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1. INTRODUCTION

The normal distribution is the basis of many statistical works and it enjoys a unique po-
sition in probability theory. It is an unavoidable tool for the analysis and interpretation
of data. In many practical applications it has been observed that real life data sets are
not symmetric. They exhibit some skewness, therefore do not conform to the normal
distribution, which is popular and easy to be handled. Azzalini (1985) introduced a new
class of distributions namely “the skew normal distribution”, which is mathematically
tractable and includes the normal distribution as a special case. This family of distri-
butions is well known for modeling and analyzing skewed data. This distribution has
been developed via standard normal probability density function (p.d.f) and cumulative
distribution function (c.d.f) through adding a shape parameter to regulate skewness, so
as to have more flexibility in fitting real life data sets.

Let f (.) and F (.) be the p.d.f and c.d.f of a standard normal variate. Then a ran-
dom variable X is said to follow the skew normal distribution with parameter λ ∈ R=
(−∞,∞) if its probability density function (p.d.f.) h (x;λ) is of the following form.
For x ∈ R,

h (x;λ) = 2 f (x)F (λx) , (1)

hereafter, we denoted a distribution with p.d.f. (1) as SN D(λ). This distribution has
been studied by several authors such as Azzalini (1986), Henze (1986), Liseo (1990),
Azzalini and Dalla Valle (1996), Branco and Dey (2001), Genton et al. (2001), Loperfido
(2001), Gupta and Kollo (2003), Loperfido (2004), Genton (2004), Genton and Loperfido
(2005), Lachos et al. (2007), Gupta et al. (2007), Kim (2008), Wang et al. (2009) and Kumar
and Anusree (2011, 2013, 2014a,b).

1 Corresponding Author. E-mail: drcsatheesh@gmail.com
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The normal and skew normal models are not adequate to describe the situations
of plurimodality. To overcome this drawback Kumar and Anusree (2011) considered a
new class of generalized skew normal distribution as a generalized mixture of standard
normal and skew normal distributions through the following p.d.f in which x ∈ R,
λ ∈ R and α >−1.

h1(x;λ,α) =
2

α+ 2
f (x) [1+αF (λx)] . (2)

The distribution given in (2) they termed as generalized mixture of standard normal
and skew normal distributions (GM N SN (α,λ)). Clearly GM N SN (−1, λ) is SN (−λ).
In order to develop a more flexible plurimodal asymmetric normal distribution, through
the present paper we consider a generalized version of the skew normal distribution of
Kumar and Anusree (2011) which we call “the generalized asymmetric normal distribu-
tion (GAND)”.

The organization of the paper is as follows. In Section 2 we present the definition
and some properties of the GAND. In Section 3 certain reliability measures such as re-
liability function, failure rate, and mean residual life function are derived and condition
for unimodal and plurimodal situations are obtained. In Section 4 a location scale exten-
sion of the GAND is proposed and derive its important properties such as characteristic
function, mean, variance, measure of skewness and kurtosis, reliability measures etc.
Further in Section 5 we discuss the maximum likelihood estimation of the parameters
of extended GAND and a real life application of the distribution is considered in Section
6.

2. THE GENERALIZED ASYMMETRIC NORMAL DISTRIBUTION

Here we define a new class of generalized skew normal distribution and derive some of
its important properties.

DEFINITION 1. A random variable X is said to have a generalized asymmetric normal
distribution if its p.d.f is of the following form, in which x ∈ R, λ,β,∈ R and α >−1.

g (x;α,λ,β) =
f (x)
α+ 2

h

2+α[F (β)]−1F (λx +β
p

1+λ2)
i

. (3)

Here f(.) and F(.) are p.d.f and c.d.f of standard normal variate. A distribution with
p.d.f (3) we denoted as GAND(α,λ,β). Note that when β = 0 GAND(α,λ,β) reduces to
skew normal distribution of Kumar and Anusree (2011).

For some particular choices of α,λ and β the p.d.f. given in (3) of GAND(α,λ, β)
is plotted in Figures 1 and 2.

RESULT 1. If X has GAND(α,λ,β) then Y1 =−X has GAND(α,−λ,β).
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Figure 1 – Probability plots of GAND(α,λ,β) for fixed values of λ and various values of α andβ.
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Figure 2 – Probability plots of GAND(α,λ,β) for fixed values of λ and various values of α andβ.
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PROOF. The p.d.f g1(y1) of Y1 is

g1(y1) = g (−y1;α,λ,β)| d x
d y1
|

=
f (−y1)
α+ 2

h

2+α[F (β)]−1F (−λy1+β
p

1+λ2)
i

= g (y1;α,−λ,β),

since f (.) is the p.d.f. of standard normal variate. Hence Y1 follows GAND(α,−λ,β).
2

RESULT 2. If X has GAND(α,λ,β) then Y2 = X 2 has a p.d.f (4) in which ∆(y) =
F (λy +β

p
1+λ2)+ F (−λy +β

p
1+λ2).

PROOF. The p.d.f. g2(y2) of Y2 =X 2 is the following, for y2 > 0.

g2(y2) = g (
p

y2,α,λ,β)| d x
d y2
|+ g (−py2,α,λ,β)| d x

d y2
|

=
f (py2)
α+ 2

h

2+α[F (β)]−1F (λ
p

y2+β
p

1+λ2)
i 1

2py2
+

f (−py2)
α+ 2

h

2+α[F (β)]−1F (−λpy2+β
p

1+λ2)
i 1

2py2

=
f (py2)

2(α+ 2)py2

h

4+α[F (β)]−1
n

F (λ
p

y2+β
p

1+λ2)

+F (−λpy2+β
p

1+λ2)
oi

=
�

f (py2)
2py2

�

1
(α+ 2)

�

4+α[F (β)]−1∆(
p

y2)
�

. (4)

2

RESULT 3. If X has GAND(α,λ,β) then Y3 = |X | has a p.d.f (5) in which ∆(y) as
defined in Result 2.
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PROOF. For x > 0, the p.d.f of g3(x) of Y3 is

g3(y3) = g (y3;α,λ,β)| d x
d y3
|+ g (−y3;α,λ,β)| d x

d y3
|

=
f (y3)
α+ 2

h

2+α[F (β)]−1F (λy3+β
p

1+λ2)
i

+

f (−y3)
α+ 2

h

2+α[F (β)]−1F (−λy3+β
p

1+λ2)
i

=
f (y3)
α+ 2

h

4+α[F (β)]−1
n

F (λy3+β
p

1+λ2)+ F (−λy3+β
p

1+λ2)
oi

=
f (y3)
α+ 2

�

4+α[F (β)]−1∆(y3)
�

. (5)

2

RESULT 4. The cumulative distribution function (c.d.f) G(x) of GAND(α,λ,β) with
p.d.f (3) is the following, for x ∈ R

G (x) =
F (x)
α+ 2

h

2+
α

2
[F (β)]−1

i

−
α[F (β)]−1

α+ 2
ξβ(x,λ), (6)

where ξβ(x,λ) =
∫∞

x

∫ λx+β
p
(1+λ2)

0 f (t ) f (u)d ud t , which can be evaluated using the soft-
ware MATHCAD.

PROOF.

G(x) =
∫ x

−∞
g (t ;α,λ,β)d t

=
2

α+ 2
F (x)+

α[F (β)]−1

α+ 2





F (x)
2
−
∫ ∞

x

∫ λx+β
p

1+λ2

0
f (t ) f (u)d ud t





=
F (x)
α+ 2

h

2+
α

2
[F (β)]−1

i

−
α[F (β)]−1

α+ 2
ξβ(x,λ).

2

Now we derive the characteristic function of GAND(α,λ,β) and we need the fol-
lowing lemma.

LEMMA 2. Ellison (1964). For a standard normal random variable X with distribution
function F we have the following for all a, b ∈ R

E {F (aX + b )}= F
�

b
p

1+ a2

�

.
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RESULT 5. The characteristic function φX (t ) of GAND(α,λ,β) with p.d.f (3) is the
following, for t ∈ R and i =

p
−1

φX (t ) =
e
−t2

2

α+ 2

�

2+α[F (β)]−1F (δ i t +β)
�

, (7)

where δ = λp
1+λ2

.

PROOF. Let X follows GAND(α,λ,β) with p.d.f (3). Then by the definition of
characteristic function, we have the following for any t ∈ R and i =

p
−1

φX (t ) = E(e i tX )

=
2

α+ 2

∫ ∞

−∞
e i t x f (x)d x +

α[F (β)]−1

α+ 2

∫ ∞

−∞
e i t x f (x)F (λx +β

p

1+λ2)d x

=
1

α+ 2
e
−t2

2

�

2+α[F (β)]−1
∫ ∞

−∞

1
p

2π
e
−(x−i t )2

2 F (λx +β
p

1+λ2)d x
�

.

(8)

On substituting x − i t = u, in (8) we obtain

φX (t ) =
e
−t2

2

α+ 2

�

2+α[F (β)]−1F (δ i t +β)
�

,

which implies (7) in the light of Lemma 2. 2

RESULT 6. The nth raw moment µ
′

n of GAN D(α,λ,β) with p.d.f (3) is the following,
for n ≥ 0

µ
′

n =
1

α+ 2
ξr +

α[F (β)]−1

α+ 2

n
∑

r=0

�

n
r

�

ξrϕn−r , (9)

where for r = 0,1,2, ..., n

ξr =







0, if r is odd
(−1)

r
2 r !

( r
2 )!2

r
2

, if r is even

ϕr =











(δ i)r (−1)
r−1

2 (r−1)!βr−1 f (β)

( r−1
2 )!2

r−1
2

, if r is odd

(δ i)r (−1)
r
2 (r−1)!βr−1 f (β)

2
r
2 −1

, if r is even.
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PROOF. The characteristic function of GAN D(α,λ,β) can be written as

φX (t ) =
2

α+ 2
I (t )+

α[F (β)]−1

α+ 2
I (t )J (t ), (10)

in which I (t ) = e−
t2

2 and J (t ) = F (δ i t +β) on differentiating (10) with respect to t , n
times and putting t = 0 we get the nt h moment of X as

µ
′

n =
�

2
α+ 2

I r (t )+
α[F (β)]−1

α+ 2

n
∑

r=0

I r (t )J n−r (t )
�

t=0

, (11)

in which I r (t ) and J n−r (t ) respectively denote the r t h and (n− r )t h derivative of I (t )
and J (t ) which are obtained as

I (r )(t ) =
[ r

2 ]
∑

j=0

(−1)r− j t r−2 j r !e−
t2

2

j !2 j (r − 2 j )!
(12)

and

J (r )(t ) =
[ r−1

2 ]
∑

k=0

(δ i t +β)r−2k−1(−1)r−k−1(r − 1)! f (δ i t +β)(δ i)r

k!(r − 2k − 1)!2k
. (13)

If we put t = 0 in (12) and (13) and using the notation ξr = I (r )(0) and ϕn−r =
J (n−r )(0) we get (9) from (11). 2

Using Result 6 we prove the following.

RESULT 7. The mean and variance of GAND(α,λ,β) with p.d.f (3) is given by

Mean=
α

α+ 2
.
δ f (β)
F (β)

,

Variance=
−αδβ f (β)
(α+ 2)F (β)

+ 1−
α2δ2[ f (β)]2

(α+ 2)2[F (β)]2
.

RESULT 8. The measure of skewness(γ1) and measure of kurtosis (γ2) of GAND(α,λ,β)
with p.d.f (3) are respectively given by

γ1 =
(−δ2d +δ2dβ2+ 3βd 2δ + 2d 3)2

(−βd + 1− d 2)3

and

γ2 =
3+δ3βd −δ3β3d − 6βδd − 4δ2β2d 2+ 4δ2d 2− 6d 2− 6δβd 3− 3d 4

(−βd + 1− d 2)3
,

where d = α
α+2

δ f (β)
F (β) .
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3. RELIABILITY MEASURES AND MODE

Here we investigate some properties of GAND(α,λ,β) with p.d.f. (3) useful in reliabil-
ity studies.

Let X follows GAND(α,λ,β) with p.d.f (3). Now from the definition of reliability
function R(t ), failure rate r (t ) and mean residual life function µ(t ) of X we obtain the
following results.

RESULT 9. The reliability function R(t ) of X is the following, in which ξβ(x,λ) =
∫∞

x

∫ λx+β
p
(1+λ2)

0 f (t ) f (u)d ud t is as defined in Result 4

R (t ) =
1

α+ 2
[1− F (t )]

�

2+
α[F (β)]−1

2

�

+
α[F (β)]−1

α+ 2
ξβ(t ,λ).

RESULT 10. The failure rate r (t ) of X is given by

r (t ) =
f (t )

�

2+α[F (β)]−1F (λt +β
p

1+λ2)
�

(1− F (t ))
�

2+ α[F (β)]−1

2

�

+α[F (β)]−1ξβ(t ,λ)
.

RESULT 11. The mean residual life function of GAND(α,λ,β) is

µ(t ) =
1

(α+ 2)R(t )







1
p

2π



2e
−t2

2 +
αλ[F (β)]−1e

−β2

2

p
1+λ2





+α[F (β)]−1F (λt +β
p

1+λ2) f (t )

−
αλ[F (β)]−1

p
2π
p

1+λ2
e
−β2

2 F
�

p

1+λ2(t +
λβ

p
1+λ2

)
��

− t .

(14)

PROOF. By definition, the mean residual life function (MRLF) of X is given by

µ(t ) = E(X − t/X > t )
= E(X /X > t )− t ,

where

E(X /X > t ) =
1

(α+ 2)R(t )

∫ ∞

t
x f (x)d x +

α[F (β)]−1

(α+ 2)R(t )
∫ ∞

t
x f (x)F (λx +β

p

1+λ2)d x

=
1

(α+ 2)R(t )
[I1+α[F (β)]

−1I2], (15)
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where

I1 =
∫ ∞

t
x f (x)d x

=
e
−t2

2

p
2π

(16)

I2 =
∫ ∞

t
x f (x)F (λx +β

p

1+λ2)d x

= −
∫ ∞

t
f
′
(x)F (λx +β

p

1+λ2)d x

= F (λt +β
p

1+λ2) f (t )+λ
∫ ∞

t
f (λx +β

p

1+λ2) f (x)d x

= F
�

λt +β
p

1+λ2
�

f (t )+
λ

p
2π
p

1+λ2
e
−β2

2

�

1− F
�

p

1+λ2

�

t +
λβ

p
1+λ2

���

. (17)

Now by applying (16) and (17) in (15), we get (14). The functions R(t ), r (t ), and
µ(t ) are equivalent in the sense that if one of them is given the other two can be uniquely
determined. 2

REMARK 3. GAN D(α,λ,β) has increasing failure rate for all α and λ and hence de-
creasing mean residual life.

RESULT 12. Case 1: For x > 0 the p.d.f of GAN D(α,λ,β) is log concave

(i) if λ > 0 provided either α≥ 0 and β≥ 0 or α < 0 and β< 0 and

(ii) if λ < 0 provided |A1+A2|< |1+A3|,

where A1,A2 and A3 are as defined in (18), (19) and (20).
Case 2: For x < 0 the p.d.f of GAN D(α,λ,β) is log concave

(i) if λ < 0 provided either α≥ 0 and β≥ 0 or α < 0 and β< 0 and

(ii) if λ < 0 provided |A1+A2|< |1+A3|.

PROOF. To establish log[g (x;α,λ,β)] is a concave function of x, it is enough to
show that its second derivative is negative for all x. Then

d
d x
{l o g [g (x;α,λ,β)]}=−x +

αλ[F (β)]−1 f (λx +β
p

1+λ2)

2+α[F (β)]−1F (λx +β
p

1+λ2)
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and

d 2

d x2
{log[g (x;α,λ,β)]}=−1−∆(x;α,λ,β),

in which

∆(x;α,λ,β) =
αλ2[F (β)]−1 f (λx +β

p
1+λ2)

2+α[F (β)]−1F (λx +β
p

1+λ2)
{λx +β

p

1+λ2+

α[F (β)]−1 f (λx +β
p

1+λ2)

2+α[F (β)]−1F (λx +β
p

1+λ2)
}

= A1+A2+A3,

where

A1 =
λ3xα[F (β)]−1 f (λx +β

p
1+λ2)

2+α[F (β)]−1F (λx +β
p

1+λ2)
(18)

A2 =
αβ
p

1+λ2−λ2[F (β)]−1 f (λx +β
p

1+λ2)

2+α[F (β)]−1F (λx +β
p

1+λ2)
(19)

A3 =
α2λ2[F (β)]−2[ f (λx +β

p
1+λ2)]2

[2+α[F (β)]−1F (λx +β
p

1+λ2)]2
. (20)

Note that f (λx +β
p

1+λ2) and F (λx +β
p

1+λ2) are positive for all x ∈ R and
hence A1 > 0 for x > 0, α > 0 or x < 0, α < 0 and A2 > 0 for α,β > 0 or < 0. Clearly
A3 > 0 for all values of α,β,λ > 0. Also 2+α[F (β)]−1F (λx+β

p
1+λ2) is positive for

all values of α,β and λ . Further, if A1 > 0,A2,A3 > 0 then∆(x;α,λ,β)> 0. 2

As a consequence of Result 12, we have the following results regarding the unimodal-
ity and plurimodality of the GAN D(α,λ,β).

RESULT 13. GAND(α,λ,β) density is strongly unimodal under the following two cases.
Case 1: For x > 0

(i) if λ > 0 provided either α≥ 0 and β≥ 0
or α < 0 and β< 0 and

(ii) if λ < 0 provided |A1+A2|< |1+A3|.

Case 2: For x < 0

(i) if λ < 0 provided either α≥ 0 and β≥ 0 or α < 0 and β< 0 and
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(ii) if λ < 0 provided |A1+A2|< |1+A3|.

REMARK 4. GAND(α,λ,β) density is plurimodal under the following two cases.
Case 1: For x > 0

(i) if λ > 0 provided either α≥ 0 and β< 0
or α < 0 and β> 0 and

(ii) if λ < 0 provided |A1+A2|> |1+A3|.

Case 2: For x < 0

(i) if λ < 0 provided either α≥ 0 and β< 0 or α < 0 and β> 0 and

(ii) if λ < 0 provided |A1+A2|> |1+A3|.

4. LOCATION SCALE EXTENSION

In this section we discuss an extended form of GAND(α,λ,β) by introducing the loca-
tion parameter µ and scale parameter σ .

DEFINITION 5. Let X ∼GAN D(α,λ,β) with p.d.f given in (3). Then Y =µ+σX
is said to have an extended GAND with µ,σ ,λ,β and α with the following p.d.f

g ∗(y,µ,σ ;α,λ,β) =
1

σ(α+ 2)
f
�

y −µ
σ

�

�

2+α[F (β)]−1F
�

λ

�

y −µ
σ

�

+β
p

1+λ2

��

, (21)

in which y ∈ R, µ ∈ R, λ ∈ R, β ∈ R, σ > 0 and α > −1. A distribution with p.d.f
(21) is denoted as EGAND(µ,σ ;α,λ,β). Clearly when α = 0 and/ or when λ= 0 and
β= 0, EGAND(µ,σ ;α,λ,β) reduces to N (µ,σ2).

Now we have the following results. The proof of these results are similar to the
results given in GAN D(α,λ,β) and hence omitted.

RESULT 14. The cumulative distribution function (c.d.f) G(x) of EGAND(µ,σ ;α,λ,β)
with p.d.f (21) is the following, for y ∈ R

G∗(y) =
F
�

x−µ
σ

�

σ(α+ 2)

h

2+
α

2
[F (β)]−1

i

−
α[F (β)]−1

σ(α+ 2)
ξ ∗β(y,λ),

where ξ ∗
β
(y,λ) is as defined in Result 4.
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RESULT 15. The characteristic function of EGAND(µ,σ ;α,λ,β) is given by

ψY (t ) =
1

σ(α+ 2)
e i tµ− t2σ2

2

¨

2+α[F (β)]−1F

�

δ
′
i t +

σβ
p

1+λ2
p

σ2+λ2

�«

.

RESULT 16. Mean and variance of EGAND(µ,σ ;α,λ,β) is given by

M ean =µ+ a1,

where

a1 =
σα[F (β)]−1δ

′
f
�

σβ
p

1+λ2p
σ2+λ2

�

2+α[F (β)]−1F
�

σβ
p

1+λ2p
σ2+λ2

�

and

V a r iance = σ2−δ ′σ2β

�p
1+λ2
p

1+λ2

�

a1− a2
1 .

RESULT 17. The coefficient of skewness of EGAN D(µ,σ ;α,λ,β) is

γ ∗1 =

�

δ
′
β2( 1+λ2

σ2+λ2 )a1−δ
′2
σ2a1+ 3δ

′
σ2( β

p
1+λ2p
σ2+λ2

)a1+ 2a3
1

�2

�

σ2−δ ′σ2β(
p

1+λ2p
σ2+λ2

)a1− a2
1

�3

and the coefficient of kurtosis is

γ ∗2 =
−δ ′3σ6

�

β
p

1+λ2p
σ2+λ2

�3
a1− 6σ4δ ′

�

β
p

1+λ2p
σ2+λ2

�

a1+ 3σ4

h

σ2−δ ′σ2
�

β
p

1+λ2

σ2+λ2

�

a1− a2
1

i2

+
δ ′3σ4

�

β
p

1+λ2p
σ2+λ2

�
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RESULT 18. If Y follows EGAND(µ,σ ;α,λ,β) then X1 = −Y follows EGAND(µ,
σ ; α,−λ, β).

RESULT 19. The reliability function R∗(t ) of Y is the following, in which

ξ ∗
β
(t ,λ) =

∫∞
t

∫ λ( t−µ
σ )+β

p
1+λ2

0 f ( y−µ
σ ) f (v)d vd y is as defined in Result 4

R∗(t ) =
1

α+ 2

�

1− F
�

t −µ
σ

���

2+
α[F (β)]−1

2

�

+
α[F (β)]−1

α+ 2
ξ ∗β(t ,λ).

RESULT 20. The failure rate r ∗(t ) of Y is given by

r ∗(t ) =
f
�

t−µ
σ

��

2+α[F (β)]−1F
�

λ( t−µ
σ )+β

p
1+λ2

��

�

1− F ( t−µ
σ )

�¦

2+ α[F (β)]−1

2

©

+α[F (β)]−1ξ ∗
β
(t ,λ)

.

RESULT 21. The mean residual life function of EGAND(µ,σ ;α,λ,β) is

µ∗(t ) =
1

(α+ 2)R(t )

�

f (
t −µ
σ
)
�

2+α[F (β)]−1F (λ(
t −µ
σ
)+β

p
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�
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αλ[F (β)]−1e−

β2

2

p
2π
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�
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�
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�
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βλ
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���

+

µ

σ

�

2
�

1− F (
t −µ
σ
)
�

+M (t ;µ,σ ,λ,β)
��

,

where M (t ;µ,σ ,λ,β) =
∫∞

t

∫ λu+β
p

1+λ2

−∞ f (u) f (v)d vd u which can be evaluated using
the software MATHCAD.

5. MAXIMUM LIKELIHOOD ESTIMATION

The log likelihood function, ln L of the random sample of size n from a population
following EGAND(µ,σ ;α,λ,β) is the following in which c =− n

2 ln2π

ln L = c − n ln(α+ 2)− n
2

lnσ2− 1
2

n
∑

i=1

(yi −µ)2

σ2

+
n
∑
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�

λ

�
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σ

�

+β
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��

.

(22)
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On differentiating (22) with respect to parametersµ,σ ,λ,β and α and then equating
to zero, we obtain the following normal equations
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σ
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∑
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�
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�
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Let
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Then Equations from (23) to (27) become

αλ

σ
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n
∑

i=1

(yi −µ)
σ2

, (28)
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α
n
∑

i=1

∆(yi )
p
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[F (β)]−2 f (β)F (λ( yi−µ

σ )+β
p

1+λ2)

2+α[F (β)]−1F
�

λ( yi−µ
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−n
α+ 2

+
n
∑

i=1

∆(yi )F
�

λ( yi−µ
σ )+β

p
1+λ2

�

f
�

λ( yi−µ
σ )+β

p
1+λ2

� = 0. (32)

On solving the equations (28) to (32) we get the maximum likelihood estimate (MLE)
of the parameters of EGAND(µ,σ ;α,λ,β).

6. APPLICATIONS

In this section we consider three real life data applications of the EGAND. The first
data is related to the milk production of 28 cows in which the variable under study is
the daily milk production in kilogram and the variable recorded for three times milking
cows. This data set is taken from (Bhuyan, 2005,pp. 77). The data are given below.

Data set 1: (34.6 27.7 29.2 25.3 27.6 37.9 32.6 32 30.7 29.6 38.3 32.9 30.8 32.2
32.9 28.1 33.9 28.6 28.1 35.9 34.8 40.3 30.9 34.4 19.8 25.8 37.3 32.4).

The second data set is taken from Australian Institute of Sport data by Cook and
Weisberg (1994). The data include 100 females and 102 males with 13 variables such as
height, weight, body mass index (BMI) etc. We choose for the variable under study the
BMI values for the second 50 females. The data are given below.

Data set 2:(24.47 23.99 26.24 20.04 25.72 25.64 19.87 23.35 22.42 20.42 22.13 25.17
23.72 21.28 20.87 19.00 22.04 20.12 21.35 28.57 26.95 28.13 26.85 25.27 31.93 16.75
19.54 20.42 22.76 20.12 22.35 19.16 20.77 19.37 22.37 17.54 19.06 20.30 20.15 25.36
22.12 21.25 20.53 17.06 18.29 18.37 18.93 17.79 17.05 20.31).

The third data set is from (Deshmukh and Purohit, 2007,pp. 368) which was col-
lected in connection with a study for determining the undesirable side effect of a pill for
reducing the blood pressure of the user. The study involves recording the initial blood
pressure of 15 women. After they use the pill regularly for six months, their blood pres-
sures are again recorded. Here both before and after blood pressure are studied. The
variable under study is before and after blood pressures of 15 women. The data sets are
as given below.

Data set 3 (Initial blood pressure of 15 women): (70 80 72 76 76 76 72 78 82
64 74 92 74 68 84).

Data set 4 (Blood pressure of 15 women after taking the pill): (68 72 62 70 58 66
68 52 64 72 74 60 74 72 74).

We have fitted the EGAND(µ, σ ; α,λ,β) all these four data sets. For illustrat-
ing the suitability of the model, we have fitted EGMNSND(µ,σ2;λ,α) to each of the
data sets and computed the Kolmogorov Smirnov statistic (KSS) values, Akaike’s in-
formation criterion (AIC), Bayesian information criterion (BIC), corrected Akaike’s
information criterion (AICc) in respective cases for comparing the fitted models. All
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TABLE 1
Estimated values of the parameters for the model: EGMNSND(µ,σ2;λ,α) and EGAND(µ,σ ;
α,λ,β) with respective values of KSS, AIC, BIC and AICc in case of data sets 1, 2, 3 and 4.

Data set Estimates of EGMNSND(µ,σ2;λ,α) EGAND(µ,σ ;α,λ,β)
the parameters

1 µ̂ 31.468 31.482
σ̂ 4.425 4.425
λ̂ 31.246 4.065
β̂ - 8.683
α̂ 1.353 4.567

KSS 0.363 0.083
AIC 684.588 172.249
BIC 689.917 178.910

AICc 686.327 174.976
2 µ̂ 20.715 21.812

σ̂ 3.489 3.313
λ̂ 26.844 0.264
β̂ - 8.452
α̂ 0.102 4.468

KSS 0.464 0.116
AIC 337.163 271.313
BIC 344.811 280.873

AICc 338.052 272.677
3 µ̂ 72.527 76.286

σ̂ 7.656 6.670
λ̂ 5.925 0.281
β̂ - 8.249
α̂ 3.186 4.409

KSS 0.869 0.187
AIC 912.938 99.385
BIC 918.354 104.801

AICc 916.938 106.052
4 µ̂ 63.987 67.000

σ̂ 7.315 6.666
λ̂ 11.656 0.281
β̂ - 8.429
α̂ 1.257 4.409

KSS 0.863 0.173
AIC 849.824 98.4989
BIC 855.240 103.915

AICc 853.824 105.166
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these numerical results obtained are presented in Table 1. From Table 1, it is clear that
the EGAND(µ,σ ;α,λ,β) is a more appropriate model to all the data sets considered
in this paper compared to the existing model due to Kumar and Anusree (2011) (ie.,
EGMNSND(µ, σ2; λ,α)). Thus, the model discussed in this paper provides more flexi-
bility in modeling perspectives due to the presence of extra parameter.
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SUMMARY

The normal and skew normal distributions are not adequate enough for modeling plurimodal
data situations. In order to overcome this drawback of normal and skew normal distribution,
Kumar and Anusree (2011) proposed a new class of distribution namely “the generalized mixture
of standard normal and skew normal distributions (GMNSND)”. In this paper we consider an
extended version of the GMNSND as a wide class of plurimodal asymmetric normal distribution
and investigate some of its important distributional properties. Location-scale extension of the
proposed model is also defined and discussed the estimation of its parameters by method of max-
imum likelihood. Further, four real life data sets are considered for illustrating the usefulness of
this model.

Keywords: Asymmetric distributions; Characteristic function; Maximum likelihood estimation;
Plurimodality; Reliability measures.


