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OF SPARSE CONTINGENCY TABLES WITH ORDERED CATEGORIES 
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1. INTRODUCTION

The main interest of many statistical analyses of economical, demographic and 
social phenomena consists of investigating the multivariate structure of the rela-
tionships behind the data. Quite often the collected information is coded in terms 
of a categorical variable either because the nature of the considered characteristic 
is intrinsically discrete or nominal or because the variable results from the catego-
rization into groups of an inherently continuous one. In the latter case the result-
ing variable will take values on an ordinal scale like classes of years or income. 
Even in the former case however, the variable can be naturally ordered. For in-
stance the political interest of a person can be classified as moderate, medium or 
active, the level of attained education can be classified as low, medium and high 
and so on. A number of different methods have been proposed for the analysis 
of categorical data. Systematic reviews on categorical data analysis are given, 
among others, by Bishop et al. (1975) and Agresti (2002); methods for the analysis 
of ordinal categorical data are extensively addressed by Agresti (1984). 

In many situations it may happen that the number of cells may be close to, or 
even greater than, the number of the available observations resulting in very small 
or even zero cell counts. In this case a contingency table is usually referred to as a 
sparse table. In such a situation the usual statistical procedures may lose the op-
timal properties they have for large samples.

In a hypothesis test framework the asymptotic inference for tests of goodness 
of fit and of multidimensional association is often unreliable for sparse data 
(Agresti and Yang, 1987, Contini and Lovison, 1993, Haberman, 1977). There-
fore many authors propose to base the inference on an exact conditional distribu-
tion. The inference is based on the distribution of the sufficient statistics for the 
parameters of interest given the sufficient statistics for the nuisance parameters 
which do not depend on these parameters. A review of exact inference methods 
for contingency tables is given by Agresti (1992). The case of contingency tables 
with ordered categories in particular is considered in Agresti et al. (1992). Forster 
et al. (1996, 2003) propose a MCMC approach to sample the exact conditional 
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distribution in the case of high-dimensional multivariate distributions. Simonoff 
(1986) and Van Davier (1997) investigate the possibility of using jacknife and 
bootstrap tests in a sparse context. 

On the estimation side the inference faces relevant problems as well. It is well 
known, for instance, that the Maximum Likelihood Estimator of the probability 
mass function under a multinomial sampling is the empirical distribution, that is 
the ratio ni /n where ni is the number of occurrences in the generic cell i and n the 
sample size. The Law of Large Numbers states that this is a consistent estimator 
of the true probability, even in a strong sense, as long as both ni and n tend to in-
finity. This framework however does not fit the evidence as we are in the pres-
ence of small frequencies. Bishop et al. (1975) introduced the idea of sparse as-
ymptotic to give a more realistic asymptotic framework for situations like this. 
The sparse asymptotic properties of an estimator are investigated assuming that 
the number of cells, say K, goes to infinity with n. Hall and Titterington (1987) 
derived the optimal convergence rate showing that MLE does not achieve this 
rate under some hypotheses on the way in which K goes to infinity as a function 
of n.

In order to get around the problem of sparseness in the case of ordinal cate-
gorical data, some authors suggested the use of non parametric estimators. Si-
monoff (1983) proposes a penalised likelihood estimator for sparse categorical 
data. Hall and Titterington (1987) introduce a kernel estimator for multinomial 
count showing its optimality in a sparse asymptotic framework. Aerts et al. (1997) 
use a local polynomial approach for estimating the probabilities of a sparse table. 
Simonoff (1996) reviews many of the non-parametric methods for sparse contin-
gency tables. In a Bayesian framework Giudici (1998) proposes a graphical model 
approach for smoothing a sparse contingency and Tarantola and Dalla Portas 
(2001) suggest reducing the table size to cope with sparseness by merging adja-
cent cells in such a way that the underling conditional independence structure is 
preserved. 

This paper focuses on the analysis of contingency tables with ordered categories 
in a sparse context. In particular, being aware of the advantages provided by 
smoothing procedures in estimating the cell probabilities under sparseness condi-
tion, the capability of a two-step smoothing technique in addressing the multivari-
ate structure of multidimensional data is investigated. Information measures are 
used to characterise this structure and quantify the discrepancy between models. 

Section 2 reviews some main ideas of the information theory approach to the 
analysis of contingency tables and some information measures. In section 3 a 
two-step algorithm for estimating the mass probability function is introduced 
whilst section 4 contains some simulation results on its performance. 

2. INFORMATION-BASED MODELS

For a long time information theory has achieved an important role in the 
analysis of contingency tables. A cornerstone in the information theory approach 
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to statistical inference is the book of Kullback (1968). Ghokale and Kullback 
(1978) discuss in detail the case of contingency table analysis whilst Krippendorff 
(1986) embeds it in a structural modelling framework for qualitative data. Borgoni 
et al. (1998) provide an application of this approach to the analysis of longitudinal 
categorical data. 

Measures of information, like entropy or cross entropy, are mostly used in sta-
tistics to quantify the variability of categorical and nominal variables. Non-
parametric information measures (Papaioannou, 1985) have been often used to 
quantify the amount of information in the data explained or ignored by a model 
allowing comparisons among alternative models. 

The measure we consider hereafter is well known, namely the Kullback and 
Leibler divergence function (KL) together with some indices derived from it. 

Assuming that two probability measures  and  on a given probability space 
( , ) are absolutely continuous with respect to one another, the Kullback and 
Leibler information measure is defined as: 

( )
( , ) log ( )

( )

f x
I d x

g x

where f(x) and g(x) are the Radom-Nikodym derivatives of  and with re-
spect to an absolutely continuous measure. A number of example supporting the 
term “information” for the above function are given by Kullback (1968). They re-
late for instance to the possibility of interpreting it, or some suitable specification 
of it, as the mean information provided by one observation x to discriminate 
about a set of mutually exclusive and exhaustive hypotheses or as a measure of 
the relation between the transmitted and the received signal through a transmis-
sion channel. 

In the case of two mass probability functions on the same finite support of 
cardinality r, 1( , )'rµ  and 1( , )'r  where i  and i i=1,...,r, are 
the probabilities of the i-th category, the KL divergence specifies in 

1

( ) log( / ), assuming by definition 0 log(0/0) 0.
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Although not being a real metric in a topological sense (Csiszàr, 1995) the KL 
divergence has proven to own relevant geometric properties which make it suit-
able for comparing probability functions and hence for comparing alternative 
models.

The models considered in this paper are hierarchical models. Each model is 
defined in terms of a set of s components Ke e=1,...,s. A component represents a 
subset of the variables included in the model and a hierarchical model is such that 
it always includes lower order components contained in a higher order compo-
nent of the model. A component which is a singleton is called a main effect oth-
erwise it is called an interaction. An interaction represents what is unique to a set 



R. Borgoni 754

of variables and not reducible to any of its subsets. In terms of the notation used 
in the paper, the components are separated from each other by “:”, for example 
given a random vector (X1, X2, X3) a main effect model is denoted as X1:X2:X3.
The way in which such components interact with each other depends on the 
shared variables. The notation introduced so far is equivalent to specifying a log-
linear model (Agresti, 2002) for the considered contingency table. As in the case 
of log linear models, each component identifies a marginal distribution. The joint 
probability distribution on the whole space conforms to each marginal distribu-
tion and the shared variables identify relationships of conditional independence. 
Components which do not share any variable represent therefore a relationship 
of marginal independence. The model consisting of all possible interactions is 
called saturated, and it will be denoted by m0 in what follows, whilst the independ-
ent model, mind, excludes all the interactions between the considered variables. 

A model mj is called a descendent of (or nested in) another model mi if each inter-
action of the first is included in the second. The hierarchical relation between 
the two models is denoted as i jm m . Two models are incompatible if they are 

not nested. It can be proved that “ ” is a relation of partial order on the set 
M= mi, i=1, ...} of the models covering a given space and therefore the pair 
(M, ) identifies a lattice. The possibility of identifying such an order provides us 
with the opportunity to define paths on the lattice and therefore optimal search-
ing algorithms may be implemented.  

Assuming i and 0 be the probability r-vectors associated with a model mi and 
the saturated model respectively, 0( )iI m m  is meant to represent the KL di-
vergence between the model mi and the saturated one and it can be naturally seen 
as a measure of goodness of fit for mi once it is calculated on the sample esti-
mates.

In order to compare any pair of descendent models mi and mj such that 

i jm m , the KL divergence can be extended as 

0

1

( ) log( / ) with 0 log(0/0) 0
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The following additive properties hold:  

0 0( ) ( ) ( )ind i i indI m m I m m I m m  (1) 

0 0( ) ( ) ( ) ( )ind i i j j indI m m I m m I m m I m m  (2) 

In particular the first equation splits the maximal distance in the lattice of the 
considered models in two components: ( )i indI m m  is the amount of diver-

gence explained by a model mi and 0( )iI m m  is what the model ignores. Given 
(1) the following indexes: 
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0 0( )/ ( )i indI m m I m m  (3) 

0( )/ ( )i ind indI m m I m m  (4) 

represent the proportion of the ignored and explained information. They take 
value 1 when all the information is ignored by mi and when mi explains all the in-
formation present in the data respectively. 

3. A TWO-STEP PROCEDURE FOR SMOOTHING SPARSE TABLES

In the contingency tables analysis, the problem of the estimation of the multi-
variate distribution associated to a given model of association is usually addressed 
via maximum likelihood. However a number of different approaches are pro-
posed in the literature. A well known method is the Maximum Entropy Principle 
(MPE). According to the MEP, given the set of constraints required by a model, 
the estimate of the probability law is obtained by maximising a suitable entropy 
function. A measure often proposed in the literature is the Kullback and Leibler 
divergence function. The resulting estimators are often referred as Minimum Dis-
criminant Information (MDI) and this approach can be included in the wider 
class of the Minimum Distance Estimators.  

The constraints1 on the probability distribution (sometime called information con-
straints) are expressed in terms of expected values of appropriate transformations 
of a set of random variables (Soofi, 1994) and, in the case of contingency tables 
they can be stated as linear functions of the cell probabilities. 

The optimality of the resulting estimators is investigated, among others, by 
Darroch and Ratcliff (1972). The authors also provide an iterative algorithm 
called Generalised Iterative Scaling (GIS) for solving the optimum problems of 
the MDI estimation. Most of the investigated properties, however, are large sam-
ple properties and therefore not suitable for a sparse context.

In this section a two-step procedure is introduced. In the first step the prob-
ability distribution is esteemed via a non-parametric technique. In particular a 
kernel-type smoother is used. In the second step the output of the first stage is 
used in a MDI paradigm, that is to say that the smoothed table is taken as the in-
put for the GIS algorithm which produces the final smoothing according to an 
assumed model. 

Being aware of the improvement in the estimates due to the smoothing step, 
the aim is to assess whether or not this improvement mirrors in more accurate 
estimates of the interaction structure of the involved variables and hence in a 
more powerful tool to detect the underlying multivariate structure of the data. 

1 According to Ghokale and Kullaback (1978) the constraints are called internal if the linear 
functions are defined in terms of a set of marginal distributions of the observed table, and that are 
the ones considered in the present paper, and external if the constraints are not defined in terms of 
the data. 
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It can be observed that for non-sparse tables the smoothed estimates are 
proved to be very close to the relative frequency therefore it does not matter 
whether or not they are used.

In the remaining part of this section the two steps of the estimation procedure 
are described in detail. 

The First step 
The first step of the procedure gives a smoothed version of the contingency 

table. In particular a kernel smoother is used. Kernel estimators for discrete prob-
ability distributions adapt kernel estimators for densities to the discrete case (Si-
monoff, 1996). Assuming that the probabilities associated to adjacent cells are 
similar, the idea of the estimator is borrowing strength from neighbouring cells in 
order to improve the estimates of less frequented categories.  

Assuming 1( , )'nX XS  being a sample drawn from a probability mass 
vector p of r components, the kernel estimator of pi=p(i) is defined as (Hall and 
Titterington, 1987) 

1 1

( ) ( , ) { ( )} { ( )},
n r

h j l h
j l

h h
p i p i h W h i X n W h i l

n n
S

where h is the smoothing parameter, Wh(x) is a kernel function and nl the fre-
quency of cell l, l=1,...,r. Under some regularity conditions this estimator has 
good properties both under standard and sparse asymptotic conditions (Bowman, 
Hall and Titterington, 1984).

Assuming p  being an estimator of the probability mass function p and defin-

ing the Mean Summed Squared Error (MSSE) of p  as 2

1

( )
r

i i
i

E p p , Hall 

and Titterington (1987) derived the optimal convergence rate in terms of the 
MSSE under sparse asymptotic conditions for any estimator p  of p. Specifically 
assuming that the vector p is generated by an underlying density function f(x)
with s-bounded continuous derivatives on a compact support through the rela-

tions
/

( 1)/
( ) ,

i r

i i r
p f u du  they proved the optimal rate to be 2 /( 2 1)( )s sO n  if 

1/( 2 1) 0sn  as n , = n being a sequence such that 0  as n .
Moreover they showed that the kernel estimator achieves this rate. 

It has been observed that kernel convolution smoothers have difficulties at and 
near the edges if the estimation is attempted over a region with known bounda-
ries and are particularly biased in this part of the support even when the estima-
tion of the density of an absolutely continuous random variable is of concern 
(Jones, 1993). To face this sort of bias, kernel estimators are proposed to be cor-
rected on the boundaries. For categorical data Dong and Simonoff (1994) pro-
posed a boundary correction which consists in replacing the kernel function on 
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the cells near the boundary with another suitable kernel (i.e. a function which sat-
isfies the so called second order conditions on this part of the range). This 
boundary corrected version is used in this paper. 

The data sparseness problem occurs more heavily in a multivariate framework. 
The kernel estimators can be generalised to the multidimensional context in rather a 
straightforward way (Grund, 1993). Being i a d-vector of indexes identifying a cell 
of a d-way table, the kernel estimator of the probability of the cell is defined as 

ˆ( ) ( , ) ( , ),p p p Wl i

l

i i h l hS

where d[0,1]h  is the vector of smoothing parameters and d is the dimension 
of the table. As in the univariate case, the kernel function Wi(l,h) weights the 
probability of each multi-cell l in a multivariate neighbourhood of the current 
smoothed multi-cell i where the smoothing window is defined in terms of the pa-
rameters h. The usual way to define the multidimensional kernel function consists 
in using a product of univariate kernels where each of them is obtained from a 
density with a fairly regular compact support. The previous formula does not 
necessarily imply that the smoothing parameter is the same for each dimension 
and each component of the vector h may take a different value. Dong and Si-
monoff (1995) generalised the boundary-corrected estimator to the d-dimensional 
case. Although this estimator achieves a good performance in terms of asymp-
totic properties, it has the drawback of allowing negative estimates of the cell 
probabilities which is a particularly unattractive feature since a probability less 
than zero is clearly meaningless. In order to guarantee a positive estimate, Dong 
and Simonoff (1995) introduced a suitable further correction. Such a correction is 
based on a geometric combination of kernel estimators defined in terms of a dif-
ferent width. They found the resulting estimator consistent in terms of Summed 

Squared Error with a rate of convergence 1 8/( 8)( )d
pO r n  for all d. Hereafter we 

refer to a simple version proposed by Dong and Simonoff which takes the form: 

4/3 1/3( ) ( ) ( 2 )p p pi | h i | h i | h .

The Second Step
As mentioned above the MDI estimator of a probability mass function can be 

obtained by minimising a divergence function under a set of linear constraints. In 
particular the divergence considered here is the KL information function. 

Assuming  a given probability mass function on a support of cardinality r the 
problem can be formalised as 

,
1

arg min ( ) given 1, ,
r

s i i s

i

I b c s v

where v is the number of constraints. 
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The fixed probability vector can be chosen on a priori ground. If the uniform 
distribution is chosen the MDI problem is equivalent to a Maximum Entropy Es-
timator where the entropy function is the Shannon’s entropy. 

The solution of the optimum problem is obtained by GIS, which is an iterative 
algorithm which adjusts, in each iteration, the probabilities estimated in the pre-
vious step until a tolerance level is reached (Darroch and Ratcliff, 1972). For 
acyclic models (models in which any component does not influence itself directly 
or indirectly and for which the associated probability distribution can be com-
puted algebraically) the algorithm converges since the first iteration. The obtained 
estimates are maximum likelihood estimates.  

In order to assess the goodness of fit of the estimated models, Ghokale and 

Kullback (1978) recommended using the statistic 2 ˆ( * )G b n I p p , where 
b is a constant depending on the base of the logarithm used in computing the di-
vergence, *p  is the MDI estimator under the considered model and p̂  is the ob-
served empirical distribution (the estimate under the saturated model). G2 tends 
to a chi-square distribution under standard asymptotic conditions with a number 
of degrees of freedom equal to the difference between the degrees of freedom 
associated to each of the two considered nested models, at their turn determined 
on the basis of the number of constraints imposed by each component2.

4. A MONTE CARLO SIMULATION STUDY

In order to assess the performance of the proposed estimator, a Monte Carlo 
experiment was performed. This section describes the details of the simulation 
study. In particular the simulation design is described in section 4.1. Details on 
the data generation and on the implemented procedures are reported in section 
4.2 and 4.3 respectively. Finally, the main results are discussed in section 4.4. 

4.1 The simulation design

Each Monte Carlo experiment is structured as follows. A trivariate space of ordi-
nal categorical data is considered and a sparse table with a known association struc-
ture is generated (the data generation procedure is described in detail in section 4.2). 

The simulation study aims to be explorative in nature. The goal is to assess 
whether or not the two-step procedure manages to increase the chance of finding 
out the real structure which is behind the data. At the same time the simulation 
aims to identify what sort of error is more likely to occur, i.e. whether the algo-
rithm tends to identify a structure which is more or less complex than the one 

2 For the external constraints problem Ghokale and Kullaback (1978) suggested a statistic which 
reverses the roles of *p and p̂ . Both these functionals belong to the Power Divergence Statistics 

(Cressie and Read, 1988) and have a similar asymptotic behaviour. It may also be noticed that for an 
external constraint problem the MDI estimator is not equal to the maximum likelihood estimator 
but it has the same asymptotic properties. 
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which was actually used to generate the data. Ideally this would require applying 
the two-step procedure to all of the models pertinent to the considered space, 
and compare the outcomes with the data looking for the best fit. In order to 
speed up the simulation an automatic top-down search algorithm was imple-
mented which reduces the number of comparisons. This, by the way, mirrors 
what actually happens in many practical applications when, starting from the ob-
served data, a model, which may be considered optimal in some respects, is 
sought by the analyst by using an automatic search procedure. 

More specifically the table is first smoothed using the kernel-type smoother. 
Then a backwards search procedure searching for an optimal model is imple-
mented for each of the visited models. It takes the smoothed table as an input. 
The GIS algorithm is then applied in order to estimate the probability distribu-
tion of each visited model (this stage is described in more details in section 4.3). 
Furthermore for each generated sparse table, a backwards model selection proce-
dure based on standard (asymptotic) maximum likelihood inference is also im-
plemented. The resulting models from the two procedures are stored in a file and 
the whole process is repeated a number of times.  

4.2 Data generation

If the multivariate joint law of a random vector can be specified then the ran-
dom vector can be generated (Johnson, 1987). In many cases however it is diffi-
cult to specify such a joint distribution although it is usually possible to specify 
the marginal distributions and some measures of dependence among the single 
random variables. In what follows the data generation is worked out by suppos-
ing that the levels of each classification factor are realisations of a multivariate 
Poisson variable with a given vector of means. It is usually assumed that a ran-
dom vector is multivariate Poisson distributed if all its univariate marginal distri-
butions are Poisson and if each Poisson component correlates to the other ac-
cording to a given correlation matrix. A method to generate a multivariate Pois-
son vector based on the self-decomposability property of the Poisson distribution 
(Steutel and Van Harn, 1979) has been proposed by Sim (1993). 

The algorithm used for generating the data in what follows is an efficient way 
to generate very large contingency tables. The algorithm takes the vector of mar-
ginal means and the correlation matrix as an input and gives a vector of random 
variables whose marginal distributions are Poisson with the given parameters as 
an output. Specifically let X =(X1,...,XP)’ be a vector of Poisson variables with 
vector of means  and correlation matrix  and Y =(Y1,..., YM)’ be a vector of in-
dependent Poisson variables with vector of parameters . The algorithm com-
putes the vector  satisfying the conditions 

E E( ) ( ) µX TY T  and Cov( )= Cov( )= ×diag( )× 'X TY T T

where T is a P M incidence matrix (i.e. a matrix of 0’s and 1’s). The problem 
of determining T can be led back to a linear programming problem of the form 
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= under constraint >  H c 0

where H is a [P (P +1)/2] M matrix depending on T and and solved via the 
simplex algorithm. The generation of multivariate Poisson variables can then be 
obtained by the transformation TY without knowing the probability law of Xs
but only its first two moments and the probability law of the Ys components. 

Here the correlation structure is seen as a proxy of the interaction structure. 
For instance the model X1X2:X3, where X1 and X2 are the only two variables 
which interact each other, is approximated by a correlation matrix corresponding 
to a marginal correlation between X1 and X2 and a null correlation between any 
other pair of variables i.e. a correlation matrix which takes the form  

1 0

1 0

0 0 1

where  is a positive value less than 1. 
After generating individual records they are cross-tabulated in order to produce 

the contingency table to be passed as the argument to the estimation procedure. 

4.3 The searching procedure

In the first step of the estimation procedure a boundary corrected kernel esti-
mator is computed using a product kernel of Epanechnikov’s univariate func-
tions. The estimator is further corrected through a geometrical combination as 
described in section 2. 

A backwards searching is then applied to the smoothed table. The algorithm 
used is similar to the one originally proposed by Lin (1982). It consists of two parts. 

In each of them the smoothed table is used as an input for the GIS algorithm 
which gives the final MDI estimate according to two alternative models of asso-
ciation. 

Specifically the first part of the Lin’s algorithm selects a uniform model3. The 
second part of the algorithm consists in a backwards elimination procedure which 
deletes those effects not contributing to the fit. 

The procedure stops when a model is found which differs from the previous 
one for an amount of information bigger than a given threshold. Specifically the 
stop rule is based on the index of residual information (3) introduced in section 2 
and stops when such an index gets greater than a given value. The used thresh-
olds for the residual information are 25% to select the uniform model and 15% 
to evaluate models between two adjacent uniform models4.

3 A uniform model is defined as a model which includes all interactions of a given order and none 
interaction of higher order. 

4 The chosen thresholds are suggested in Borgoni (1999) where an extensive simulation analysis 
on a grid of alternative values was performed. 



A two-step smoothing procedure for the analysis of sparse contingency etc. 761

4.4 Results

A first set of simulations based on 500 iterations is run in a very sparse con-
text. A sample of 13.000 records is generated according to two different models: 
X1X2:X2X3 and X1X2:X3. Different values of the correlation coefficients, 0.2, 0.5 
and 0.8 are considered in order to investigate the effect of a different degree of 
interaction among variables. 

The vector of the marginal means is (4.5, 4.5, 4.5)’. This produces an average 
number of categories for each dimension around 16 and an average size of cell 
frequency of 3.3 (see the last four columns of table 1).  

Before looking at the Monte Carlo results in details it could be noted that the 
degree of association amongst the variables affects, given the sample size, both 
the number of empty cells and the cell frequency. This is easy to be seen in a rec-
tangular table as the frequencies tend to assume specific patterns, for instance to 
become diagonal in the case of a positive association, when the interaction be-
tween two ordered classification factors gets higher. For a dimension larger than 
two this cannot be visualised anymore. In order to understand the effect on the 
structure of the sparseness in a multivariate table due to a gradually higher corre-
lation amongst the marginal variables, a small set of simulations using the algo-
rithm for generating multivariate Poisson data proposed above were run for four 
different values of the correlation coefficient, =0.2, 0.4, 0.6 and 0.8 (100 tables 
were generated in each of them). The average rate of empty cells as well as the 
minimum and the maximum rate in each of the four sets of simulations were 
computed and plotted versus the value of the correlation coefficient in Figure 1. 
Also the average of the highest frequency obtained in each of the onehundred 
generated table is reported there. Clearly the distribution gets more and more 
concentrated in a fewer number of cells as increases.
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Figure 1 – Average rate of empty cell (%) (horizontal bars represent the maximum and the minimum 
rate) and average highest cell frequency across 100 simulated tables versus the correlation coeffi-
cient. 
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This exercise underlines that it is worthwhile to check also the role that a dif-
ferent strength of the relation amongst the variables could play as this affects the 
number of zeros and the structure of the sparseness in a table. This is the reason 
why a grid of different values of is considered in the Monte Carlo study the re-
sults of which are reported in Table 1. 

In both the two sets of simulations, i.e. the data are simulated by model 
X1X2:X2X3 and X1X2:X3, the two-step algorithm proposed here looks to perform 
quite well always picking the model which actually generates the data out. 

On the other hand the search procedure based on the asymptotic distributional 
properties of the likelihood ratio test tends to introduce spurious effects. In 
particular this is the truer the higher the correlation amongst the variables. In 
the case of =0.5, for instance, this procedure always selects the model 
X1X2:X1X3:X2X3 whilst the actual model behind the data was X1X2:X2X3 and 
basically the same happens when =0.8. Surprisingly the standard procedure is 
still very conservative (25% percent of the times the uniform model of order 
two is picked out) also when the association amongst the variables is indeed low 
( = 0.2). 

The bottom part of table 1 presents the results when the data are generated by 
model X1X2:X3. As one might expect the performance of the chi-square based 
procedure improves as the structure of the generating model becomes simpler 
(i.e. less parameters are involved). This is because the dimension of the appropri-
ate sufficient statistics of the model (that is the marginal distributions of the table) 
is smaller and therefore those statistics are less likely to be sparse even the whole 
table may be very sparse. In this case, in fact, it looks like the strength of the rela-
tion between the pair of correlated variables affects the output of the search 
much less than in the previous case. Although it may be observed that still in a 
number of cases ranging from 7.8% ( = 0.8) to 10% ( =0.2), the standard as-
ymptotic inference suggests to keep spurious relationships.

A second set of simulations has been run under a less extreme sparseness con-
dition. In this case using the same parameters for the marginal Poisson distribu-
tions involved in the data generation mentioned above and the same grid of cor-
relation values, 500 samples of 17000 units were simulated from the model 
X1X2:X2X3 and the procedures described in the previous section5 applied. Results 
are reported in table 2. 

The findings are analogous to the ones obtained for the simulation run in the 
previous more extreme sparse case. Also in this case a good performance of the 

5 The whole simulation procedure was implemented by a Fortran code. In the case of the two-
step approach the total amount of time for running a slot of 500 iterations ranged from 246 min-
utes to 300 minutes across the performed simulations on a 1.70GHz Celeron Processor with 260Kb 
of RAM on a MS Windows 2000 platform. Most of the time was due to the smoothing step. The 
data generation took a negligible amount of time and there are basically no differences in the com-
putational time due to the size of the generated samples. It could be noted that only a few minutes 
were necessary to implement the search procedure in the case of no smoothing. In other words 
when the analysis of a very large table is of interest the amount of time necessary to smooth it has 
to be taken into account as a possible drawback of this approach. 
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proposed procedure was found whilst the one based upon the likelihood ratio 
test still looks very conservative introducing some spurious interactions amongst 
the variables again even for the case of a small correlation coefficient. 

TABLE 1 

Simulation results. Sample size: 13000 

2-step 
procedure 

Chi square 
procedure 

average number 
of categories generating 

model
Selected 
model Num. 

Iter.
%

Num. 
Iter.

%

mean
cell
size 1st

dim. 
2nd

dim. 
3rd

dim. 
X1X2:X2X3 0.2 X1X2:X1X3:X2X3   126 25.2 3.3 15.9 15.8 15.8 

  X1X2:X2X3 500 100 374 74.8     

 0.5 X1X2:X1X3:X2X3   500  100 3.3 15.9 15.9 15.8 
  X1X2:X2X3 500 100       

 0.8 X1X2:X1X3:X2X3   499 99.8 2.9 15.9 18.4 15.9 
  X1X2:X2X3 500 100     1   0.2     
           

X1X2:X3 0.2 X1X2:X1X3     23   4.6 3.3 15.8 15.8 15.8 
  X1X2:X1X3:X2X3       4   0.8     
  X1X2:X2X3     23   4.6     
  X1X2:X3 500 100 450    90     

 0.5 X1X2:X1X3     22   4.4 3.3 15.9 15.8 15.8 
  X1X2:X1X3:X2X3       3   0.6     
  X1X2:X2X3     18   3.6     
  X1X2:X3 500 100 457 91.4     

 0.8 X1X2:X1X3     18   3.6 3.3 15.9 15.9 15.8 
  X1X2:X1X3:X2X3       2   0.4     
  X1X2:X2X3     19   3.8     
  X1X2:X3 500 100 461 92.2     

A last slot of simulations not reported here has been done using the model 
X1X2:X3, for generating samples of size 17000. The two-step procedure acts cor-
rectly selecting the generating model. As one might have expected given the 
smaller dimensionality of the sufficient statistics of the model which generates the 
tables, the chi square procedure works better than in the case of data generated 
through the model X1X2:X2X3.. A slightly better behaviour than in the simula-
tions reported in table 1 was also found for all of the considered values of the 
correlation coefficient, but again this is not an unexpected result given the higher 
sample size. 

TABLE 2 

Simulation results. Sample size: 17000 

2-step 
procedure 

Chi square 
procedure 

average number 
of categories Generating 

model
Selected 
Model Num. 

Iter. 
%

Num. 
Iter. 

%

Mean 
cell
size 1st

dim. 
2nd

dim. 
3rd

dim. 
X1X2:X2X3 0.2 X1X2:X1X3:X2X3   166 33.2 4.2 16.1 16.0 16.0 

  X1X2:X2X3 500 100 334 66.8     

 0.5 X1X2:X1X3:X2X3   500 100 4.1 16.1 16.1 16.0 
  X1X2:X2X3 500 100       

 0.8 X1X2:X1X3:X2X3   500 100 3.6 16.1 18.6 16.1 
  X1X2:X2X3 500 100       



R. Borgoni 764

5. CONCLUSIONS

In this paper the capability of a two-step smoothing technique in addressing 
the multivariate structure of ordered categorical data is investigated. The pro-
posed procedure seems to work rather well compared to a standard asymptotic 
technique in the context of sparse data. In particular it seems to work better the 
more extreme the sparseness is and the more complex the interaction structure 
behind the data.  

Some issues however remain to be investigated. 
It is well known that kernel estimator suffers the so called “course of dimen-

sionality” i.e. the need of progressively larger sample size in higher dimensions to 
achieve comparable accuracy. A consequence is that in “very high dimensions lo-
cal neighbourhoods are empty and neighbourhoods that are not empty are almost 
sure not local” (Simonoff, 1996). Therefore this technique could not be suitable 
for extremely high multidimensional situations. Other smoothing estimators that 
suffer less this problem may be evaluated in this paradigm. 

As underlined by Cressie and Read (1988), the distribution of the test statistics 
under asymptotic sparse conditions is unknown and hard to be worked out. In 
this paper a fixed threshold is used. Another possibility to get around the prob-
lem could be a computational approach. The bootstrap (Davison and Hinkley, 
2000) could be usefully applied to this context. In particular the resampling pro-
cedure could take advantage by the smoothing itself and the samples may be 
drawn from the smoothed table. Sampling from the smoothed distribution in-
stead of from the empirical one is known as “smoothed bootstrap” (Hall et al.,
1989, Simonoff, 1996). The smoothed bootstrap in the context of sparse cate-
gorical data is used for instance in Borgoni and Provasi (2001). The computa-
tional requirement however may become cumbersome in a very high dimensional 
spaces.
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RIASSUNTO

Una procedura di lisciamento a due passi per l’analisi di tabelle di contingenza sparse con marginali ordinati  

Nell’analisi statistica di fenomeni economici, demografici o sociali l’interesse è spesso 
rivolto all’individuazione della struttura multivariata che soggiace al fenomeno osservato. 
In contesti multidimensionali spesso può accadere che il numero delle celle presenti nella 
tabulazione congiunta di più variabili categoriali sia molto elevato rispetto alla numerosità 
campionaria producendo una frequenza media di cella bassa o perfino nulla. Diversi auto-
ri hanno proposto metodi basati su tecniche di lisciamento per analizzare dati categoriali 
in condizioni di sparsità delle osservazioni, ma poco è stato fatto per valutare se tali tecni-
che possono essere d’aiuto nell’individuare la struttura multivariate dei dati. Il presente 
lavoro mostra come metodi di lisciamento, combinati con opportune misure sviluppate 
nell’ambito della teoria dell’informazione, possono fornire vantaggi nell’analisi di dati ca-
tegoriali caratterizzati da sparsità. 

SUMMARY

A two-step smoothing procedure for the analysis of sparse contingency tables with ordered categories 

Assessing the multivariate structure of data is often the aim of the statistical analysis of 
economical, demographic and social phenomena. In many situations in the analysis of 
categorical data it may happen that the number of cells can be close to, or even greater 
than, the number of observations at hand resulting in very small or even zero cell counts. 
In this case a contingency table is usually referred to as a sparse table. In this sort of situa-
tion the optimal properties of the usual statistical procedures may break down. Several 
authors investigated the use of smoothing methods for sparse count data but a little was 
done to evaluate if these methods can be helpful in discovering the multivariate structure 
of the data. This paper shows as the joint use of smoothing techniques and information 
measures may improve the analysis in a multivariate sparse context. 


