FXk
(x))′, next (n− r ) columns are the (n− r ) copies of the vec-

tor b= (1−FX1
(x), . . . , 1−FX1

(x), 1−FX2
(x), . . . , 1−FX2

(x), . . . , 1−FXk
(x), . . . , 1−FXk

(x))′

and the last column vector is defined by c= ( f1(x, y), . . . , f1(x, y), f2(x, y), . . . , f2(x, y), . . . ,
fk (x, y), . . . , fk (x, y))′. In each of the above vectors there are k varieties of symbols (func-
tions) repeated for n1, n2, . . . , nk times respectively. Also, the permanent of a square ma-
trix has an expansion similar to that of the corresponding determinant except that the
sign attached to all terms in the expansion is positive. Clearly, for any positive integer l
using (1) we define E

�

Y l
[r :n]r

�

as

E
�

Y l
[r :n]r

�

=
1

(r − 1)!(n− r )!

∫ ∞

−∞

∫ ∞

−∞
y l pe r

�

a b c
�

r−1 n−r 1
d x d y. (2)

From (2) we can compute the mean E(Y[r :n]r ) and Var(Y[r :n]r ) for r = 1,2, . . . , n of all
i r s s observations. It may be noted from the definition of IRSS as given in Definition 1,
we observe that Cov(Y[r :n]r ,Y[s :n]s ) = 0, for r 6= s .

In some situations we come across different bivariate distributions having identical
value for the location and scale parameters but differ either in the form or in the asso-
ciation (or shape) parameter. For example, suppose we have k high yielding varieties
of paddy and for each variety, observations on (X ,Y ), where Y represents the yield per
plot and X , the time taken to reach the reaping level of maturity, are of interest in which
X is considered as a easily observable character. Note that as all k varieties belong to
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high yielding group, the mean yield of all varieties will be equal and the standard de-
viation of the yield of all varieties again equal and distribution of (X ,Y ) differs from
one variety to another. As another example, suppose we have k (k ≥ 2) bivariate Pareto
distributions on (X ,Y ) where X represents the salary or professional income and Y
represents the income from other sources. Clearly, X is well defined and the threshold
parameter of the distribution of X is identically the same for all k income groups in
terms of income tax rules whereas the measurement of Y is difficult or under reported.
So to study the income distribution in such a situation, estimation of Y based on ranks
assigned to observations on X is very useful. We may have in this case different bivari-
ate Pareto models by assuming different values on the shape parameter of the marginal
random variables involved.

In this paper we apply IRSS to problems where the above described type of situations
arise. Since the examples described above involve k populations with k ≥ 2, we develop
the theory of IRSS by assuming that there are k populations. When we apply the i r s s
to inference problems, to compute the mean and variance of the observations the result
of the following theorem is much helpful.

THEOREM 2. Suppose the IRSS as defined in Definition 1 is applied for k populations
which yield the observations Y[1:n]1,Y[2:n]2, . . . ,Y[n:n]n , where the joint cdf of the bivariate
distribution for the ith population is Di (x, y) = Fi (

x−µ1
σ1

, y−µ2
σ2
) with joint pdf di (x, y) =

1
σ1σ2

fi (
x−µ1
σ1

, y−µ2
σ2
), for i=1,2, . . . , k. Suppose for the ith population the marginal distribu-

tion of the component random variable X has cdf D (X )i (x) =Gi (
x−µ1
σ1
) with pdf d (X )i (x) =

1
σ1

gi (
x−µ1
σ1
) and the marginal distribution of the component random variable Y has cdf

D (Y )i (y) = Hi (
y−µ2
σ2
) with pdf d (Y )i (y) =

1
σ2

hi (
y−µ2
σ2
), for i=1,2, . . . , k. Then the pdf of

Y[r :n]r is free from the parameters µ1 and σ1 of the marginal distribution of the random
variable X of the populations.

PROOF. Clearly the pdf of Y[r :n]r , the r th observation of i r s s as given in the state-
ment of this theorem is obtained by replacing a, b, c involved in (1) by

a=
�

G1(
x−µ1
σ1
), . . . ,G1(

x−µ1
σ1
),G2(

x−µ1
σ1
), . . . ,G2(

x−µ1
σ1
), . . . ,Gk (

x−µ1
σ1
), . . . ,Gk (

x−µ1
σ1
)
�′

,

b= 1− a, where 1 is a column vector of n ones and c= 1
σ1σ2

�

f1(
x−µ1
σ1

, y−µ2
σ2
), . . . ,

f1(
x−µ1
σ1

, y−µ2
σ2
), f2(

x−µ1
σ1

, y−µ2
σ2
), . . . , f2(

x−µ1
σ1

, y−µ2
σ2
), . . . , fk (

x−µ1
σ1

, y−µ2
σ2
), . . . ,

fk (
x−µ1
σ1

, y−µ2
σ2
)
�′

respectively. If we put u = x−µ1
σ1

in the right side of the obtained ex-
pression for fY[r :n]r

(y), then it reduces to

fY[r :n]r
(y) =

σ−1
2

(r − 1)!(n− r )!

∫ ∞

−∞
pe r

�

a1 b1 c1

�

r−1 n−r 1
d u, (3)

where a1 = (G1(u), . . . ,G1(u),G2(u), . . . ,G2(u), . . . ,Gk (u), . . . ,Gk (u))
′, b1 = 1− a1 and
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c1 =
�

f1(u, y−µ2
σ2
), . . . , f1(u, y−µ2

σ2
), f2(u, y−µ2

σ2
), . . . , f2(u, y−µ2

σ2
), . . . ,

fk (u, y−µ2
σ2
), . . . , fk (u, y−µ2

σ2
)
�′

.
It is then clear to note that a1, b1 and c1 are all free ofµ1 and σ1 and hence this proves

the theorem. 2

REMARK 3. An immediate consequence of the above theorem is that if the other pa-
rameters involved in the population bivariate distribution other than (µ1,µ2,σ1,σ2) are
known, then both means and variances of the observations of the i r s s depend only on µ2
and σ2. Further, those values can be obtained using the moment expression

E
�

Y l
[r :n]r

�

=
σ−1

2

(r − 1)!(n− r )!

∫ ∞

−∞

∫ ∞

−∞
y l pe r

�

a1 b1 c1

�

r−1 n−r 1
d u d y. (4)

In the next section we illustrate an application of IRSS to estimate the common
parameter of two bivariate Pareto distributions.

3. BEST LINEAR UNBIASED ESTIMATION OF A COMMON PARAMETER OF TWO
PARETO DISTRIBUTIONS

Bivariate income data such as income of related individuals or income from two dif-
ferent sources (like salary income and income from other sources), etc. are modelled
by bivariate Pareto distributions, provided the component random variables involved
are positively correlated. For some applications of bivariate Pareto distribution, see
Hutchinson (1979). It is also clear to note that marginal random variable on salary in-
come of individuals can be realized exactly whereas income from other sources is com-
plex in nature and hence cannot be measured with high precision and exactness by an
assessing agency. So, on income studies to get efficient income estimates in the presence
of measurement difficulty on one variable, we propose RSS technique by applying rank-
ing of the units based on the salary income (easily measurable component) observed on
the units. For similar applications of RSS one may refer Chacko and Thomas (2007).
If we have a population involving two sections of people whose bivariate incomes are
described as two bivariate Pareto distributions, then we require a RSS technique as de-
scribed in Definition 1 to deal with income studies relating to such a population. Thus
in this section, we consider two independent populations of units and the distribution of
measurement (Xi ,Yi ) made on the units of the i th population follows a bivariate Pareto
distribution with joint pdf hi (x, y) given by

hi (x, y) = ai (ai + 1)(θ1iθ2)
ai+1(θ2x +θ1i y −θ1iθ2)

−(ai+2),ai > 0, x >θ1i > 0,
y >θ2 > 0,

(5)

for i = 1,2, where we assume that the threshold parameter θ2 associated with the study
variate Yi , is the same for both populations. Let (Ui ,Vi ), i = 1,2 be two independent
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non-identically distributed random vectors with (Ui ,Vi ) having joint pdf gi (u, v) de-
fined by

gi (u, v) = ai (ai + 1)(u + v − 1)−(ai+2),ai > 0, u > 1, v > 1. (6)

Clearly, if (Xi ,Yi ) is distributed with joint pdf (5), then ( Xi
θ1i

, Yi
θ2
) is distributed identically

as (Ui ,Vi ) for i = 1,2. By Theorem 2, if Y (n1,n2)
[r :n]r , r = 1,2, . . . , n are the i r s s observations

obtained as per Definition 1 with k = 2 described above, then the pdf of Y (n1,n2)
[r :n]r is free

of the threshold parameters θ11 and θ12. So without any loss of generality, we take
θ1i = 1 in order to work out the means and variances of Y (n1,n2)

[r :n]r . In particular, in order

to obtain the means and variances of the observations Y (n1,n2)
[r :n]r , r = 1,2, . . . , n obtained

by IRSS from two Pareto distributions with joint pdfs hi (x, y), i = 1,2 given by (5), it
is enough to obtain the means and variances of the observations, V (n1,n2)

[r :n]r ; r = 1,2, . . . , n
obtained by IRSS from two Pareto distributions with joint pdfs gi (u, v), i = 1,2 given
by (6).

Clearly, V (n1,n2)
[r :n]r is identically distributed as V (n1,n2)

[r :n] , the r th concomitant in a pooled
sample of size n consisting of n1 observations drawn from g1(u, v) and n2 observations
drawn from g2(u, v) such that n = n1+ n2. Then we have

ξ (n1,n2)
[r :n] = E(V (n1,n2)

[r :n]r ) = E(V (n1,n2)
[r :n] ) (7)

and

η(n1,n2)
[r :n] =Var(V (n1,n2)

[r :n]r ) =Var(V (n1,n2)
[r :n] ). (8)

From Veena and Thomas (2015), we obtain the first and second raw moments of
the random variable V (n1,n2)

[r :n] , the r th concomitant obtained in a pooled sample of size
n consisting of n1 observations drawn from the joint pdf g1(u, v) and n2 observations
drawn from the joint pdf g2(u, v), where n = n1+ n2 and are given below

E[V (n1,n2)
[r :n] ] =1+

1
a1

(n1)!Γ (n− r + 1− 1
a1
)

(n− r )!Γ (n1+ 1− 1
a1
)

+
n2
∑

i=1

�

n2

i

�

∏i
j=1( j a1− ia2+ 1)

a1
i+1

(n1)!Γ (n− r − i + 1+ ia2
a1
− 1

a1
)

(n− r )!Γ (n1+ 1+ ia2
a1
− 1

a1
)

(9)
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E[V (n1,n2)
[r :n] ]

2 = 1+
2
a1

(n1)!Γ (n− r + 1− 1
a1
)

(n− r )!Γ (n1+ 1− 1
a1
)
+

2
a1(a1− 1)

(n1)!Γ (n− r + 1− 2
a1
)

(n− r )!Γ (n1+ 1− 2
a1
)

+ 2
n2
∑

i=1

�

n2

i

�

∏i
j=1( j a1− ia2+ 1)

a1
i+1

(n1)!Γ (n− r − i + 1+ ia2
a1
− 1

a1
)

(n− r )!Γ (n1+ 1+ ia2
a1
− 1

a1
)

+2
n2
∑

i=1

�

n2

i

�

∏i−1
j=0( j a1− ia2+ 2)

a1
i+1(a1− 1)

(n1)!Γ (n− r − i + 1+ ia2
a1
− 2

a1
)

(n− r )!Γ (n1+ 1+ ia2
a1
− 2

a1
)

+
2n2

a1(a2− 1)

(n1)!Γ (n− r + a2
a1
− 2

a1
)

(n− r )!Γ (n1+ 1+ a2
a1
− 2

a1
)

+ 2n2

n2
∑

i=2

�

n2− 1
i − 1

�

∏i−1
j=1( j a1− ia2+ 2)

a1
i (a2− 1)

(n1)!Γ (n− r − i + 1+ ia2
a1
− 2

a1
)

(n− r )!Γ (n1+ 1+ ia2
a1
− 2

a1
)

.

(10)

Then using (9) and (10), we may obtain the variance of V (n1,n2)
[r :n] from

Var(V (n1,n2)
[r :n] ) = E

�

V (n1,n2)
[r :n]

�2
−
�

E(V (n1,n2)
[r :n] )

�2
. (11)

We make use of the expressions given in (9) to (11) to estimate θ2 using the i r s s ob-
servations Y (n1,n2)

[r :n]r , r = 1,2, . . . , n and the results are given in the following subsections.

3.1. Best linear unbiased estimator of θ2 based on an induced ranked set sample

In order to obtain an estimator of θ2 based on the observations of i r s s , we prove the
following theorem.

THEOREM 4. Suppose that Y (n1,n2)
[1:n]1 ,Y (n1,n2)

[2:n]2 , . . . ,Y (n1,n2)
[n:n]n are the n observations in the

irss where each ranked set consists of n1 units from a population with a bivariate Pareto
distribution defined by the joint pdf h1(x, y) and n2 units from a population with bivariate
Pareto distribution defined by the joint pdf h2(x, y) such that n = n1 + n2. Let us write
V (n1,n2)
[r :n]r , r = 1,2, . . . , n to denote the corresponding i r s s observations obtained from a very

similar set up with hi (x, y) replaced by gi (u, v) for i=1,2. Let ξ (n1,n2)
[r :n] = E

�

V (n1,n2)
[r :n]

�

and

η(n1,n2)
[r :n] =Var(V (n1,n2)

[r :n] ) be as defined in (9) and (11). As V (n1,n2)
[r :n]r and V (n1,n2)

[s :n]s arise from two

independent samples we have Cov(V (n1,n2)
[r :n]r ,V (n1,n2)

[s :n]s ) = 0, for r 6= s . Let us denote

Y (n1,n2)
[n] = (Y (n1,n2)

[1:n]1 ,Y (n1,n2)
[2:n]2 , . . . ,Y (n1,n2)

[n:n]n )
′ (12)
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α= (ξ (n1,n2)
[1:n] ,ξ (n1,n2)

[2:n] , . . . ,ξ (n1,n2)
[n:n] )

′ (13)

and
B = diag (η(n1,n2)

[1:n] ,η(n1,n2)
[2:n] , . . . ,η(n1,n2)

[n:n] ). (14)

Then the BLUE θ∗2 of θ2 is given by

θ∗2 = (α
′B−1α)−1α′B−1Y (n1,n2)

[n] (15)

and the variance of θ∗2 is given by

Var(θ∗2) = (α
′B−1α)−1θ2

2. (16)

PROOF. Using the notations given in the statement of the theorem, the mean and
variance-covariance matrix of the column vector Y (n1,n2)

[n] of observations in the i r s s may
be written as

E
�

Y (n1,n2)
[n]

�

= αθ2 and D
�

Y (n1,n2)
[n]

�

= B θ2
2, (17)

where for r = 1,2, . . . , n, ξ (n1,n2)
[r :n] involved inα and η(n1,n2)

[r :n] involved in the diagonal matrix

B are given by equations (13) and (14). If a1 and a2 involved in ξ (n1,n2)
[r :n] and η(n1,n2)

[r :n] are
known, then by Gauss-Markov theorem, the BLUE θ∗2 of θ2 is as given in (15) and its
variance is as given in (16). Hence the theorem is proved. 2

Note that θ∗2 is a linear function of the observations Y (n1,n2)
[r :n]r , r = 1,2, . . . , n in the i r s s

and hence one can write θ∗2 =
n
∑

r=1

b (n1,n2)
r :n Y (n1,n2)

[r :n]r , where b (n1,n2)
r :n , r = 1,2, . . . , n are appro-

priate constants. For convenience, we may write br :n for b (n1,n2)
r :n and Y[r :n]r for Y (n1,n2)

[r :n]r .

Thus, we have θ∗2 =
n
∑

r=1

br :nY[r :n]r .

By making use of the expressions (9) and (10) for E(V (n1,n2)
[r :n] ) and E(V (n1,n2)

[r :n] )
2, we have

the computed means, ξ (n1,n2)
[r :n] and variances, η(n1,n2)

[r :n] for r = 1,2, . . . , n; a1 = 2.5(0.5)3.5;
a2 = 3(0.5)4 and for n1 and n2 such that n = n1 + n2 and 2 ≤ n ≤ 5 using R program-
ming and are given in Table 1. Using these computed values of the means and variances,
we have further obtained the coefficients bi :n in the BLUE θ∗2 =

∑n
i=1 bi :nY[i :n]i and

θ−2
2 Var(θ∗2) for a1 = 2.5(0.5)3.5, a2 = 3(0.5)4 and for n1 and n2 such that n = n1+n2 and

2≤ n ≤ 5 and these values are presented in Table 2.

3.2. Best linear unbiased estimator of θ2 based on a lower extreme induced ranked set
sample

Since the lower terminal of the study variate Y associated with the bivariate Pareto distri-
bution depends on θ2, it is intuitive to conclude that among the possible Y observations



66 P. Y. Thomas and A. Philip

that we may obtain due to ranking made on X , the measurement of Y on the unit with
least X - value contains more information on θ2. Thus on instances such as dealing with
the estimation of threshold parameter of the variable of primary interest of bivariate
Pareto distributions, instead of the IRSS as described in Definition 1, we define another
i r s s as given below.

DEFINITION 5. Draw randomly n sets of n units each from the given k populations
(k ≥ 2) such that each set consists of ni units drawn randomly from the ith population for
i = 1,2, . . . , k with n =

∑k
i=1 ni . Measure the characteristic X (an auxiliary variable)

on the units which can be measured easily and rank the units within each set based on the
measured values of X on the units. Now from the j th set choose the unit which is ranked 1
among its units for the measurement of the characteristic Y of primary interest and let it be
denoted by Y[1:n] j for j = 1,2, . . . , n. Then Y[1:n] j , j = 1,2, . . . , n are said to constitute the
lower extreme induced ranked set sample (l e i r s s ) and the sampling scheme which generates
the above sample is called lower extreme induced ranked set sampling (LEIRSS) from the
populations.

Now if the problem is to estimate the common threshold parameter θ2 of the two
bivariate distributions with joint pdf hi (x, y), i = 1,2 defined in (5) using LEIRSS, then
the estimation procedure is described in the following theorem.

THEOREM 6. Suppose that Y (n1,n2)
[1:n]1 ,Y (n1,n2)

[1:n]2 , . . . ,Y (n1,n2)
[1:n]n are the n observations in the

l e i r s s where each ranked set consists of n1 units from a population with a bivariate Pareto
distribution defined by the joint pdf h1(x, y) and n2 units from a population with bivari-
ate Pareto distribution defined by the joint pdf h2(x, y) such that n = n1 + n2. Let us
write V (n1,n2)

[1:n]r , r = 1,2, . . . , n to denote the corresponding l e i r s s observations obtained

from a very similar set up with hi (x, y) replaced by gi (u, v) for i = 1,2. Let ξ (n1,n2)
[r :n] =

E
�

V (n1,n2)
[r :n]

�

, η(n1,n2)
[r :n] = Var(V (n1,n2)

[r :n] ) be as defined in (7) to (11). As V (n1,n2)
[1:n]r and V (n1,n2)

[1:n]s

arise from two independent samples we have Cov(V (n1,n2)
[1:n]r ,V (n1,n2)

[1:n]s ) = 0, for r 6= s . Let us
denote

Y (n1,n2)
[1] = (Y (n1,n2)

[1:n]1 ,Y (n1,n2)
[1:n]2 , . . . ,Y (n1,n2)

[1:n]n )
′ (18)

E(Y (n1,n2)
[1] ) = ξ (n1,n2)

[1:n] 1′θ2 (19)

and
D(Y (n1,n2)

[1] ) = η(n1,n2)
[1:n] I′nθ

2
2, (20)

where 1 is a column vector of n ones and In is the unit matrix of order n. Then the BLUE
θ∗∗2 of θ2 based on the l e i r s s is given by

θ∗∗2 =
1

nξ (n1,n2)
[1:n]

n
∑

r=1

Y (n1,n2)
[1:n]r (21)
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with

Var(θ∗∗2 ) =
η(n1,n2)
[1:n]

n(ξ (n1,n2)
[1:n] )

2
θ2

2. (22)

PROOF. It is clear from (19) that for each r ,
1

ξ[1:n]r
Y (n1,n2)
[1:n]r is unbiased for θ2. Thus

the BLUE θ∗∗2 of θ2 based on l e i r s s is the one as given in (21). Then from (20) and (21),
the variance of θ∗∗2 is as given in (22). Hence the theorem is proved. 2

Veena and Thomas (2015) have derived the distribution theory of concomitants of
order statistics of INID random variables and, as an application, illustrated the method
of estimating the common threshold parameter θ2 on the variable of primary interest
involved in two bivariate Pareto distributions with joint pdfs h1(x, y) and h2(x, y) by
the BLUE of θ2 based on concomitants of order statistics of the pooled sample of a
first sample of size n1 drawn from h1(x, y) and a second sample of size n2 drawn from
h2(x, y) such that n = n1+ n2. They have obtained the variance of their estimate Òθ2 of
θ2 and presented in Table 1 for a1 = 2.5(0.5)3.5, a2 = 3(0.5)4 and for n1 and n2 such that
n = n1 + n2 and 2 ≤ n ≤ 5. We have reproduced those values of Var(Òθ2) in Table 3 so
as to compare our estimate θ∗2 based on i r s s and our estimate θ∗∗2 based on l e i r s s . We

have further computed e1 =
Var(Òθ2)
Var(θ∗2)

and e2 =
Var(Òθ2)
Var(θ∗∗2 )

, relative efficiencies ofθ∗2 andθ∗∗2

relative to the estimator Òθ2 of Veena and Thomas (2015) for a1 = 2.5(0.5)3.5, a2 = 3(0.5)4
and for n1 and n2 such that n = n1+n2 and 2≤ n ≤ 5 and are also presented in Table 3.

REMARK 7. For obtaining the BLUE of θ2, we have assumed that both a1 and a2 are
known in all cases. But in real life situations, these parameters may not be known. The
moment type estimators of a1 and a2 can be used in such situations as known values of those
parameters so that our estimators developed in this paper can be made useful to deal with the
estimation process of θ2. For the Pareto distributions with joint pdf’s h j (x, y) given by (5),

the correlation between X j and Y j is ρ j =
1
a j

, provided a j > 2, j = 1,2. If r j is the sample

correlation coefficient between X and Y observation pairs available in the i r s s and l e i r s s

which arise from j th population, then a moment type estimator for a j is given by ã j =
1
r j

.

Note that for negative values of r1 and r2, ã1 and ã2 are also negative, in which case the
assumption of the model (5) that both a1, a2 > 0 is violated. Moreover, if r j ≥

1
2 , j = 1,2,

then ã j ≤ 2, in which case variances of the Pareto distributions do not exist. Hence, when a1

and a2 are not known, we can make use of the estimators ã j =
1
r j

, provided 0< r j <
1
2 , for

j = 1,2.
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REMARK 8. It is well known that when n is not small, obtaining the means and vari-
ances of V (n1,n2)

[r :n]r for r = 1,2, . . . , n involves a large number of terms in the expansion of

permanent expression of the pdf of V (n1,n2)
[r :n]r and requires evaluation of integrals of several

terms in the expansion which is somewhat cumbersome and hence usually θ∗2 and Var(θ∗2)
are obtained for those n1 and n2 such that n = n1+n2 is small. In spite of this limitation if
one requires more precision on the estimate θ∗2 one may carry out IRSS with k cycles so that
if θ∗2(m) is the BLUE θ∗2 evaluated in the mth cycle for m = 1,2, . . . , k then the required

estimate is θ̃2(m) =
1
k
∑k

m=1θ
∗
2(m) with Var(θ̃2) =

Var(θ∗2)
k

. Clearly one can choose k in

such a manner that the required precision on the estimate is attained.

REMARK 9. Generally when n is not small, obtaining the means and variances of V (n1,n2)
[1:n]r

involves a large number of terms in the expansion of permanent expression of the pdf of
V (n1,n2)
[1:n]r and requires evaluation of integrals of each term which is somewhat cumbersome

and hence usually the estimate θ∗∗2 and Var(θ∗∗2 ) are obtained for those n1 and n2 such that
n = n1 + n2 is small. However, if one requires more precision on the estimate θ∗∗2 one
may carry out LEIRSS with k cycles so that if θ∗∗2 (m) is the BLUE θ∗∗2 evaluated in the

mth cycle for m = 1,2, . . . , k then the required estimate is
˜̃
θ2(m) =

1
k
∑k

m=1θ
∗∗
2 (m) with

Var( ˜̃
θ2) =

Var(θ∗∗2 )
k

. Clearly one can choose k in such a manner that the required precision

on the estimate is attained.
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TABLE 1
Means and variances of the observations in the i r s s arising from two bivariate Pareto distributions
with pdfs g j (u, v) for j = 1,2; a1 = 2.5(0.5)3.5, a2 = 3(0.5)4 and n1, n2 such that n = n1+ n2 and

2≤ n ≤ 5.

n a1 a2 n1 n2 r Mean Variance n a1 a2 n1 n2 r Mean Variance

2 2.5 3.0 1 1 1 1.444 0.469 2 2.5 3.5 1 1 1 1.400 0.373
2 1.722 2.478 2 1.667 2.222

3 2.5 3.0 2 1 1 1.429 0.427 3 2.5 3.5 2 1 1 1.400 0.373
2 1.532 0.717 2 1.500 0.639
3 1.873 3.960 3 1.833 3.750

1 2 1 1.400 0.353 1 2 1 1.353 0.267
2 1.489 0.569 2 1.427 0.422
3 1.778 2.741 3 1.686 2.267

4 2.5 3.0 3 1 1 1.421 0.411 4 2.5 3.5 3 1 1 1.400 0.373
2 1.484 0.562 2 1.462 0.514
3 1.602 0.948 3 1.577 0.879
4 1.993 5.320 4 1.962 5.136

2 2 1 1.364 0.294 2 2 1 1.364 0.294
2 1.415 0.397 2 1.415 0.397
3 1.512 0.662 3 1.512 0.662
4 1.842 3.771 4 1.842 3.771

1 3 1 1.381 0.311 1 3 1 1.333 0.228
2 1.432 0.412 2 1.375 0.297
3 1.526 0.657 3 1.451 0.464
4 1.827 2.993 4 1.708 2.322

5 2.5 3.0 4 1 1 1.417 0.402 5 2.5 3.5 4 1 1 1.400 0.373
2 1.462 0.503 2 1.444 0.469
3 1.532 0.689 3 1.513 0.646
4 1.662 1.166 4 1.641 1.104
5 2.094 6.601 5 2.068 6.434

3 2 1 1.370 0.311 3 2 1 1.370 0.311
2 1.409 0.387 2 1.409 0.387
3 1.470 0.528 3 1.470 0.528
4 1.584 0.893 4 1.584 0.893
5 1.966 5.148 5 1.966 5.148

2 3 1 1.385 0.324 2 3 1 1.345 0.256
2 1.423 0.400 2 1.378 0.314
3 1.483 0.536 3 1.430 0.420
4 1.592 0.875 4 1.527 0.689
5 1.950 4.385 5 1.854 3.801

4 1 1 1.370 0.290 1 4 1 1.323 0.209
2 1.406 0.353 2 1.351 0.251
3 1.460 0.466 3 1.393 0.325
4 1.559 0.739 4 1.471 0.501
5 1.872 3.233 5 1.729 2.380

2 2.5 4 1 1 1 1.364 0.312 2 3 3.5 1 1 1 1.364 0.268
2 1.636 2.151 2 1.546 0.846

3 2.5 4 2 1 1 1.375 0.336 3 3 3.5 2 1 1 1.353 0.249
2 1.477 0.598 2 1.421 0.376
3 1.814 3.702 3 1.626 1.215

1 2 1 1.316 0.214 1 2 1 1.333 0.214
2 1.381 0.338 2 1.394 0.315
3 1.636 2.131 3 1.573 0.944

4 2.5 4 3 1 1 1.381 0.346 4 3 3.5 3 1 1 1.348 0.241
2 1.444 0.485 2 1.390 0.310
3 1.561 0.848 3 1.467 0.471
4 1.948 5.099 4 1.695 1.537

2 2 1 1.333 0.253 2 2 1 1.333 0.216
2 1.382 0.343 2 1.373 0.276
3 1.477 0.593 3 1.443 0.412
4 1.808 3.674 4 1.651 1.292

1 3 1 1.296 0.179 1 3 1 1.320 0.193
2 1.331 0.231 2 1.356 0.244
3 1.397 0.360 3 1.419 0.356
4 1.642 2.128 4 1.605 1.036

Continued on next page
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TABLE 1 - continued from previous page
n a1 a2 n1 n2 r Mean Variance n a1 a2 n1 n2 r Mean Variance

5 2.5 4 4 1 1 1.385 0.352 5 3 3.5 4 1 1 1.345 0.237
2 1.430 0.447 2 1.376 0.284
3 1.499 0.622 3 1.422 0.367
4 1.629 1.078 4 1.505 0.557
5 2.058 6.404 5 1.753 1.829

3 2 1 1.345 0.276 3 2 1 1.333 0.217
2 1.383 0.347 2 1.362 0.260
3 1.442 0.480 3 1.406 0.334
4 1.556 0.835 4 1.483 0.502
5 1.941 5.073 5 1.715 1.602

2 3 1 1.313 0.213 2 3 1 1.323 0.199
2 1.343 0.262 2 1.350 0.237
3 1.390 0.353 3 1.390 0.301
4 1.482 0.597 4 1.462 0.447
5 1.807 3.658 5 1.675 1.367

1 4 1 1.286 0.161 1 4 1 1.313 0.182
2 1.309 0.192 2 1.338 0.215
3 1.344 0.247 3 1.375 0.271
4 1.410 0.380 4 1.441 0.394
5 1.651 2.133 5 1.633 1.122

2 3 4 1 1 1 1.333 0.222 2 3.5 4 1 1 1 1.308 0.172
2 1.500 0.750 2 1.426 0.419

3 3 4 2 1 1 1.333 0.222 3 3.5 4 2 1 1 1.300 0.162
2 1.400 0.340 2 1.349 0.228
3 1.600 1.140 3 1.485 0.564

1 2 1 1.300 0.169 1 2 1 1.286 0.143
2 1.352 0.246 2 1.330 0.198
3 1.514 0.773 3 1.451 0.465

4 3 4 3 1 1 1.333 0.222 4 3.5 4 3 1 1 1.296 0.158
2 1.375 0.288 2 1.327 0.195
3 1.450 0.440 3 1.380 0.275
4 1.675 1.473 4 1.530 0.685

2 2 1 1.308 0.183 2 2 1 1.286 0.144
2 1.344 0.234 2 1.314 0.177
3 1.409 0.351 3 1.364 0.248
4 1.607 1.151 4 1.503 0.60

1 3 1 1.286 0.149 1 3 1 1.276 0.131
2 1.316 0.186 2 1.302 0.160
3 1.369 0.267 3 1.348 0.220
4 1.530 0.800 4 1.474 0.508

5 3 4 4 1 1 1.333 0.222 5 3.5 4 4 1 1 1.294 0.155
2 1.364 0.268 2 1.316 0.181
3 1.409 0.347 3 1.349 0.225
4 1.491 0.530 4 1.407 0.318
5 1.736 1.772 5 1.567 0.793

3 2 1 1.313 0.191 3 2 1 1.286 0.145
2 1.340 0.229 2 1.307 0.168
3 1.381 0.295 3 1.338 0.208
4 1.455 0.447 4 1.392 0.292
5 1.679 1.479 5 1.544 0.715

2 3 1 1.294 0.163 2 3 1 1.278 0.135
2 1.318 0.194 2 1.297 0.156
3 1.354 0.246 3 1.327 0.191
4 1.419 0.365 4 1.378 0.266
5 1.615 1.166 5 1.519 0.633

1 4 1 1.278 0.139 1 4 1 1.270 0.125
2 1.298 0.162 2 1.289 0.144
3 1.329 0.201 3 1.316 0.175
4 1.383 0.287 4 1.364 0.241
5 1.545 0.827 5 1.494 0.548
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TABLE 2
Coefficients bi :n in the BLUE θ∗2 =

∑n
i=1 bi :nY[i :n]i and θ−2

2 Var(θ∗2) based on a the i r s s for some
values of a1, a2 and for n1 and n2 such that n = n1+ n2 and 2≤ n ≤ 5.

n a1 a2 n1 n2 b1 b2 b3 b4 b5
Var(θ∗2)
θ2

2
2 2.5 3.0 1 1 0.546 0.123 0.177
3 2.5 3.0 2 1 0.374 0.239 0.053 0.112

1 2 0.374 0.247 0.061 0.094
4 2.5 3.0 3 1 0.281 0.215 0.138 0.030 0.081

2 2 0.295 0.227 0.145 0.031 0.064
1 3 0.282 0.221 0.147 0.039 0.063

5 2.5 3.0 4 1 0.225 0.185 0.142 0.091 0.020 0.064
3 2 0.234 0.193 0.148 0.094 0.020 0.053
2 3 0.226 0.189 0.147 0.097 0.024 0.053
1 4 0.225 0.189 0.149 0.100 0.028 0.048

2 2.5 3.5 1 1 0.577 0.115 0.154
3 2.5 3.5 2 1 0.388 0.243 0.051 0.103

1 2 0.392 0.261 0.057 0.077
4 2.5 3.5 3 1 0.289 0.219 0.138 0.029 0.077

2 2 0.295 0.227 0.145 0.031 0.064
1 3 0.293 0.232 0.157 0.037 0.050

5 2.5 3.5 4 1 0.229 0.188 0.143 0.091 0.020 0.061
3 2 0.234 0.193 0.148 0.094 0.020 0.053
2 3 0.236 0.197 0.153 0.100 0.022 0.045
1 4 0.233 0.198 0.158 0.108 0.027 0.037

2 2.5 4.0 1 1 0.607 0.106 0.139
3 2.5 4.0 2 1 0.403 0.243 0.048 0.098

1 2 0.410 0.273 0.051 0.067
4 2.5 4.0 3 1 0.297 0.222 0.137 0.028 0.075

2 2 0.307 0.234 0.145 0.029 0.058
1 3 0.305 0.242 0.163 0.033 0.042

5 2.5 4.0 4 1 0.235 0.191 0.144 0.090 0.019 0.060
3 2 0.243 0.199 0.150 0.093 0.019 0.050
2 3 0.246 0.205 0.158 0.099 0.020 0.040
1 4 0.242 0.206 0.165 0.112 0.023 0.030

2 3.0 3.5 1 1 0.523 0.187 0.103
3 3.0 3.5 2 1 0.365 0.254 0.090 0.067

1 2 0.364 0.259 0.097 0.058
4 3.0 3.5 3 1 0.277 0.222 0.154 0.055 0.049

2 2 0.278 0.224 0.158 0.058 0.045
1 3 0.277 0.225 0.161 0.063 0.041

5 3.0 3.5 4 1 0.222 0.189 0.152 0.106 0.038 0.039
3 2 0.223 0.191 0.153 0.108 0.039 0.036
2 3 0.223 0.192 0.155 0.110 0.041 0.034
1 4 0.232 0.178 0.145 0.105 0.042 0.029

2 3.0 4.0 1 1 0.545 0.182 0.091
3 3.0 4.0 2 1 0.375 0.257 0.088 0.062

1 2 0.377 0.270 0.096 0.049
4 3.0 4.0 3 1 0.282 0.225 0.155 0.054 0.047

2 2 0.286 0.230 0.161 0.056 0.040
1 3 0.284 0.233 0.169 0.063 0.033

5 3.0 4.0 4 1 0.226 0.192 0.153 0.106 0.037 0.038
3 2 0.229 0.195 0.156 0.109 0.038 0.033
2 3 0.230 0.198 0.160 0.113 0.040 0.029
1 4 0.227 0.198 0.163 0.119 0.046 0.025

2 3.5 4.0 1 1 0.514 0.230 0.068
3 3.5 4.0 2 1 0.360 0.265 0.118 0.045

1 2 0.359 0.269 0.125 0.040
4 3.5 4.0 3 1 0.274 0.227 0.167 0.074 0.033

2 2 0.275 0.228 0.170 0.077 0.031
1 3 0.274 0.230 0.172 0.082 0.028

5 3.5 4.0 4 1 0.221 0.192 0.159 0.117 0.052 0.026
3 2 0.221 0.193 0.160 0.119 0.054 0.025
2 3 0.221 0.194 0.162 0.121 0.056 0.023
1 4 0.220 0.194 0.163 0.123 0.059 0.022
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TABLE 3
Variances of θ∗∗2 and θ̂2, efficiencies e1 of θ∗2 relative to θ̂2 and e2 of θ∗∗2 relative to θ̂2 for some values

of a1, a2 and for n1 and n2 such that n = n1+ n2 and 2≤ n ≤ 5.

n a1 a2 n1 n2
Var(θ∗∗2 )
θ2

2

Var(θ̂2)
θ2

2

e1 e2

2 2.5 3.0 1 1 0.112 0.179 1.009 1.591
3 2.5 3.0 2 1 0.070 0.114 1.016 1.629

1 2 0.060 0.096 1.015 1.594
4 2.5 3.0 3 1 0.051 0.083 1.020 1.631

2 2 0.040 0.074 1.159 1.863
1 3 0.041 0.065 1.018 1.583

5 2.5 3.0 4 1 0.040 0.065 1.023 1.628
3 2 0.033 0.060 1.123 1.801
2 3 0.034 0.054 1.020 1.599
1 4 0.031 0.049 1.020 1.574

2 2.5 3.5 1 1 0.095 0.154 1.000 1.615
3 2.5 3.5 2 1 0.063 0.104 1.006 1.640

1 2 0.049 0.077 1.003 1.595
4 2.5 3.5 3 1 0.048 0.078 1.012 1.637

2 2 0.040 0.064 1.006 1.616
1 3 0.032 0.050 1.006 1.571

5 2.5 3.5 4 1 0.038 0.062 1.016 1.632
3 2 0.033 0.054 1.009 1.619
2 3 0.028 0.045 1.006 1.595
1 4 0.024 0.037 1.008 1.553

2 2.5 4.0 1 1 0.084 0.138 0.991 1.640
3 2.5 4.0 2 1 0.059 0.098 0.997 1.656

1 2 0.041 0.066 0.991 1.605
4 2.5 4.0 3 1 0.045 0.075 1.003 1.648

2 2 0.036 0.058 0.993 1.628
1 3 0.027 0.042 0.994 1.573

5 2.5 4.0 4 1 0.037 0.060 1.009 1.640
3 2 0.031 0.050 0.997 1.630
2 3 0.025 0.040 0.992 1.603
1 4 0.019 0.030 0.996 1.550

2 3.0 3.5 1 1 0.072 0.104 1.009 1.440
3 3.0 3.5 2 1 0.045 0.068 1.015 1.503

1 2 0.040 0.059 1.014 1.478
4 3.0 3.5 3 1 0.033 0.050 1.019 1.521

2 2 0.030 0.046 1.017 1.506
1 3 0.028 0.041 1.017 1.485

5 3.0 3.5 4 1 0.026 0.040 1.021 1.527
3 2 0.024 0.037 1.019 1.517
2 3 0.023 0.034 1.018 1.504
1 4 0.017 0.031 1.096 1.877

2 3.0 4.0 1 1 0.063 0.091 1.000 1.455
3 3.0 4.0 2 1 0.042 0.063 1.007 1.510

1 2 0.033 0.049 1.003 1.475
4 3.0 4.0 3 1 0.031 0.048 1.012 1.524

2 2 0.027 0.040 1.006 1.507
1 3 0.022 0.033 1.006 1.471

5 3.0 4.0 4 1 0.025 0.038 1.016 1.530
3 2 0.022 0.034 1.010 1.518
2 3 0.020 0.029 1.007 1.499
1 4 0.017 0.025 1.009 1.466

2 3.5 4.0 1 1 0.050 0.068 1.008 1.355
3 3.5 4.0 2 1 0.032 0.045 1.014 1.422

1 2 0.029 0.040 1.013 1.403
4 3.5 4.0 3 1 0.023 0.034 1.017 1.445

2 2 0.022 0.031 1.015 1.433
1 3 0.020 0.029 1.015 1.417

5 3.5 4.0 4 1 0.019 0.038 1.445 2.064
3 2 0.018 0.025 1.017 1.446
2 3 0.016 0.024 1.016 1.436
1 4 0.016 0.022 1.017 1.423
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From Table 2, it can be observed that for each fixed pair of (a1,a2) and for each value
of n, θ−2

2 Var(θ∗2) decreases as n2 increases. From Table 3, it is seen that the efficiency e1 of

θ∗2 relative to Òθ2 is more than 1 for all pairs (n1, n2) except for the case with a1 = 2.5,a2 =
4. However for this case also the relative efficiency e1 is very close to 1. Thus the relative
efficiency e1 of the BLUE θ∗2 based on i r s s is either very close to 1 or more than 1 for all
values of n = n1+ n2 tried in this paper. However, it may be noted that, the efficiency
e2 of θ∗∗2 relative to Òθ2 is always greater than 1 and it is uniformly and significantly larger
than e1 for every pair of values of (a1,a2) and for all values of n. Hence, the the BLUE
θ∗∗2 of θ2 based on the l e i r s s is relatively more efficient than the estimator Òθ2 due to
Veena and Thomas (2015) and the estimator θ∗2 based on the observations of i r s s .

4. APPLICATION OF THE RESULTS BY A REAL LIFE DATA

In Kerala, one of the southern states of India, students with low parental income are
given some percentage of reservation for admission in various under-graduate and post-
graduate programmes of the colleges. In addition to this, students admitted in colleges
are eligible for some scholarships based on their low parental income. So in some cases,
students have the tendency to under-report their parental income for getting admission
in reservation quota or for getting scholarship. However, one may use the reported in-
come as an auxiliary variable in ranking the units of any selected set of units so that units
selected based on the assigned ranks can be subjected for further scrutiny in determining
the correct income. In particular we devote this section to illustrate the results devel-
oped in Section 3 for using IRSS and LEIRSS and estimating the common parameter
θ2 associated with the variable Y of primary interest involved in two bivariate Pareto
distributions.

In Kerala’s social set-up, it is observed that mostly students from educated families
choose science subjects for their higher study so that more accuracy is experienced on
the reported annual parental income of those students than the reported annual parental
income of students admitted in humanity subjects. Hence if we write (X ,Y ) to denote
a bivariate random variable where X is the (auxiliary) variable representing reported
annual parental income and Y is the variable representing actual annual parental income,
then we may expect the population distribution of (X ,Y ) of the students of Science
and humanities as two bivariate Pareto distributions h1(x, y) and h2(x, y) which are as
defined in (5). Since the reporting accuracy of the science and humanity students vary
significantly, θ11 and θ12 may be different. However, both set of students with respect
to the marginal random variable Y on actual annual parental income may be identical
as it remains untampered. Hence there is justification for retaining the same threshold
parameterθ2 for the distribution of the component random variable Y . Thus the theory
developed in Section 3 can be used as such for estimating θ2 efficiently.

Thus for illustration we consider the students admitted for post-graduate courses
during 2015-’16 in the University College, Trivandrum, one of the premier higher edu-
cation institutions in Kerala. The ratio of post-graduate courses in science and humanity
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streams in the college is observed to be 1:2. This makes us to propose IRSS and LEIRSS
for n1 = 2 and n2 = 4 with n = 6 and by three cycles. As indicated in Definition 1
for each cycle we select 6 sets each with six units comprising of two science students
and 4 humanity students, note down the reported annual parental income to order the
units of each set in a cycle and then order the units based on the noted annual parental
income in the i r s s . We then meet personally the selected students, quizzed them and
thereby obtained a more closer value of their annual parental income. The reported an-
nual parental income and a closer estimate of the actual annual parental income of the
selected students under IRSS in the three cycles are presented in Table 4.

TABLE 4
Reported annual parental income (Rs. in hundreds) and the closer estimate of actual annual parental

income (Rs. in hundreds) of students selected under IRSS.

Cycle 1
r 1 2 3 4 5 6

X(r :6)r 36 180 60 180 840 240
Y[r :6]r 96 960 120 600 1080 4200

Cycle 2
r 1 2 3 4 5 6

X(r :6)r 36 36 72 85.8 360 2520
Y[r :6]r 60 1560 672 216 2520 4320

Cycle 3
r 1 2 3 4 5 6

X(r :6)r 36 72 60 180 480 324
Y[r :6]r 240 720 240 780 757.8 6480

We have again identified students in each set with lowest reported annual parental
income, made a personal interview and thereby obtained a closer estimate of the actual
annual income of their parents. The reported and actual annual parental incomes of the
selected students in the l e i r s s with n1 = 2, n2 = 4 and n = 6 for each of the k = 3 cycles
are given in Table 5.



Induced Ranked Set Sampling from Several Populations 75

TABLE 5
Reported annual parental income and the closer estimate of actual annual parental income of

students selected under LEIRSS.

Cycle 1
r 1 2 3 4 5 6

X(1:6)r 36 72 36 72 36 36
Y[1:6]r 96 3600 480 96 180 240

Cycle 2
r 1 2 3 4 5 6

X(1:6)r 36 36 48 18 120 54
Y[1:6]r 60 156 168 120 216 6000

Cycle 3
r 1 2 3 4 5 6

X(1:6)r 36 42 36 36 24 36
Y[1:6]r 240 1680 96 240 360 174

In order to apply the results of Section 3, we need the values of parameters a1 and
a2. The distinct pairs of the reported annual parental income X and closer estimate of
the actual annual parental income Y of the science students in the i r s s and l e i r s s are
identified as (180,600), (240,4200), (36,60), (72,672), (72,720), (180,780), (480,757.8),
(324,6480), (36,96) and the Pearson correlation coefficient r1 between X and Y based on
these bivariate observations is obtained as r1 = 0.4676. Then a moment type estimator

of a1 is given by â1 =
1
r1
= 2.14. The correlation coefficient (r2) between X and Y based

on the remaining 24 distinct pairs of the reported parental income and closer estimate of
the actual parental income of the humanity students in the i r s s and l e i r s s is obtained

as r2 = 0.4254 and hence the moment type estimator of a2 is given by â2 =
1
r2
= 2.35.

If the parent bivariate distribution is h1(x, y) then from (5) we have

µ1 = E(Y1) =
a1

a1− 1
θ2. (23)

Similarly, from h2(x, y) as defined in (5) we have

µ2 = E(Y2) =
a2

a2− 1
θ2. (24)

Thus in order to estimate µ1 and µ2, the mean actual annual parental income of stu-
dents of science and humanity streams, we may use the estimates â1 = 2.14 and â2 = 2.35
in (23) and (24) respectively. To obtain an estimate θ∗2 of θ2 based on the i r s s obser-
vations Y[r :n]r , r = 1,2, . . . , 6, we have obtained the coefficients br :6, r = 1,2, . . . , 6 in
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the BLUE θ∗2 =
∑6

r=1 br :6Y[r :6]r based on a single cycle and these coefficients in or-
der are 0.18695, 0.15811, 0.12764, 0.09466, 0.05712, 0.00608. The Var(θ∗2) is obtained
as Var (θ∗2) = 0.07409θ2

2. Then using the i r s s observations given in Table 4 and the
above coefficients we obtain the estimates θ∗2(1) = 32907, θ∗2(2) = 53430, θ∗2(3) = 34586
in cycles 1, 2 and 3 respectively. Then from Remark 8 we obtain the estimate θ̃2 =
Rs.40,308 with Var (θ̃2) = 0.02470θ2

2. Using this value of θ̃2 and â1 = 2.14 in (23) we
obtain a modified version of the moment type estimate of µ1 as µ̂1 = Rs.75,666 with
Var (µ̂1) ' 0.08705θ2

2. Similarly, using â2 = 2.35 and θ̃2 = Rs.40,308 in (24) we ob-
tain the modified version of the moment type estimate of µ2 as µ̂2 = Rs.70,164 with
Var (µ̂2)' 0.07484θ2

2.

Since LEIRSS provides more efficient estimate on θ2, we compute ξ (2,4)
[1:6]1 = 1.47319

and η(2,4)
[1:6]1 = 0.58385. Using these computed values and the observations of l e i r s s given

in Table 5 in (21) and (22) to obtain θ∗∗2 (1) = 53082, θ∗∗2 (2) = 76026, θ∗∗2 (3) = 31564 in
cycles 1, 2 and 3 respectively. The Var(θ∗∗2 ) is obtained as Var (θ∗∗2 ) = 0.04484θ2

2. Con-

sequently, by Remark 9, a better estimate
˜̃
θ2 = Rs.53557 is obtained with Var (θ̃2) =

0.01495θ2
2. Thus on using â1 = 2.14 and

˜̃
θ2 = Rs.53557 in (23) we obtain a better esti-

mate ˆ̂µ1 of µ1 as ˆ̂µ1 =Rs.1,00,537 with Var ( ˆ̂µ1)' 0.05268θ2
2. Similarly on using â2 =

2.35 and
˜̃
θ2 =Rs.67223 in (24) we obtain ˆ̂µ2 =Rs.93,229 with Var ( ˆ̂µ2)' 0.04530θ2

2.
Finally, for making a comparison between the actual average annual parental income

and the reported annual parental income, we find the average X̄1 of all the 36 available X -
observations of the science students and X̄2 of all the 72 available X -observations of the
humanity students. These are obtained a X̄1 =Rs.82,745 and X̄2 =Rs.50,533. Clearly,

among the estimates µ̂1 and ˆ̂µ1 of µ1, the most efficient estimate is ˆ̂µ1 = Rs . 1, 00,537,
which is more than 1.2 times the estimate of average reported parental income of the
science students. Similarly, among the estimates µ̂2 and ˆ̂µ2 of µ2, the most efficient

estimate is ˆ̂µ2 = Rs . 93,229, which is more than 1.8 times the estimate of the average
reported parental income of the humanity students.

We can apply the IRSS and LEIRSS procedures to many similar instances to deal
with the estimation problems more efficiently. For example, this methodology can be
even used to assess the loss of income tax revenue of governments due to under-reporting
of incomes from other sources based on assignment of ranks on people in selected sets
based on their salary income.
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SUMMARY

The method of ranked set sampling when units are to be inducted from several bivariate popu-
lations is introduced in this work. The best linear unbiased estimation of a common threshold
parameter of two bivariate Pareto distributions is discussed based on the n ranked set observa-
tions, when a sample of size n1 is drawn from a bivariate Pareto population with shape parameter
a1 and a sample of size n2 is drawn from another bivariate Pareto with shape parameter a2 such
that n = n1+ n2. The application of the results of this paper is illustrated with a real life data.

Keywords: Best linear unbiased estimator; Bivariate Pareto distribution; Concomitants of order
statistics; Ranked set sampling.


