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1. INTRODUCTION

In educational and psychological measurement, a test consisting of a set of items is typi-
cally administered to a sample of subjects to make inference on the latent variables under-
lying the response process. Latent variables are not directly observed but are rather in-
ferred through a statistical model from the observed, directly measured, item responses.
Statistical models that aim to explain observed variables in terms of latent variables are
called latent variable models. Latent variable models are used in many disciplines, in-
cluding psychology, economics and the social sciences. Examples of latent variables in
the field of economics include quality of life and happiness; in an educational context
a typical latent variable is the examinee’s ability on a specific subject (e.g., mathemat-
ics). A typical situation in these fields is that different tests are used to measure the same
latent variable.

Test score equating is used to compare different test scores from different test forms
(Kolen and Brennan, 2014; González and Wiberg, 2017). There are at least three reasons
to have multiple forms of a test (and consequently equating). The first is security. Many
testing programs administer high-stakes examinations in which performance has an im-
portant impact upon the examinee and the public: conferring a license or certificate to
practice a profession, permitting admittance to a college or other training program, or
granting credit for an educational experience. A second and related reason for different
test forms is the current movement to open testing. Many programs find it necessary
or desirable to release test items to the public (Braun, 1982). When this occurs, it is not
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possible to use the released items on future test forms without providing examinees an
unfair advantage. A third reason for different test forms is that test content, and there-
fore test items, by necessity change gradually over time.

Depending on what kind of test situation we have, we can use different data collec-
tion designs and different equating methods. Two common data collection designs are
the equivalent group (EG) design, which assumes that the groups of examinees to be
compared are equivalent, and the non-equivalent groups with anchor test (NEAT) de-
sign, which requires an anchor test (i.e. common items) to be administered along with
the test forms to the different groups. Although the NEAT design is superior in many
practical settings, there are a number of large-scale assessment tests that lack anchor tests,
for example, the American College Testing (ACT, 2007). A problem with using an EG
design in these situations is that it might be known that the different groups who take
different test forms are non-equivalent and thus the equivalent group assumption in the
EG design is not fulfilled (Lyrén and Hambleton, 2011). In these situations, an option
that has been shown to work well is to use the non-equivalent groups with covariates
(NEC) design (Wiberg and Bränberg, 2015). The idea with the NEC design is to use
information from the covariates to adjust the differences between the groups in order to
obtain comparable test scores.

The traditional equating methods include mean equating, linear equating and equiper-
centile equating and have been developed under all the designs. Equipercentile equating
is the most general among these methods and includes the first two methods (Angoff,
1971). Kernel equating (von Davier et al., 2004) is a unified approach to test equating
which comprises five steps. First fitting appropriate statistical models to the raw data
obtained by the data collection design (pre-smoothing). Second, estimation of the scores
probabilities. Third, continuization of the discrete distributions obtained at the pre-
vious step. Fourth, equating using the equipercentile method. Fifth, calculating the
standard error of equating.

Item response theory (IRT) equating (Lord, 1980) is a three-step process. In the first
step, item parameters are estimated; in the second step, parameter estimates are scaled
to a base IRT scale using a linear transformation; in the third step, equating is conducted
by using different methods, e.g. the equipercentile equating.

The aim of this work is to propose a review of test equating methods with a focus on
traditional and recent IRT-based approaches. We focus on IRT equating essentially for
two reasons: the possibility of using these methods in many applications and the very
recent developments in this field, which filled up some gaps. In particular, we focus on
the following recent works: Andersson (2016), Andersson and Wiberg (2016), Battauz
(2013), Battauz (2017), He et al. (2015), Lee and Lee (2016), Sansivieri and Wiberg (2017),
and Tao and Cao (2016).

The structure of the remaining of this paper is as follows. In Section 2 we describe
the traditional methods of equating under the different possible equating designs and we
introduce the kernel method of test equating briefly. Successively, in Section 3, a detailed
description of IRT equating is given which includes a comparison between IRT true-
score equating and IRT observed-score equating. The section ends with a presentation
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of the recent trends in IRT equating. Finally, in Section 4 we describe strengths and
weaknesses of the different illustrated approaches, identifying unresolved questions and,
consequently, possible future research topics.

2. TRADITIONAL EQUATING METHODS AND KERNEL EQUATING

In this section the methods used traditionally in test equating are illustrated. These
methods include equipercentile equating, linear equating and mean equating using the
different data collection designs. Additionally, the kernel method of test equating is
described.

2.1. Equipercentile equating

The overall idea of the equipercentile equating is that the distribution of scores has to
be the same on the two equated forms. By adopting the definitions and the notation in
Kolen and Brennan (2014), Form X and Form Y represent the new form and the old
form, respectively, X and Y denote the random scores for Form X and Form Y, where
x and y are the corresponding realizations.

When X and Y are continuous random variables, defining F as the cumulative distri-
bution function of X in the population and G−1 as the inverse of G, the equipercentile
equating function under the EG design is (Braun, 1982)

eY (x) =G−1[F (x)]. (1)

In the NEAT design there is a set of common items between the equated forms,
which Kolen and Brennan (2014) define as V. By following the same notation adopted
for Form X and Form Y, V represents the random score for V and v is the corresponding
realization. Let f (x, v) refer to the joint distribution of total score and common-item
score, let f (x) and h(v) refer to the marginal distribution of scores on Form X and
on the common items V, respectively, and, finally, let f (x | v) refer to the conditional
distribution of scores on Form X given a particular score v obtained on the common
items V. Then, it is trivial to show that

f (x, v) = f (x | v)h(v). (2)

If we use the frequency estimation method, we have to define the distribution for the
synthetic population. This distribution is simply obtained combining the distributions
of the two populations, both of them are properly weighted (Angoff, 1971)

fs (x) = w1 f1(x)+w2 f2(x) (3)

and

gs (y) = w1 g1(y)+w2 g2(y), (4)



332 V. Sansivieri et al.

where the three subscripts s, 1 and 2 represent the synthetic population, the population
which received Form X, and the population administered Form Y, respectively. We
indicate with f and g the distributions for Form X and Form Y, respectively, and we
define w1 and w2 (w1+w2 = 1) as the weights given to each population in the definition
of the synthetic population.

We can calculate the marginal distributions of scores as follows

f2(x) =
∑

v
f2(x, v) =

∑

v
f1(x | v)h2(v) (5)

and

g1(y) =
∑

v
g1(y, v) =

∑

v
g2(y | v)h1(v). (6)

Our aim is obtaining the syntetic populations and we can simply reach this goal by
substituting the Equations (5) and (6) into Equations (3) and (4) as follows

fs (x) = w1 f1(x)+w2

∑

v
f1(x | v)h2(v), (7)

gs (y) = w1

∑

v
g2(y | v)h1(v)+w2 g2(y). (8)

Define Fs (x) and Gs (y) as the cumulative distributions, respectively, of fs (x) and
gs (y). To obtain the equipercentile function for the synthetic population, we need to
define four other quantities: Ps , P−1

s , Qs and Q−1
s which are the percentile rank function

and the percentile function for Form X and Form Y, respectively. Subsequently, we can
define the equipercentile function for the synthetic population as follows

eYs (x)
=Q−1

s [Ps (x)]. (9)

An alternative to the frequency estimation method is the chained equipercentile
equating, which involves the following steps (Angoff, 1971): using examinees from Pop-
ulation 1, determine the equipercentile equating relationship (eV 1(x)) which let us con-
vert scores on Form X to the common items; using examinees from Population 2, de-
termine the equipercentile equating relationship (eV 1(x)) which let us convert scores on
the common items to scores on Form Y; finally, the Form Y equipercentile equivalent
of a Form X score can be calculated as follows

eY(chain)
= eY 2[eV 1(x)]. (10)

The chained equipercentile equating has at least one drawback. This method re-
quires that we equate a long test to a short test, but, obviously, we cannot exchange the
scores obtained on two tests which contain a very different number of items. However,
this method can be used when we have two different groups, because having similar
populations is not assumed.
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2.2. Linear equating

Linear equating is less strict than equipercentile equating: in fact, while equipercentile
equating requires that the scores on the two forms have the same distribution, in linear
equating we assume that only the means and the standard deviations of the scores on
the two forms are equal. From this it is evident that linear equating is a subcase of
equipercentile equating.

In the EG design, we define the population means on Form X and Form Y µ(X )
and µ(Y ), respectively, while the standard deviations on the same forms are defined as
σ(X ) and σ(Y ), respectively. The method gives us the linear equating transformation

lY (x) = y =
σ(Y )
σ(X )

x +[µ(Y )−
σ(Y )
σ(X )

µ(X )]. (11)

For the NEAT design, to transform the scores on X to the scale of scores on Y , the
following linear equation is used

lYs (x)
=
σs (Y )
σs (X )

[x −µs (X )]+µs (Y ), (12)

where s represents the synthetic population, µs (X ) = w1µ1(X )+w2µ2(X ), and

σ2
s (X ) = w1σ

2
1 (X )+w2σ

2
2 (X )+w1w2[µ1(X )−µ2(X )]

2, (13)

where the subscripts 1 and 2 refer to populations 1 and 2, respectively and similar for Y .
It is very important to underline that we cannot estimate directly the quantities µ2(X ),
σ2

2 (X ), µ1(Y ), and σ2
1 (Y ) because of the NEAT design. To obtain these estimates we

express the parameters in terms of directly estimable parameters and, to do this, some
specific statistical assumptions are made (Kolen and Brennan, 2014, pp.103–134).

In the NEC design one improves the precision by including covariates in equating.
Bränberg and Wiberg (2011) proposed a method to conduct linear equating under the
NEC design. By using the same notation already introduced, one can be assume that
the following linear models hold in the population

Y = zTβY + εY , (14)

X = zTβX + εX , (15)

where the vectors of covariates and of coefficients are represented by z , βY , βX , re-
spectively. The covariates define the mean test scores in the subpopulations which are
represented by zTβY and zTβX ; and, finally, let εY and εX refer to the difference be-
tween each examinee score and the mean, with variances σ2

Y and σ2
X , respectively (while

means are equal to zero). The authors define the linear equating function as follows

Y ∗ = eqY = b0+ b1X , (16)
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where b0 =µY−µX (σYσ
−1
X ) and b1 = σYσ

−1
X . X and Y have observed score population

means equal toµX andµY , respectively, and population standard deviations equal to σX
and σY , respectively.

2.3. Mean equating

This method is the least strict of all the traditional methods: it only requires that the
means of scores on the two forms X and Y are equal. Obviously, it is a particular case
of equipercentile and linear equating and formally defined as

mY (x) = y = x −µ(X )+µ(Y ), (17)

in which mY (x) indicates that we use mean equating to transform a score x on Form X
to the scale of Form Y.

2.4. Kernel equating

Kernel equating (von Davier et al., 2004) is a unified approach to test equating and com-
prises the following five steps:

1. Pre-smoothing. In this step, statistical models are fitted to the raw data obtained
by the data collection design to obtain estimates of the score distributions.

2. Estimation of the score probabilities. In this step the Design Function is used to
transform the estimated score distributions from Step 1 into the estimated score
probabilities, r̂ and ŝ , for test X and Y on the target population, T .

3. Continuization. This step is necessary because the score probabilities previously
estimated are discrete, so we determine continuous approximations, F̂hX

(x) and

ĜhY
(y), to the estimated discrete cumulative distribution functions, F̂ (x) and Ĝ(y).

Here we need to choose the kernel distribution (usually normal) and the band-
width parameters, hX and hY .

4. Equating. In this step we estimate the equating function as follows

êhX hY
(x) = Ĝ−1

hY
(F̂hX
(x)). (18)

5. Estimation of the standard error of equating. This step is necessary to evaluate the
equating transformation.

There are many recent developments in kernel equating. For example, Lee and von
Davier (2011), Rijmen et al. (2011), Andersson et al. (2013) and Wiberg et al. (2014). The
first paper focuses on the possibility of using different kinds of kernel distributions in the
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continuization step. The second paper proposes a new way to test equating differences.
The third work describes the new R package kequate to conduct kernel equating and
the final paper contains a description of local kernel equating.

3. EQUATING WITH IRT

IRT equating is the statistical instrument used to compare different test scores from
different forms when IRT models are used to assemble tests. Before conducting equating
using IRT we need to estimate item parameters and to scale these estimates to a base IRT
scale.

3.1. Item response theory models

IRT is a paradigm for the scoring of tests measuring abilities or other variables (Lord,
1980). The leading idea of the IRT is that the probability of a correct response to an item
is a function of examinee and item parameters. An example of examinee parameter is
general intelligence, while item parameters are its difficulty or location representing the
item position on the difficulty range, discrimination representing how steeply the rate
of success of examinees varies with their ability, and a pseudoguessing parameter, char-
acterising the (lower) asymptote at which even the least able examinees will score due
to guessing. IRT entails two assumptions: an examinee parameter which is constructed
as a unidimensional latent trait; local independence of items, which means that exam-
inee responses to the items are statistically independent. The item characteristic curve
(ICC) for each item relates the probability of correctly answering the item to examinee
ability. Various IRT models are in use that differ in the functional form of the ICC. The
three-parameter logistic model (3PLM) is (Birnbaum, 1968)

p j i = ci +(1− ci )(exp(ai (θ j − bi ))/(1+ exp(ai (θ j − bi )))), (19)

where p j i is the probability of a correct response for examinee j to item i , θ j is the
ability parameter for examinee j , ai is the discrimination parameter for item i , bi is the
difficulty or location parameter for item i and ci is the pseudoguessing parameter. If
we assume that ci is equal to zero, we obtain the two-parameter logistic model (2PLM),
which is defined as follows (Birnbaum, 1968)

p j i = exp(ai (θ j − bi ))/(1+ exp(ai (θ j − bi ))). (20)

Finally, if we also assume that all the items have the same discrimination parameter
ai = 1, we obtain the one-parameter logistic model (1PLM).

It is important to say that also multidimensional IRT models have been developed
for tests that are intended to measure simultaneously along multiple dimensions (see e.g.
Reckase, 2009, for a discussion).
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3.2. Transformations of IRT scales

While in the EG design the parameter estimates are assumed to be on the same scale, in
the NEAT design the parameter estimates are on different IRT scales, simply because
the groups of examinees are not assumed to be equivalent.

Let scale I and scale J refer to three-parameter logistic IRT scales that linearly differ
and θI j and θJ j are values of the ability θ for examinee j on these two scales, respectively.
If we indicate with A∗ and B∗ two constants, we can say that the following relationship
between the ability-values for the two scales holds

θJ j =A∗θI j +B∗. (21)

The relationships between the item parameters can be formulated as follows

aJ i =
aI i

A∗
, (22)

bJ i =A∗bI i +B∗, (23)

cJ i = cI i , (24)

where aJ i and aI i , bJ i and bI i , cJ i and cI i are the couples of discrimination, location and
pseudoguessing parameters for the item i on scale J and on scale I , respectively. We have

A∗ =
σ(bJ )

σ(bI )
, (25a)

=
µ(aI )
µ(aJ )

, (25b)

=
σ(θ(bJ ))

σ(θ(bI ))
, (25c)

B∗ =µ(bJ )−A∗µ(bI ), (26a)

=µ(θJ )−A∗µ(θI ). (26b)

If we consider the scale I and the scale J , in the previous Equations we define the
means µ(bJ ), µ(bI ), µ(aI ), and µ(aJ ) and the standard deviations σ(bJ ) and σ(bI ) over
one or more items having parameters that are expressed on the two considered scales;
instead, the standard deviations σ(θ(bJ )) and σ(θ(bI )) are defined over two or more
examinees having parameters that are expressed on the two defined scales.
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Marco (1977) uses the means and standard deviations of the b -parameter estimates
obtained from the anchor test in place of the parameters in Equations (25a) and (26a):
this method is known as the mean/sigma method.

A slightly different method called the mean/mean method was proposed by Loyd
and Hoover (1980): to estimate the A∗-constant and the B∗-constant, they substitute the
mean of the a-parameter estimates for the anchor test into Equation (25b) and the mean
of the b -parameter estimates for the anchor test into Equation (26a), respectively. The
obtained values of A∗ and B∗ then can be substituted into Equations (21)-(24) to calculate
the rescaled parameter estimates (which are often referred to as being calibrated).

The mean/sigma method and the mean/mean method have a problem because they
do not consider all of the item parameter estimates simultaneously. This fact has as
a consequence that various combination of a−, b− and c− parameter estimates can
produce identical ICC’s over the range of ability at which most examinees score. The
characteristic curve methods (Haebara, 1980; Stocking and Lord, 1983) may represent a
solution to this problem. Note that, for ability scales I and J and for examinee j and
item i , the probability of a correct response for examinees of a given ability is the same
regardless of the scale, as follows

p j i (θJ j ;aJ i , bJ i , cJ i ) = p j i

�

A∗θI j +B∗;
aI i

A∗
,A∗bI i +B∗, cI i

�

. (27)

It is important to underline that if estimates are used in place of the parameters in
Equation (27), then we cannot be sure that the equality will hold over all items and ex-
aminees for any A∗ and B∗. The characteristic curve methods are based on this probable
lack of equality.

In the method proposed by Haebara (1980), for example, the difference between the
item characteristic curves is defined as the sum of the squared difference between the
item characteristic curves for each item for examinees with a given ability. For a given
θ j we have

Hdiff(θ j ) =
∑

i :V

�

p j i (θJ j ; âJ i , b̂J i , ĉJ i )− p j i

�

θJ j ;
âI i

A∗
,A∗ b̂I i +B∗, ĉI i

��2

. (28)

The idea is to determine A∗ and B∗ minimizing the following criterion

Hcrit=
∑

j

Hdiff(θ j ). (29)

Another approach is that of Stocking and Lord (1983). They used the sum, over
items, the squared difference
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SLdiff(θ j ) =
�

∑

i :V

p j i (θJ j ; âJ i , b̂J i , ĉJ i )−
∑

i :V

p j i

�

θJ j ;
âI i

A∗
,A∗ b̂I i +B∗, ĉI i

��2

. (30)

In this case A∗ and B∗ are calculated to minimize the following criterion

SLcrit=
∑

j

SLdiff(θ j ). (31)

Ogasawara (2000) showed that the mean/mean method was more reliable than the
mean/sigma method; Hanson and Béguin (2002) found that the characteristic curve
methods produce more stable results than the mean/sigma and mean/mean methods.

Regardless of chosen transformation, there are two IRT equating approaches: IRT
true-score equating and IRT observed-score equating which are described next.

3.3. IRT true-score equating

True-score equating was first introducted by Lord (1980), but here we will describe it
as it was described in Kolen and Brennan (2014) which is based on the 3PLM. The true
scores on Form X and on Form Y, which are equivalent to θ j are defined respectively as

τX (θ j ) =
∑

i :X

p j i (θ j ;ai , bi , ci ), (32)

τY (θ j ) =
∑

i :Y

p j i (θ j ;ai , bi , ci ). (33)

Equations (32) and (33) are referred to as test characteristic curves for Form X and
Form Y. It is important to stress that true scores on Form X and Y are associated with
a value of θ only over the following ranges

∑

i :X

ci < τX < nX ,
∑

i :Y

ci < τY < nY , (34)

because when we use the 3PLM, as θ approaches−∞, p j i approaches ci instead of zero.
The main assumption is that, for a given θ j , true scores τX (θ j ) and τY (θ j ) are equal.
Subsequentially, defining τ−1

X as the θ j corresponding to true score τX , we can calculate
the Form Y true score equivalent of a given true score on Form X as follows

irtY (τX ) = τY (τ
−1
X ),

∑

i :X

ci < τX < nX . (35)

From Equation (35) it is clear that true score equating is a process whose first step
consists in specifying a true score τX on Form X, after it is necessary to find the θ j

that corresponds to that true score (τ−1
X ) and, finally, it is possible to determine the
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true score on Form Y, τY , that corresponds to that specific θ j . To find τ−1
X we use the

Newton-Raphson method. Remembering that the range of possible true score on Form
X is

∑

i :X ci < τX < nX , we need to define a procedure for converting Form X scores
outside this range. Kolen (1981) presented ad hoc procedures to handle this problem.
He defined τ∗X as a score outside the range of possible true scores, but within the range
of possible observed scores. Equivalent scores are defined by the following equation

irtY (τ
∗
X ) =

∑

i :Y ci
∑

i :X ci
τ∗X , 0≤ τ∗X ≤

∑

i :X

ci ,

= nY , τ∗X = nX ,
(36)

where nX and nY are the number of items on Form X and on Form Y, respectively.

3.4. IRT observed-score equating

IRT observed-score equating was first introduced by Lord (1980), but we use Kolen and
Brennan (2014) description of IRT observed-score equating as follows. Let θ j refer to
a specific ability level of examinees and define fr (x | θ j ) as the distribution of number-
correct scores over the first r items for examinees having this ability. Define f1(x = 0 |
θ j ) = (1− p j 1) and f1(x = 1 | θ j ) = p j 1 as the probabilities of earning a score of 0 and
of 1 on the first item, respectively. For r > 1, Lord and Wingersky (1984) define the
recursion formula as follows

fr (x | θ j ) = fr−1(x | θ j )(1− p j r ), x = 0,

= fr−1(x | θ j )(1− p j r )+ fr−1(x − 1 | θ j )p j r , 0< x < r,

= fr−1(x − 1 | θ j )p j r , x = r.

(37)

We underline that the recursion formula only let us calculate the observed score
distribution for examinees of a given ability, so we have to accumulate the distributions
obtained by using this formula to find the general observed score distribution. When
the ability distribution ψ(θ) is continuous, then

f (x) =
∫

θ

f (x | θ)ψ(θ)dθ. (38)

When the ability distribution is discrete, then

f (x) =
1
N

N
∑

j=1

f (x | θ j ). (39)
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When we have calculated the observed score distributions for Form X and for Form
Y conventional equipercentile methods are used to find score equivalents. Alternatives
to the Lord-Wingersky algorithm can be found in González et al. (2016). Although
IRT true-score equating is simple and it uses a conversion that does not depend on the
distribution of ability (Kolen and Brennan, 2014, p.201), it equates true scores, which
are not available in practice. IRT observed-score equating does not have this problem,
because it is conducted by using observed scores.

3.5. Recent developments in IRT equating

In this section the focus is on some recent relevant developments in IRT equating. The
developments regard several different areas of IRT equating.

A first area of interest is the calculation of standard errors of IRT equating. Oga-
sawara (2001, 2003) focused on asymptotic standard errors of IRT equating; Andersson
(2016) demonstrated how to calculate the asymptotic standard errors of observed-score
equating by using polytomous IRT models within the kernel equating framework. An-
dersson (2016) used both the EG and the NEAT (both chained equating (CE) and post-
stratification equating (PSE)).

In the EG design, if we indicate with r̂P and ŝP the estimated vectors of score prob-
abilities for the two tests X and Y , respectively, on population P , we can define the
estimator of the equating function using polytomous IRT models in this design as fol-
lows

êY (EG)(x; r̂P , ŝP ) = Ĝ−1
P (F̂P (x; r̂P ); ŝP ), (40)

and the asymptotic variance by using the delta method (Kendall and Stuart, 1977)

σ2
êY (x;r̂P , ŝP )

=
∂ eY (EG)(x; rP , sP )

∂ v(rP , sP )
Σv(r̂P , ŝP )

�

∂ eY (EG)(x; rP , sP )

∂ v(rP , sP )

�′

, (41)

where v(rP , sP ) is the score probability estimator and Σv(r̂P , ŝP )
its covariance matrix.

The expression of the vector
∂ eY (EG)(x;rP ,sP )
∂ v(rP ,sP )

can be found in von Davier et al. (2004, p.77).

In the NEAT design we have for CE that we can indicate with r̂P , t̂P the estimated
vectors of score probabilities for the tests X and the anchor A on population P and with
ŝQ , t̂Q the estimated vectors of score probabilities for the tests Y and the anchor A on
population Q, so we can define the estimator of the equating function using polytomous
IRT models in this design as follows

êY (C E)(x; r̂P , t̂P , ŝQ , t̂Q ) = Ĝ−1
Q (ĤQ (Ĥ

−1
P (F̂P (x; r̂P ); t̂P ); t̂Q ); ŝQ ) (42)

and the asymptotic variance is obtained by using the delta method
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σ2
êY (C E)(x;r̂P , t̂P , ŝQ , t̂Q )

=

∂ eY (C E)(x; rP , tP , sQ , tQ )

∂ v(rP , tP , sQ , tQ )
Σv(r̂P , t̂P , ŝQ , t̂Q )

�

∂ eY (C E)(x; rP , tP , sQ , tQ )

∂ v(rP , tP , sQ , tQ )

�′

, (43)

where v(rP , tP , sQ , tQ ) is the score probability estimator and Σv(r̂P , t̂P , ŝQ , t̂Q )
its covariance

matrix. The expression of the vector
∂ eY (C E)(x;rP ,tP ,sQ ,tQ )
∂ v(rP ,tP ,sQ ,tQ )

can be found in von Davier et al.
(2004, p.82).

In the NEAT design using PSE, if we indicate with r̂S and ŝS the estimated vectors of
score probabilities for the two tests X and Y , respectively, on the synthetic population
S, we can define the estimator of the equating function using polytomous IRT models
in this design as follows

êY (P SE)(x; r̂S , ŝS ) = Ĝ−1
S [F̂S (x; r̂S ); ŝS] (44)

and the asymptotic variance is calculated by using the delta method:

σ2
êY (P SE)(x;r̂S , ŝS )

=
∂ eY (P SE)(x; rS , sS )

∂ v(rS , sS )
Σv(r̂S , ŝS )

�

∂ eY (P SE)(x; rS , sS )

∂ v(rS , sS )

�′

, (45)

where v(rS , sS ) is the score probability estimator andΣv(r̂S , ŝS )
its covariance matrix. The

expression of the vector
∂ eY (P SE)(x;rS ,sS )

∂ v(rS ,sS )
can be found in von Davier et al. (2004, p.77).

A second area is the development of R packages: Battauz (2015) described the R
package equateIRT to conduct IRT equating; Chalmers (2012) described the R package
mirt to conduct multidimensional IRT equating.

A third area of study is multidimensional IRT equating. Brossman and Lee (2013)
described multidimensional IRT equating; Lee and Lee (2016) developed a bi-factor mul-
tidimensional item response theory (BF-MIRT) observed-score equating method. Lee
and Lee (2016) work with a mixed-format test containing multiple-choice (MC) and free-
response (FR) items and they assume that one specific factor is measured by MC format
and the other specific factor is measured by FR format. The authors indicate with θG
the general ability, with θM the MC-specific factor and with θF the FR-specific factor
and they obtain the marginal observed score distribution as follows

f (x) =
∫ ∫ ∫ ∞

−∞
f (x|θG ,θM ,θF )g (θG ,θM ,θF )dθG dθM dθF , (46)

where f (x|θG ,θM ,θF ) and g (θG ,θM ,θF ) are, respectively, the conditional observed
score distribution and the entire trivariate theta distribution. To find the equating re-
lationship, the marginal observed score distributions have to be calculated for both the
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old form and the new form and, finally, the traditional equipercentile equating method
is used.

A fourth area of interest is the development of IRT equating methods within the
complex linkage plans. Battauz (2013) focused on the problem of applying IRT equating
methods within the complex linkage plans framework under the NEAT design. When
we have several test forms to be equated, it is necessary to choose which forms have a
direct link, considering all the factors that could have a negative impact on the quality
of the equating process. For example, it could be a bad idea to put too many links to
the same form, because this could imply an high exposure of the items of that form and,
consequently, test security could be threatened. If two forms are linked by using two or
more paths, Battauz (2013) suggests calculating the average equating coefficients. This
can be done by using the generalized angle bisector method (Holland and Strawderman,
2011). The author considers the two forms 0 and l and indicates with P0l the set of all
the possible paths between the two forms and with Ap and Bp the linking coefficient
related to path p, p ∈ P0l . To transform the scale of θ0 to the scale of θl we use

θ∗l =
∑

p∈P0l

ωpθ
p
l , (47)

where

ω =
np (1+A2

p )
−1/2

∑

b∈P0l
nb (1+A2

b )
−1/2

, (48)

with np representing proper weights. The average equating coefficients are analogously
defined as

A∗0l =
∑

p∈P0l

Apωp , (49)

and

B∗0l =
∑

p∈P0l

Bpωp . (50)

The asymptotic variance-covariance matrix of the average equating coefficients can
be obtained by using the delta method as follows

acov(Â∗
0l , B̂∗

0l )
T =

∂ (Â∗
0l , B̂∗

0l )
T

∂ αT
acov(α̂)

∂ (Â∗
0l , B̂∗

0l )

∂ α
. (51)

Finally, Battauz (2013) claims that a reasonable way to calculate the weights np is
by minimizing the average variance of θ∗l . In Battauz (2017) the focus is on methods
to put the item parameter estimates on the same scale and, in particular, she extends
the methods which we have described in Section 3 for complex linkage plans (see also
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Battauz (2013)). Battauz (2017) also calculates the asymptotic standard errors of the
equating coefficients for each method by using the delta method. For the multiple mean-
geometric mean method t is the index of the form, with t = 1, ...,T , and a j t and b j t are
the item discrimination and the item difficulty of item j in the scale of form t . The item
parameters expressed on the scale of the base form are indicated with a∗j (discrimination)
and b ∗j (difficulty). If we denote with â the vector containing the elements â j t , with X1

a design matrix composed of T − 1 dummy variables that indicate in which form t the
item has been administered and of v dummy variables that indicate which item j is
considered, and with β̂1 the vector of the regression coefficients that is composed by Â
(the vector containing the T equating coefficients) and by â∗ (the vector containing the
elements a∗j ), we can estimate both the equating coefficients and the item parameters as
follows

β̂1 = exp
�

(XT
1 X1)

−1XT
1 log â

�

. (52)

If we denote with b̂ the vector containing the elements b̂ j t , with X2 a design matrix
composed of T − 1 dummy variables multiplied by −1 that indicate in which form t
the item has been administered and of v dummy variables that indicate which item j is
considered, with Ân the product T Âand with β̂2 the vector of the regression coefficients
that is composed by B̂ (the vector containing the T equating coefficients) and by b̂∗ (the
vector containing the elements b ∗j ), we can estimate both the equating coefficients and
the item parameters as follows

β̂2 = exp
�

(XT
2 X2)

−1XT
2 diag(Ân)b̂

�

. (53)

By using the same notation we can estimate for the multiple mean-mean method the
equating coefficient At as follows

Ât =

∑

j∈Jt
â j t

∑

j∈Jt

∑

s∈Uj
â j s

∑

s∈Uj
Âs

, (54)

where Uj is the set of forms such that item j is in Jt . The equating coefficient B̂t can
be estimated following the multiple mean-geometric mean method. The multiple item
response function method extend the Haebara method (Haebara, 1980) to the case of
multiple forms. The equating coefficients can be found by minimizing the function:

f ∗I R =
T
∑

t=1

∫ ∞

−∞

∑

j∈Jt

(P j t − P ∗j t )
2h(θ)d (θ), (55)

where h is the density of a standard normal distribution, P j t is the probability of a posi-

tive response on item j using â j t and b̂ j t , and P ∗j t is the probability of a positive response
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on item j using â∗j t and b̂ ∗j t . The multiple item response function method extend the
Stocking-Lord method (Stocking and Lord, 1983) to the case of multiple forms. The
equating coefficients can be found by minimizing the function

f ∗T R =
T
∑

t=1

∫ ∞

−∞

�

∑

j∈Jt

P j t − P ∗j t

�2

h(θ)d (θ), (56)

where h is the density of a standard normal distribution, P j t is the probability of a

positive response on item j using â j t and b̂ j t , and P ∗j t is the probability of a positive

response on item j using â∗j t and b̂ ∗j t .

A fifth area of study is the quality of the anchor in IRT equating under the NEAT
design. He et al. (2015) stress the importance of the quality of the anchor in IRT true-
score equating under the NEAT design. The presence of item outliers in the anchor, in
fact, could affect in a negative way the equated scores, increasing their errors. The prob-
lem is that, if we simply eliminate the outliers from the anchor, we could compromise
its representativeness. By starting from this consideration, the researchers’ idea is not
to eliminate the outliers from the anchor and, instead, to use robust scale transforma-
tion methods. They propose two methods to reach this aim, which minimize the loss
function L defined as follows

L(di j ) =
∑

i

∑

j

wi j d
2
i j , (57)

where di j is defined in Equation (28), while wi j is a weight and it is calculated in a
different way by the two methods. The area-weighted method uses the weight 1 when
|e j | ≤ k, while uses the weight k/|e j |when |e j |> k (k = 1.345 and e j is the area enclosed
between two item characteristic curves within θ=−4 and θ= 4 for item j ). The method
of least absolute values uses the weight 1/|di j |.

A sixth area of interest is the extension of IRT equating methods to the case in which
tests are constructed by using testlets. Tao and Cao (2016) extended IRT equating meth-
ods to the dichotomous testlet response theory (TRT) model. Because a testlet is a set
of items based on a single theme, in a test constructed by using testlets, local item de-
pendence (LID) could be present. LID means that a random or secondary factor affects
the students’ performance on some items. This has as a consequence that the probabil-
ity of the response pattern on those items it is not the product of the probabilities of
the single items (which is equivalent to say that local item independence does not hold).
TRT true-score equating follows exactly the same steps of IRT true-score equating (see
Section 3), with the only difference being that, before conducting equating, we need to
calculate the marginalized item response function of the primary factor θ1 as follows
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P (Xi = 1|θ1) =
∫

θd (i)

P (Xi = 1|θ1,θd (i))ψ(θd (i))dθd (i), (58)

where θd (i) is the random factor which affects the testlet d (i) and ψ(θd (i)) is its density.
Also the TRT observed-score equating works as the IRT observed-score equating, with
the only difference that the observed score distribution is accumulated over θ1 instead
of θ

f (x) =
∫

θ1

f (x|θ1)ψ(θ1)dθ1. (59)

A seventh area of interest is the development of IRT observed-score equating within
different frameworks. First we focus on IRT observed-score kernel equating (Andersson
and Wiberg, 2016). To conduct IRT equating in a kernel framework, it is necessary to
calculate the vectors of score probabilities implied by the IRT models, because they are
used to determine the continuous distributions used to conduct equating. Let eY (D)()
refer to the equating function for a specific design D , we can define the kernel equating
function from X to Y for all score values 0, ..., kX as the following vector-valued function

eY (D)(x) = (eY (D)(0), eY (D)(1), ..., eY (D)(kX ))
′. (60)

The design D is replaced with the various designs available: Andersson and Wiberg
(2016) focus on the two NEAT designs given in Equations (9) and (10). The authors
also show that, under appropriate conditions,

p
n(êY (D)(x)− eY (D)(x))∼N (0,ΣêY (D)(x)

)
(Andersson and Wiberg, 2016, pp.51–54).

We continue by describing IRT observed-score equating with the NEC design (San-
sivieri and Wiberg, 2017). Differential item functioning (DIF) occurs when the expected
score given the same latent trait θ j is different by virtue of observed characteristic (z j )
(Hulin et al., 1983). The traditional IRT-DIF procedures of Lord (1980) and Raju (1988)
do not let us test multiple covariates for DIF simultaneously or use continuous covari-
ates. The IRT-C model was proposed by Tay et al. (2011) to overcome the limitations
described above. By using the 2PLM, we can include DIF in the IRT-C model as follows

P (y j i | θ j , z j ) =
1

1+ exp(−[aiθ j + bi + ci z j + di z jθ j ])
, (61)

where the probability of item responding depends on θ j and also on z j . The additional
terms in Equation (61), ci z j and di z jθ j , represent the direct and interaction effects for
modeling uniform (same item discriminations) and non-uniform DIF (different item
discriminations), respectively.

Let ft (x | θ j , z j ) refer to the distribution of number-correct scores over the first t
items for examinees of ability θ j and covariate z j (it was defined previously, but without
covariates, in Section 3). Define f1(x = 0 | θ j , z j ) = (1− p j 1) and f1(x = 1 | θ j , z j ) = p j 1
as the probabilities of earning a score of 0 and of 1 on the first item, respectively. For
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t > 1, the recursion Formula (37) for the IRT-C Model (61) becomes (Sansivieri and
Wiberg, 2017)

ft (x | θ j , z j ) = ft−1(x | θ j , z j )(1− p j t ), x = 0,

= ft−1(x | θ j , z j )(1− p j t )+ ft−1(x − 1 | θ j , z j )p j t , 0< x < t ,

= ft−1(x − 1 | θ j , z j )p j t , x = t .

(62)

This updated recursion formula gives the observed score distribution for examinees
of a given ability and covariate. To find the observed score distribution for examinees of
various abilities and with different values of covariate, the observed score distribution
for examinees at each ability and value of covariate is found and then these are accumu-
lated. When the ability distribution ψ(θ) is continuous, then

f (x) =
∑

z j

∫

f (x | θ, z j )ψ(θ)dθ p(z j ), (63)

where p(z j ) is the distribution of z j . To conduct observed-score equating, we have to
determine observed score distributions for Form X and for Form Y and, finally, use
conventional equipercentile methods to find score equivalents.

4. SOME CONCLUDING REMARKS

Comparing the different data collection designs used in test equating, the NEC design
is surely the most “incomplete”of all, probably also because it is the most recent. In
fact, we have seen that only the linear equating, the kernel equating and, very recently,
the IRT observed-score equating have been developed under this design, so there are still
several gaps. For example the traditional equipercentile equating has not been developed
yet under this design. In general, we want to underline that the most relevant aspect of
the NEC design is an appropriate choice of covariates, for two main reasons. The first
reason is that they should be chosen so that they can explain the differences between the
groups of examinees; the second reason is that they have an impact on the probability
to answer an item correctly.

Regarding the other data collection designs, the EG design is based on a very strong
assumption. In many settings it is unrealistic that the groups of examinees taking the
different forms are equivalent. When we have the possibility of administering common
items to the examinees, the NEAT design is usually the best design. Unfortunately,
sometimes we do not have access to common items and, in this case, the NEC design is
a good alternative to correct for differences between the groups using covariates.

The traditional methods have been developed with the goal that, after equating, con-
verted scores on two forms have at least some of the same score distribution character-
istics in a population of examinees. Almost all methods have been developed under all
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the data collection designs. For mean and linear equating, the use of sample means and
standard deviations in place of the parameters typically leads to adequate equating preci-
sion, even when the sample size is small. However, equipercentile equating is often not
precise enough for practical purposes because of sampling error.

The starting point of the kernel equating was the development of useful probability
models for fitting the score distributions that arise in test equating. The next step was
to develop equating methods that could fully exploit the log-linear models for score dis-
tributions. As kernel equating has been proposed as a unified approach to test equating
one could think that it is exhaustive and totally explored by definition. Instead, there
are many possibilities for new developments. For example, there are new proposals for
the kernel distribution used in the continuization step.

Regarding the IRT methods, they have two main advantages. They are used in many
applications and they provide an integrated psychometric framework for developing and
scoring testing. The main disadvantage is that they make strong statistical assumptions,
which are unlikely to hold precisely in real testing situations.

If we consider the assumptions of these models, we know that the unidimensional
IRT models assume that the test forms are unidimensional and that the relationship
between ability and the probability of correct response follows a specified form. These
requirements are difficult to justify for many educational achievement tests and this is
in contrast with a general recommendation in test equating: the equating studies should
be designed to minimize the effects of violations of assumptions (Kolen and Brennan,
2014).

Considering the new methods illustrated in the last subsection of the previous sec-
tion, we can do several observations.

Andersson (2016) provided very accurate approximations for the standard errors
of observed-score equating with polytomous IRT models within the kernel equating
framework, as we can see by the results of the simulation study. The main limitations
of the work are that only twenty-five items have been used because the computational
time would have been too long if too many items are used and that the Haebara and
Stocking-Lord’s methods have not been used. Future studies should be conducted to fill
these gaps.

Lee and Lee (2016) obtained good results in their simulation study, where they showed
that the bi-factor MIRT observed-score equating is more accurated than the unidimen-
sional IRT observed-score equating when the correlation between the MC and FR factor
is low, while the results of the two methods are very similar when the correlation is high.
This is a logical and expected result. In fact, when the correlation between the two spe-
cific factors is low, this means that two specific factors are really present in our test and
better results from the bi-factor MIRT observed-score equating are expected. On the
opposite side, if there is a strong correlation between the two specific factors, this means
that only one factor is present in the test and, consequently, we expect similar results
from the two methods. The simulation study as an evident limitation: only ten repli-
cations have been conducted. A possible interesting extension of this work could be by
using a test in which each specific factor is correlated with a different content area.
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The equating in complex linkage plans (Battauz, 2013) let us gain in efficiency essen-
tially because we use the weights. Battauz (2013) simulation study showed, in fact, that
unweighted average coefficients have an higher standard error than the single equating
coefficients. The method offers a strong advantage compared to the concurrent calibra-
tion: the possibility of calculating the standard errors of both the equating coefficients
and the scores. Finally, by using the multiple linkage, it is also possible to control for
seasonality effects. Battauz (2017) showed that all her proposed methods performed well
in a simulation study and that their results are similar between them and they are similar
to the results obtained in Battauz (2013). The work has however three main limitations.
First a real example has not been conducted. Second, if the number of common items be-
tween test forms increases, then the computational time also increases and, finally, the
mean-sigma method has not been extended. Future studies, obviously, should extend
also the mean-sigma method.

About the issue of the possible presence of outliers in the common items set (He
et al., 2015), the two methods discussed here work well when outliers are in the anchor,
but they work less well when no outliers are in the anchor. Another important consid-
eration is that when the proportion of common items is big with respect to the total, the
possible presence of outliers is negligible. Finally, as He et al. (2015) assume the presence
of one common item outlier, future studies with multiple outliers should be conducted.

The TRT equating simulation study (Tao and Cao, 2016) shows that the observed-
score equating outperforms with respect to the true-score equating, in particular when
the LID is high, even if the pseudo-guessing parameter estimation badly affects the true-
score equating results. For this reason,Tao and Cao (2016) stress the importance of re-
peating the study by using a two or one parameter TRT model as well as they underline
the importance of reconducting the study by using a more complex testlet design (they
use only one testlet).

It is evident that also the IRT true-score equating with the NEC design and the IRT
true-score kernel equating could be developed. Regarding the IRT observed-score equat-
ing with the NEC design (Sansivieri and Wiberg, 2017), other limits are evident. Only
dichotomous items have been used and only the existence of one latent dimension has
been assumed. Instead, in the IRT observed-score kernel equating the inclusion of co-
variates could improve the accuracy of the estimates. The main advantage of the IRT
observed-score equating with the NEC design is the possibility of improving results sim-
ply using covariates about the examinees, which are often available without other costs.
Concerning the IRT observed-score kernel equating (Andersson and Wiberg, 2016), the
main advantage is that we can obtain, by using a continuous and differentiable kernel,
an equating function without points of non-differentiability which is an issue when we
use linear interpolation.

Summing up, although there are many new equating methods which have emerged
during the past years, there are still test settings which could benefit of using improved
methods.
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SUMMARY

The overall aim of this work is to review test equating methods with a particularly detailed de-
scription of item response theory (IRT) equating. Test score equating is used to compare different
test scores from different test forms. Several methods have been developed to conduct equating:
traditional methods, kernel method, and IRT equating. We synthetically explain the traditional
equating methods which include mean equating, linear equating and equipercentile equating and
which have been developed under all the possible data collection designs. We also briefly describe
the idea of the kernel method: this is a unified approach to test equating for which recent inter-
esting developments have been proposed. Then we focus on IRT equating, by describing old and
new methods: in particular, we define IRT observed-score kernel equating and IRT observed-score
equating using covariates, as well as other recent proposals in this field. We conclude the review
by describing strengths and weaknesses of the different discussed approaches and by identifying
future research topics.

Keywords: Test equating; IRT test equating; Item response theory.


