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1. INTRODUCTION

The reliability function R(t ) is defined as the probability of failure-free operation un-
til time t . Thus, if the random variable (rv) X denotes lifetime of an item or system,
then R(t ) = P (X > t ). Another measure of reliability under stress-strength set-up is
the probability P = P (X > Y ), which represents the reliability of item or system of
random strength X subject to random stress Y . Various author have considered the
problem of point estimation of R(t ) and P under censoring and complete sample cases
for various distributions. For a brief review, one may refer to Pugh (1963), Basu (1964),
Bartholomew (1957, 1963), Tong (1974, 1975), Johnson (1975), Kelley et al. (1976), Sathe
and Shah (1981), Chao (1982), Constantine et al. (1986), Awad and Gharraf (1986), Tyagi
and Bhattacharya (1989a,b), Chaturvedi and Rani (1997, 1998), Chaturvedi and Surinder
(1999), Chaturvedi and Tomer (2002); Chaturvedi et al. (2002); Chaturvedi and Tomer
(2003),Chaturvedi and Singh (2006, 2008),Chaturvedi and Vyas (2017) and others.

The two parameter Burr XII distribution was firstly introduced by Burr (1942). Its
cumulative distribution function (cdf) and probability distribution function (pdf) with
parameters c and k are given by

F (x; k , c) = 1− (1+ x c )−k ; x > 0, c , k > 0 (1)

and

f (x; k , c) = kc x c−1(1+ x c )−(k+1); x > 0, c , k > 0. (2)

1 Corresponding Author. E-mail: shanstatsdu@gmail.com
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The Burr XII distribution (Burr, 1942) is very useful in reliability analysis as a more
flexible alternative to Weibull distribution. In the last few years various authors have
developed inferential procedures for the parameters of this distribution. To cite a few
one may refer to Wingo (1983, 1993), Wang et al. (1996), Zimmer et al. (1998), Wang and
Shi (2010). Wingo (1983) introduced the maximum likelihood methods for fitting the
Burr XII distribution to complete data. He also obtained the ML estimators of Burr XII
distribution under type II censoring (Wingo, 1993). Wang et al. (1996) obtained the ML
estimators for the parameters of Burr XII distribution for censored as well as uncensored
data. Wang and Shi (2010) developed the empirical Bayes estimators for the parameters
of Burr XII distribution based on records.

In the present article we propose a three parameter Burr distribution by introducing
a scale parameter say α in (1) and (2). Three-parameter form of Burr XII distribution
is a generalization of the log-logistic distribution (Shao, 2004). Shao (2004) investigated
for the asymptotic properties of distribution function of three parameter Burr distribu-
tion. He also discussed various properties of ML estimators of the parameters of three
parameter Burr distribution. Chaturvedi and Malhotra (2017) have recently proposed
point and interval estimators of parameters and reliability functions of three parameter
Burr distribution based on records. They also developed testing procedures for different
statistical hypotheses.

The present article is devoted to the development of inferential procedures for the
parameters as well as reliability measures of three parameter Burr distribution under
type II and type I censoring schemes. The structure of article is as follows. In Section
2, we discuss the model of a three parameter Burr distribution. In Section 3 and 4, we
provide point estimators of parameters and reliability function under type II and type
I censoring, respectively. As far as the estimation procedures are concerned, UMVU
and ML estimators are derived. Some confidence intervals are also provided for the
estimators of parameters. In Section 5, testing procedures are developed for various
statistical hypotheses. Finally in Section 6 we present some numerical findings and in
Section 7 we give some remarks and conclusions.

2. THE MODEL

A random variable X is said to have a three parameter Burr distribution if its pdf and
cdf are given by

f (x; k , c ,α) =
kc x c−1

α

�

1+
x c

α

�−(k+1)
; x > 0, k , c ,α > 0 (3)

and

F (x; k , c ,α) = 1−
�

1+
x c

α

�−k
; x > 0, k , c ,α > 0. (4)

From (4), the reliability function R(t ) is given by
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R(t ) =
�

1+
t c

α

�−k
. (5)

From (3) and (5), the hazard rate is given by

h(t ) =
f (t )
R(t )

=
kc t c−1

α
�

1+ t c

α

� . (6)

Hazard rate is plotted in Figure 1 for different values of parameter k, other two
parameters c and α remaining fixed.

Figure 1 – Hazard rate for c = 2 and α= 3.

3. ESTIMATION UNDER TYPE-II CENSORING

Let n items are put an a life test and failure times of first r units are observed. Let X(1) ≤
X(2) ≤ X(3) ≤ ... ≤ X(r ), (0 < r ≤ n) be the lifetimes of first r units. Obviously, (n− r )
items survived until X(r ). The joint pdf of n order statistics X(1) ≤X(2) ≤X(3) ≤ ...≤X(n)
is

f (x(1), x(2), ..., x(n); k , c ,α) = n!
n
∏

i=1

f (x(i), k , c ,α). (7)



210 A. Chaturvedi and S. Vyas

Rewrite (3) as follows

f (x; k , c ,α) =
kc x c−1

α
�

1+ x c

α

� exp
�

−k log
�

1+
x c

α

��

; x > 0, k , c ,α > 0. (8)

Using (8) in (7) we have

f (x(1), x(2), ..., x(n); k , c ,α) = n!
�kc
α

�n n
∏

i=1

x c−1
(i)

�

1+
x c
(i)

α

� exp

�

−k log

�

1+
x c
(i)

α

��

. (9)

The joint pdf of X(1) ≤X(2) ≤X(3) ≤ ...≤X(r ) is obtained by integrating out X(r+1) ≤
X(r+2) ≤ ...≤X(n) from (9), which leads us to

f (x(1), x(2), ..., x(r ); k , c ,α) =
n!

(n− r )!

�kc
α

�r r
∏

i=1

x c−1
(i)

�

1+
x c
(i)

α

� exp (−kSr ) , (10)

where

Sr =
r
∑

i=1

log

�

1+
x c
(i)

α

�

+(n− r ) log

�

1+
x c
(r )

α

�

.

LEMMA 1. Sr is complete and sufficient for the distribution given at (3). Moreover, the
pdf of Sr is given by

f1(sr ; k) =
k r

Γ r
s r−1

r exp(−k sr ). (11)

PROOF. It follows from (10) and factorization theorem, that Sr is sufficient for k.
It is complete also as its distribution belongs to exponential family. Since F (xi ; k , c ,α) is

uniform over (0,1), Ui = F (xi ; k , c ,α) is also uniform over (0,1) and so yi = log
�

1+
x c
(i)

α

�

follows exponential distribution with mean life (1/k). Let us consider the transforma-
tion Zi = (n− i + 1)

¦

Y(i)−Y(i−1)

©

, i = 1,2, ..., r . Obviously,
∑r

i=1 Zi = Sr . Since Z ′i s
are exponential random variables with mean life (1/k), using the additive property of
gamma variates Sr ∼ γ (1/k , r ) and the pdf of Sr is given by (11). 2

The following theorem provides the UMVUE of powers of k.

THEOREM 2. For p ∈ (−∞,∞)(p 6= 0), the UMVUE of k p is given by

ek p
I I =







¦

Γ (r )
Γ (r−p)

©

S−p
r (p < r )

0, otherwise.
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PROOF. Theorem follows from Lemma 1 and using the fact that

E(S−p
r ) =

Γ (r − p)
Γ (p)

k p .

2

Next theorem provides the UMVUE of R(t ).

THEOREM 3. The UMVUE of R(t ) is given by

eRI I (t ) =















�

1−
log
�

1+ t c

α

�

Sr

�r−1

, log
�

1+ t c

α

�

< Sr

0, otherwise.

PROOF. From (5) we have

R(t ) =
�

1+
t c

α

�−k

= exp
§

−k l o g
�

1+
t c

α

�ª

=
∞
∑

i=0

(−1)i

i !

§

k l o g
�

1+
t c

α

�ªi
.

Using Lemma 1 of Chaturvedi and Tomer (2002), we have

RI I (t ) =
∞
∑

i=0

(−1)i

i !

§

log
�

1+
t c

α

�ªi
k̃ i

I I .

Theorem follows now on using Theorem 1. 2

The UMVUE of the pdf f (x; k , c ,α) given at (3) is provided in the next corollary.

COROLLARY 4. The UMVUE of sampled pdf f (x; k , c ,α) at a specified point x is given
by

efI I (x; k , c ,α) =















(r−1)c x c−1

α(1+ xc
α )Sr

�

1−
log
�

1+ xc

α

�

Sr

�r−2

, log
�

1+ x c

α

�

< Sr

0, otherwise.
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PROOF. The expectation of
∫∞

t
efI I (x; k , c ,α)d x with respect to Sr is R(t). Thus

eRI I (t ) =
∫ ∞

t

efI I (x; k , c ,α)d x

or

efI I (t ; k , c ,α) =−
d eRI I (t )

d t
. (12)

The result now follows from Theorem 3 and (12). 2

Let X and Y be two independent random variables following the classes of distribu-
tions f1(x; k1, c1,α1) and f2(y; k2, c2,α2), respectively, where

f1(x; k1, c1α1) =
k1c1x c1−1

α1

�

1+ x c
1
α1

� exp
�

−k1 log
�

1+
x c

1

α1

��

; x > 0, k1, c1,α1 > 0

and

f2(y; k2, c2,α2) =
k2c2y c2−1

α2

�

1+ y c
2
α2

� exp
�

−k2 log
�

1+
y c

2

α2

��

; y > 0, k2, c2,α2 > 0.

Let n items on X and m items on Y are put on a life test and failure times of first r1
and r2 units are observed on X and Y respectively. From Corollary (4), it follows that
the UMVUE’s of f1(x; k1, c1α1) and f2(y; k2, c2,α2) at specified points x and y are given
by

ef1I I (x; k1, c1,α1) =



















(r1−1)c1 x c1−1

α1

�

1+ xc1
α1

�

Sr1

�

1−
log
�

1+ xc1
α1

�

Sr1

�r1−2

, log
�

1+ x c1

α1

�

< Sr1

0, otherwise.

and

ef2I I (y; k2, c2,α2) =



















(r2−1)c2y c2−1

α2

�

1+ yc2
α2

�

Tr2

�

1−
log
�

1+ yc2
α2

�

Tr2

�r2−2

, log
�

1+ y c2

α2

�

< Tr2

0, otherwise.

In the next theorem, we provide the UMVUE of stress strength reliability P .
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THEOREM 5. The UMVUE of P is given by

P̃I I =















































(r2− 1)
∫U

o (1− z)r2−2
§

1− S−1
r1

log
§

1+α−1
1

�

α2

�

exp(zTr2
− 1)

��

c1
c2

ªªr1−1
d z,

if α1

�

exp(Sr1
− 1)

1
c1

�

<α2

�

exp(Tr2
− 1)

1
c2

�

(r2− 1)
∫ 1

o (1− z)r2−2
§

1− S−1
r1

log
§

1+α−1
1

�

α2

�

exp(zTr2
− 1)

��

c1
c2

ªªr1−1
d z,

if α1

�

exp(Sr1
− 1)

1
c1

�

>α2

�

exp(Tr2
− 1)

1
c2

�

where U =−T −1
r2

log
§

1+α−1
2

�

α1

�

exp
�

zSr1
− 1

���

c2
c1

ª

.

PROOF. From the arguments similar to those adopted in Corollary 4

ePI I =
∫ ∞

y=0

∫ ∞

x=y

ef1I I (x; k1, c1,α1) ef2I I (y; k2, c2,α2)d xd y

=
∫ ∞

y=0

eR1I I (y)
�

−d
d y

eR2I I (y)
�

d y

=
∫ M

y=0



1−
log

�

1+ y c1

α1

�

Sr1





r1−1
(r2− 1)c2y c2−1

α2

�

1+ y c2

α2

�

Tr2



1−
log

�

1+ y c2

α2

�

Tr2





r2−2

d y, (13)

where M = mi n
§

�

α1

�

exp(Sr1
− 1)

��
1
c1 ,
�

α2

�

exp(Tr2
− 1)

��
1
c2

ª

.

When M =
�

α1

�

exp(Sr1
− 1)

��
1
c1 , putting

log
�

1+ yc2
α2

�

Tr2
= z in (13), we get

P̃I I = (r2− 1)
∫ U

o
(1− z)r2−2

§

1− S−1
r1

log
§

1+α−1
1

�

α2

�

exp(zTr2
− 1)

��

c1
c2

ªªr1−1
d z

(14)

When M =
�

α2

�

exp(Tr2
− 1)

��
1
c2 for the same transformation of variables, we get

P̃I I = (r2−1)
∫ 1

o
(1−z)r2−2

§

1− S−1
r1

log
§

1+α−1
1

�

α2

�

exp(zTr2
− 1)

��

c1
c2

ªªr1−1
d z (15)

Theorem follows now on combining (14) and (15). 2
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COROLLARY 6. When X and Y belong to the same families of distributions (X and
Y are independent random variables)

ePI I =



















(r2− 1)
∫

Sr1
Tr2

o (1− z)r2−2
n

1−
Tr2
Sr1

z
or1−1

d z, if Sr1
< Tr2

(r2− 1)
∫ 1

o (1− z)r2−2
n

1−
Tr2
Sr1

z
or1−1

d z, if Sr1
> Tr2

.

3.1. Maximum likelihood estimation

3.1.1. When c and α are known
In the following theorem, we derive the MLE’s of powers of k.

THEOREM 7. For p ∈ (−∞,∞)(p 6= 0), the MLE of k p is given by

k̂ p
I I =

�

r
Sr

�p

.

PROOF. Taking natural logarithm of the both sides of (10), differentiating it with
respect to k, equating the differential coefficient equal to zero and solving for k, we get

k̂I I =
r
Sr

.

The result now follows from the invariance property of MLE’s. 2

THEOREM 8. The MLE of reliability function R(t ) is given by

bRI I (t ) = exp
�

− r
Sr

log
�

1+
t c

α

�

�

.

PROOF. The result follows from the expression of R(t ), Theorem 7 and the invari-
ance property of the MLE. 2

COROLLARY 9. The MLE of the pdf f (x; k , c ,α) at a specified point x is

bfI I (x; k , c ,α) =
r c x c−1

α
�

1+ x c

α

�

Sr

exp
�

− r
Sr

log
�

1+
x c

α

�

�

.

PROOF. The proof is similar to that of Corollary 4. 2
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THEOREM 10. The MLE of P is given by

bPI I =
∫ ∞

o
exp







−
r1

Sr1

log



1+α−1
1

�

α2

�

exp

�

zTr2

r2

�

− 1

��

c1
c2











e−z d z.

PROOF.

bPI I =
∫ ∞

y=0

∫ ∞

x=y

ef1I I (x; k1, c1,α1) ef2I I (y; k2, c2,α2)d xd y

=
∫ ∞

y=0

eR1I I (y)
�

−d
d y

eR2I I (y)
�

d y

=
∫ ∞

y=0
exp

¨

−
r1

Sr1

log
�

1+
y c

1

α1

�

«

r2c2y c2−1

α
�

1+ y c2

α2

�

Tr2

exp

¨

−
r2

Tr2

log
�

1+
y c2

α2

�

«

d y.

(16)

Theorem now follows on substituting r2
Tr2

log
�

1+ y c2

α2

�

= z. 2

COROLLARY 11. When X and Y belong to same families of distributions (X and Y are
independent random variables)

bPI I =
r2Sr1

r2Sr1
+ r1Tr2

.

3.1.2. When c and α are unknown
From (10), the log-likelihood is given by

Lo g L= log
�

n!
(n− r )!

�

+ r l o g k + r l o g c − r logα+(c − 1)
r
∑

i=1

log(x(i))

−
r
∑

i=1

log(1+
x ci

α
)− kSr .

(17)

Differentiating w.r.t. k , c , and α and equating to 0 we get following three equations

r
k
− Sr = 0 (18)

r
c
+

r
∑

i=1

log(x(i))− (k + 1)
r
∑

i=1

x c
(i) log(x(i))

α
�

1+
x c
(i)

α

� − k(n− r )
x c
(r ) log(xr )

α
�

1+
x c
(r )

α

� = 0 (19)
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− r
α
+
(k + 1)
α2

r
∑

i=1

x c
(i)

�

1+
x c
(i)

α

� + k
x c
(r )

α2
�

1+
x c
(r )

α

� = 0. (20)

From (18), we have the MLE of k as follows

k̂I I =
r
Sr

. (21)

MLE’s of c and α (say ĉI I and α̂I I ) can be obtained by solving (19) and (20) simulta-
neously and using (21).

THEOREM 12. The MLE of R(t ) is given by

bRI I (t ) = exp
�

− r
Sr

log
�

1+
t ĉ

α̂

��

.

PROOF. Theorem follows from expression of R(t ) on using MLE of k , c and α and
invariance property of MLE’s. 2

COROLLARY 13. The MLE of the pdf f (x; k , c ,α) at a specified point x is

bfI I (x; k , c ,α) =
r ĉ x ĉ−1

α̂
�

1+ x ĉ

α̂

�

Sr

exp
�

− r
Sr

log
�

1+
x ĉ

α̂

��

.

THEOREM 14. The MLE of P is given by

bPI I =
∫ ∞

o
exp







−
r1

Sr1

log



1+ α̂−1
1

�

α̂2

�

exp

�

zTr2

r2

�

− 1

��

ĉ1
ĉ2











e−z d z.

PROOF. Theorem follows from Theorem (10) and invariance property of MLE’s.2

3.2. Interval estimation

The Fisher’s information matrix is given by

I (θ) =−E











δ2 log L
δα2

δ2 log L
δαδc

δ2 log L
δαδk

δ2 log L
δcδα

δ2 log L
δc2

δ2 log L
δcδk

δ2 log L
δkδα

δ2 log L
δkδc

δ2 log L
δk2











.

where θ= [k , c ,α]T . Since it is difficult to obtain the above expectations, we use the ob-
served information matrix by dropping the expectation sign. The asymptotic variance-
covariance matrix is the inverse of I (θ̂)where θ̂= (k̂, ĉ , α̂)T . Let us denote by σ̂2(k̂), σ̂2(ĉ)
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and σ̂2(α̂) be the estimated variances of , ĉ and α̂ respectively. Using the asymptotic
normality of MLE’s the 100(1− ε)% confidence intervals for k , c and α are given by
(k̂−Zε/2σ̂(k̂), k̂+Zε/2σ̂(k̂)),(ĉ−Zε/2σ̂(ĉ), ĉ+Zε/2σ̂(ĉ)) and (α̂−Zε/2σ̂(α̂), α̂+Zε/2σ̂(α̂))
respectively where Zε/2 is the upper 100(1− ε) percentile point of standard normal dis-
tribution.

4. ESTIMATION UNDER TYPE-I CENSORING

Let 0≤X(1) ≤X(2) ≤ ....≤X(n) be the failure times of n items under test and lifetime of
each item has the pdf given by (2). Test begins at time 0 and operates till X(1) = x(1), the
first failure time. Failed item is replaced by a new one and system operates further till
X(2) = x(2), and so on. The experiment is terminated at time to .

THEOREM 15. If N (to) be the number of items that failed before time to , then

P [N (to) = r/t0] =
exp

¦

−nk log
�

1+ t c
0
α

�©¦

nk log
�

1+ t c
0
α

�©r

r !
. (22)

PROOF. For Y ′(i) s , i = 1,2, ..., n defined in Section 2, lest us make the transformation
W1 = Y(1),W2 = Y(2)−Y(1), ...,Wn = Y(n)−Y(n−1).
We have shown that W ′

i s are i.i.d. rv’s having exponential distribution with mean (1/k).
By the definition of N (to)

P [N (to) = r/to]
= P [X(r ) ≤ to]− P [X(r+1) ≤ to]

= P
�

Y(r ) ≤ log
�

1+
t c
0

α

�

]− P [Y(r+1) ≤ log
�

1+
t c
0

α

��

= P

�

nk
r+1
∑

i=1

Wi ≥ nk log
�

1+
t c
0

α

�

�

− P

�

nk
r
∑

i=1

Wi ≥ nk log
�

1+
t c
0

α

�

�

.

Using a result of Patel, Kapadia and Owen (1976, pp. 244), we have

P [N (to) = r/to]

=
1

Γ (r + 1)

∫ ∞

nk log
�

1+
t c
0
α

�

u r e−u d u − 1
Γ (r )

∫ ∞

nk log
�

1+
t c
0
α

�

u r−1e−u d u

= exp
§

−nk log
�

1+
t c
0

α

�ª





r
∑

j=0

¦

nk log
�

1+ t c
0
α

�© j

j !
−

r−1
∑

j=0

¦

nk log
�

1+ t c
0
α

�© j

j !



 .
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and the theorem follows. 2

THEOREM 16. For p ∈ (0,∞), the UMVUE of k p is given by

ek p
I =







r !
(r−p)!

¦

nk log
�

1+ t c
0
α

�©−p
, if p ≤ r

0, otherwise.

PROOF. It follows from (22) and factorization theorem that r is complete and suf-
ficient for α. The theorem now follows from the result that

E [r (r − 1)...(r − p + 1)] =
§

nk log
�

1+
t c
0

α

�ªp

.

2

THEOREM 17. The UMVUE of R(t) is given by

eRI (t ) =















�

1−
log
�

1+ t c

α

�

n log
�

1+
t c
0
α

�

�r

, if log
�
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≤ n log
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0, otherwise.

PROOF. Using Theorem (16)

eRI (t ) = exp
§

−k log
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=
∞
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and the theorem follows. 2

COROLLARY 18. The UMVUE of the sampled pdf at a specified point x is

efI (x; k , c ,α) =



























r c x c−1

nα log
�
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o
α

�

(1+ xc
α )

�

1−
log
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if log
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≤ n log
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1+ t c
o
α
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0, otherwise.
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PROOF. Theorem follows from Theorem (17) and the techniques adopted in the
proof of Corollary (4). 2

As in Section 3, let X and Y be two independent rv’s following the classes of distri-
butions f1(x; k1, c1,α1) and f2(y; k2, c2,α2), respectively. Let n items on X and m items
on Y are put on life tests and r1 and r2 be the number of failures before time to and too ,
respectively. It follows from Corollary (18) that the UMVUE’s of f1(x; k1, c1,α1) and
f2(y; k2, c2,α2) at a specified point x and y respectively, are given by

efI (x; k1, c1,α1) =
r1c1x c1−1

nα1 log
�

1+ t c1
o
α1

�

�

1+ x c1

α

�
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�
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n log
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1+ t c1
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�
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and

efI (y; k2, c2,α2) =
r2c2y c2−1

mα2 log
�

1+ t c2
o
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�

1+ y c2

α

�
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�

1+ y c2
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�

m log
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o
α2

�
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.

In the next theorem, we provide the UMVUE of P .

THEOREM 19. The UMVUE of P is given by

P̃I =
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COROLLARY 20. When X and Y belong to the same families of distributions (X and Y
are independent random variables)

ePI =
¨

r2

∫
n
m

o (1− z)r2−1
�

1− m
n z
	r1 d z, if m > n

r2

∫ 1
o (1− z)r2−1

�

1− m
n z
	r1 d z, if m < n.

4.1. Maximum likelihood estimation

4.1.1. When c and α are known
In the following theorem, we derive the MLE’s of powers of k.

THEOREM 21. For p ∈ (−∞,∞)(p 6= 0), the MLE of k p is given by

k̂ p
I =





r

n log
�

1+ t c
o
α

�





p

.

PROOF. Taking natural logarithm of the both sides of (22), differentiating it with
respect to k, equating the differential coefficient equal to zero and solving for k, we get

k̂I =





r

n log
�

1+ t c
o
α

�



 .

The result now follows from the invariance property of MLE’s. 2

THEOREM 22. The MLE of reliability function R(t ) is given by

bRI (t ) = exp







−
r log

�

1+ t c

α

�

n log
�

1+ t c
o
α

�







.

PROOF. The result follows from the expression of R(t ), Theorem 21 and the invari-
ance property of the MLE. 2

COROLLARY 23. The MLE of the pdf f (x; k , c ,α) at a specified point x is

bfI (x; k , c ,α) =
r c x c−1

α
�

1+ x c

α

�

n log
�

1+ t c
o
α

� exp







−
r log
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n log
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1+ t c
o
α

�







.

PROOF. The proof is similar to that of Corollary 4. 2
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THEOREM 24. The MLE of P is given by

bPI =
∫ ∞
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exp
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PROOF.

bPI =
∫ ∞
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∫ ∞

x=y

bf1I (x; k1, c1,α1) bf2I (y; k2, c2,α2)d xd y
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d y. (23)

Theorem now follows on substituting
r2 ln

�

1+ yc2
α2

�

m ln
�

1+ t
c2
oo
α2

� = z. 2

COROLLARY 25. When X and Y belong to same families of distributions (X and Y are
independent random variables)

bPI =
n r2

m r1+ n r2
.

4.1.2. When c and α are unknown
From (22), the log-likelihood is given by

log P =
§

−nk log
�

1+
t c
o

α

�ª

+ r log
§

nk log
�

1+
t c
o

α

�ª

− log r !. (24)

Differentiating (24) with respect to k , c and α and equating to 0 we get the following
equations
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−n log
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1+
t c
o

α

�

+
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k
= 0 (25)
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log
�
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Solving the above equations simultaneously using the numerical techniques we get the
MLE’s of k, c and α say k̂, ĉ and α̂.

THEOREM 26. The MLE of reliability function R(t ) is given by

bRI (t ) = exp











−
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.

COROLLARY 27. The MLE of the pdf f (x; k , c ,α) at a specified point x is

bfI (x; k̂, ĉ , α̂) =
r ĉ x ĉ−1
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THEOREM 28. The MLE of P is given by

bPI =
∫ ∞
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exp
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4.2. Interval estimation

The Fisher’s information matrix is given by

I (θ) =−E
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,
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where θ= [k , c ,α]T . Since it is difficult to obtain the above expectations, we use the ob-
served information matrix by dropping the expectation sign. The asymptotic variance-
covariance matrix is the inverse of I (θ̂)where θ̂= (k̂, ĉ , α̂)T . Let us denote by σ̂2(k̂), σ̂2(ĉ)
and σ̂2(α̂) be the estimated variances of , ĉ and α̂ respectively. Using the asymptotic
normality of MLE’s the 100(1− ε)% confidence intervals for k , c and α are given by
(k̂−Zε/2σ̂(k̂), k̂+Zε/2σ̂(k̂)),(ĉ−Zε/2σ̂(ĉ), ĉ+Zε/2σ̂(ĉ)) and (α̂−Zε/2σ̂(α̂), α̂+Zε/2σ̂(α̂))
respectively where Zε/2 is the upper 100(1− ε) percentile point of standard normal dis-
tribution.

5. TESTING PROCEDURES FOR DIFFERENT STATISTICAL HYPOTHESES

In this section, we develop the test procedure for testing statistical hypotheses for the
parameter k and P . Suppose we want to test the hypothesis H0 : k = k0 against the
alternative H1 : k 6= k0 under type II censoring. From (10)

Supθ0
L(k|x) = n(n− 1)....(n− r + 1)

�

ck0

α

�r r
∏

i=1

x c−1
i

1+ x c
i
α

exp(−k0Sr )

and

SupθL(k|x) = n(n− 1)....(n− r + 1)
�

r
Sr

�r

exp(−r ).

The likelihood ratio is given by

λ(x) =
� Srα0

r

�r

exp(−α0Sr + r ) (28)

The first term on the right side of (28) is monotonically increasing in Sr , whereas,
the second one is monotonically decreasing. Using the fact that 2Sr

k0
follows χ 2

2r and
denoting by β the probability of type I error, the critical region is given by

{0< Sr < λ0}
⋃

n

λ́0 < Sr <∞
o

where

λ0 =
k0

2
χ 2

2r

�

1−
β

2

�

and

λ́0 =
k0

2
χ 2

2r

�

β

2

�

.

For type I censoring, a similar procedure can be used to find the critical region. De-
noting by r , a poisson rv with parameter nk log

�

1+ t c
0
α

�

. The critical region is given by
n

r < λ1 or r > λ́1

o

, r follows a Poisson distribution with parameter
¦

nk log
�

1+ t c
0
α

�©

.
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Now suppose we want to test the null hypothesis H0 : k ≤ k0 against H1 : k > k0
under type II censoring. It is easy to see that the family of sampled pdf has monotonic
likelihood in Sr . Thus, the uniformly most powerful critical region is given by

Sr ≤
´́
λ0,

where
´́
λ0 =

k0

2
χ 2

2r (1−β).

Under type I censoring, the critical region is r ≥
´́
λ1, where P (r ≥

´́
λ1) =β.

Now suppose we want to test the null hypothesis H0 : P = P0 against H1 : P 6= P0
under type II censoring. It is easy to see that

P =
k2

k1+ k2
,

for c1 = c2 and α1 = α2. For δ = P0
1−P0

, H0 is equivalent to H0 : k1 = δk2, so that
H1 : k1 6= δk2. For a generic2 constant η

L(k1, k2

�

�

�x, y ) = ηk r1
1 k r2

2 exp
¦

−(k1Sr1
+ k2Tr2

)
©

.

Under H0

k̂1I I =
δ(r1+ r2)
δSr1

+Tr2

, k̂2I I =
(r1+ r2)
δSr1

+Tr2

.

Thus

SupH0
L(k1, k2

�

�

�x, y ) =
η

�

Sr1
+Tr2

/δ
�r1+r2

exp (−(r1+ r2)) .

Over the entire parametric space Θ = {(k1, k2)/k1, k2 > 0}

SupΘL(k1, k2

�

�

�x, y ) =
η

S r1
r1

T r2
r2

exp (−(r1+ r2)) .

On using the fact that
Sr1
Tr2

follows r1k2
r2k1

F2r1,2r2
(.) where Fa,b (.), is the F -statistic with

(a, b ) degrees of freedom, the critical region is given by

2 By generic constant we represent here a group of normalizing constants which includes all
constants arising at each step. This help us to get rid of writing different normalizing constants
at each step.
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¨�

Sr1

Tr2

< λ2

�

∪
�

Sr1

Tr2

> λ
′

2

�«

,

where

λ2 =
r1

δ r2
F2r1,2r2

�

1−
β

2

�

and

λ
′

2 =
r1

δ r2
F2r1,2r2

�

β

2

�

.

6. NUMERICAL FINDINGS

In this section we obtained estimates of parameters and reliability functions for simu-
lated as well as real data. Result obtained for two different censoring schemes has been
verified here. Estimates of reliability functions has been obtained and compared for
different sample sizes and has been represented in tabulated form.

Firstly we verified results obtained under type-II censoring. We generated 10,000
samples of size 50 each from the distribution given in (3) with α = 3; c = 2; k = 1 using
inverse transform sampling and obtained estimates of k and R(t ) by setting r = 35,
p = 1, t = 0.75(in hours). These estimates are provided in Table 1 (see Appendix).
The sampled pdf f (x), MLE and UMVUE of f (x) are plotted in Figure 2 between the
interval [0,1]. Next we generated 1,000 samples of sizes 30 and 40 respectively each from
the distribution given at (3) with α1 = α2 = 3; n = 30; m = 40; c1 = c2 = 2.5; k1 = k2 = 1.
Estimates of stress-strength reliability P = P (X > Y ) are obtained by setting r = 19 and
s = 30 respectively. Estimates of P are: [P̂ , P̃ ] = [0.494745,0.497046]. Value of P based
on the samples is found to be 0.5. Similar calculations have been carried out under type
I censoring scheme. Estimates of k and R(t ) have been obtained by setting t0 = 1.5,
p = 1, t = 0.75 (in hours). These estimates are provided in Table 2. The sampled pdf
f (x), MLE and UMVUE of f (x) are plotted in Figure 3 between the interval [0,1].



226 A. Chaturvedi and S. Vyas

Figure 2 – MLE and UMVUE of sampled pdf.

Figure 3 – MLE and UMVUE of sampled pdf.

Estimates of stress-strength reliability P = P (X > Y ) are obtained by setting t0 =
3.5, t00 = 4 respectively. Estimates of P are: [P̂ , P̃ ] = [0.50112,0.499922]. Value of P
based on the samples is found to be 0.5.

For checking the authenticity of tests derived in Section 5, we generated a sample of
size 50 with α = 3; c = 2; k = 1 using inverse transform sampling. The null hypothesis
to be tested is H0 : k = 1 against H1 : k 6= 1. Setting r = 35, the value of test statistic i.e.
sr comes out to be 26.9556. Using the chi-square table, at 5 percent level of significance,
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the values of λ0 and λ́0 come out to be 24.3788 and 47.5116 respectively. Hence we may
accept the null hypothesis.

Let us suppose the null hypothesis to be tested is H0 : k ≤ 1 against H1 : k > 1.
Setting r = 35, the value of test statistic i.e. sr comes out to be 26.9556. Using the chi-

square table, at 5 percent level of significance, the value of
´́
λ0 comes out to be 25.8696.

Hence we may accept the null hypothesis.
Now let us suppose we want to test the null hypothesis H0 : P = P0 against H1 :

P 6= P0. We generated two samples of size 30 and 40 respectively with α1 = α2 = 3; n =
30; m = 40; c1 = c2 = 2.5; k1 = k2 = 1. Setting r = 19; s = 30, the value of test statistic
Sr/Ts is found to be 0.8591. Using the F -table, the values of λ2 and λ́2 are calculated as
0.3472 and 1.1119 respectively at 5 percent level of significance. Hence we may accept the
null hypothesis. The similar calculations may be done for testing the above hypotheses
under type-I censoring scheme.

We constructed Table 5 to compare the performance of two estimators of reliability
function R(t ) for different (n, r ) and t under type-II censoring. The similar compari-
son has been done under type-I censoring scheme in Table 6. We constructed Table 7
and Table 8, which contain estimates of k and R(t ) obtained under type II and type I
censoring respectively for decreasing number of observed failures and sample size 100.

Next we considered an example of real data. This data consists the maximum flood
levels (in millions of cubic feet per second) for the Susquehanna River of Harrisburg
over 20 four-year periods (Dumonceaux and Antle, 1973). This data can also be found
in (Cheng and Amin, 1981, 1983): (0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379
0.3235 0.269 0.740 0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265.)

(Shao, 2004) has showed in his paper that the three-parameter Burr distribution fits
this data better in comparison to Weibull and Pareto distributions. He provided the
MLE of k, c and α as follows [k̂, ĉ , α̂] = [0.142,6.434,1350.844].

Under type-II censoring scheme, we obtained estimates of k and R(t ), MSE and
variance by setting r = 15; t = 0.5 (in hours). These estimates are given in Table 3.
Under type-I censoring scheme,we obtained estimates of k and R(t ), MSE and variance
by setting to = 5; t = 0.5 (in hours). These estimates are given in Table 4.

7. REMARKS AND CONCLUSION

Seeing Figure 1 we observed that hazard rate is a decreasing function of t for every value
of k. From Figure 2 and Figure 3 it is evident that the estimators of sampled pdf obtained
under type II censoring fit better to the actual model than the estimators of sampled pdf
obtained under type I censoring. From Table 5 and Table 6 it is clear that estimators ob-
tained under type-II censoring perform better than the estimators obtained under type-
I censoring. Seeing Table 7 and Table 8, we observed that MSE and variance increase
rapidly as we decrease the number of observed failures in the case of type I censoring
as compared to type II censoring. Hence we conclude that estimated accuracy affects
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much in the case of type I censoring when the number of observed failures decreases as
compared to type II censoring.
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APPENDIX

TABLES

TABLE 1
Estimates of k and R(t), variance and MSE under type II censoring.

k̂ 1.031713
k̃ 1.002236

R(t ) 0.841788
ˆR(t ) 0.842105
˜R(t ) 0.83793

M SE[ ˆR(t )] 0.000682
V [ ˜R(t )] 0.00064

TABLE 2
Estimates of k and R(t), variance and MSE under type I censoring.

k̂ 1.306162
k̃ 0.494053

R(t ) 0.842105
ˆR(t ) 0.799042
˜R(t ) 0.79854

M SE[ ˆR(t )] 0.002011
V [ ˜R(t )] 0.002056
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TABLE 3
Estimates of k and R(t), variance and MSE under type II censoring.

k̂ 0.100231
k̃ 0.093549

R(t ) 0.999466
ˆR(t ) 0.999623
˜R(t ) 0.999648

M SE[ ˆR(t )] 2.471063e-08
V [ ˜R(t )] 3.324842e-08

TABLE 4
Estimates of k and R(t), variance and MSE under type I censoring.

k̂ 0.092043
k̃ 0.092043

R(t ) 0.999465
ˆR(t ) 0.970877
˜R(t ) 0.970852

M SE[ ˆR(t )] 0.0008172771
V [ ˜R(t )] 0.0008187055
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TABLE 5

Estimates of R(t) and P, corresponding variances and MSE for different (n, r).

(n,r) (30,19) (40,30) (50,35)

t ˜R(t ) ˆR(t ) V ( ˜R(t )) M SE( ˆR(t )) ˜R(t ) ˆR(t ) V ( ˜R(t )) M SE( ˆR(t )) ˜R(t ) ˆR(t ) V ( ˜R(t )) M SE( ˆR(t ))
1 0.9140 0.9097 8.21E-05 0.0001796 0.9066 0.9037 0.000270 0.0003738 0.9197 0.9175 1.16E-05 3.10E-05
2 0.8240 0.8161 3.28E-04 0.0006777 0.8099 0.8047 0.0010361 0.0014001 0.8352 0.8312 4.70E-05 1.18E-04
3 0.7223 0.7116 7.65E-04 0.001475 0.7020 0.6951 0.0023021 0.0030193 0.7394 0.7339 1.12E-04 2.60E-04
4 0.6213 0.6090 1.32E-03 0.0023514 0.5963 0.5885 0.0037529 0.0047631 0.6435 0.6370 1.98E-04 4.20E-04
5 0.5282 0.5159 1.87E-03 0.003085 0.5005 0.4928 0.0050369 0.0061803 0.5545 0.5478 2.88E-04 5.59E-04
6 0.4466 0.4352 2.33E-03 0.0035631 0.4177 0.4108 0.0059475 0.0070587 0.4756 0.4692 3.69E-04 6.56E-04
7 0.3771 0.3671 2.65E-03 0.0037786 0.3483 0.3425 0.0064399 0.0074030 0.4078 0.4020 4.32E-04 7.06E-04
8 0.3188 0.3106 2.84E-03 0.0037815 0.2910 0.2865 0.0065704 0.0073294 0.3503 0.3453 4.74E-04 7.17E-04
9 0.2703 0.2640 2.91E-03 0.0036375 0.2441 0.2408 0.0064327 0.0069777 0.3020 0.2979 4.98E-04 6.99E-04
10 0.2302 0.2257 2.89E-03 0.0034053 0.2058 0.2036 0.0061194 0.0064681 0.2615 0.2583 5.06E-04 6.64E-04

TABLE 6
Estimates of R(t) and P, corresponding variances and MSE for different (n, t0).

(n,t0) (50,4.5) (40,3.5) (30,2.5)

t ˜R(t ) ˆR(t ) V ( ˜R(t )) M SE( ˆR(t )) ˜R(t ) ˆR(t ) V ( ˜R(t )) M SE( ˆR(t )) ˜R(t ) ˆR(t ) V ( ˜R(t )) M SE( ˆR(t ))
1 0.8836 0.8837 1.78E-02 1.78E-02 0.8563 0.8566 1.12E-02 1.13E-02 0.8500 0.8506 1.0E-02 1.01E-02
2 0.6938 0.6948 7.03E-02 7.08E-02 0.6319 0.6338 4.13E-02 4.21E-02 0.6171 0.6209 3.55E-02 3.70E-02
3 0.5489 0.5511 8.93E-02 9.06E-02 0.4704 0.4742 4.85E-02 5.02E-02 0.4510 0.4585 4.04E-02 4.34E-02
4 0.4491 0.4524 8.48E-02 8.67E-02 0.3651 0.3703 4.29E-02 4.51E-02 0.3438 0.3541 3.45E-02 3.84E-02
5 0.3789 0.3829 7.38E-02 7.60E-02 0.2943 0.3006 3.50E-02 3.74E-02 0.2726 0.2847 2.73E-02 3.15E-02
6 0.3275 0.3321 5.32E-02 6.51E-02 0.2446 0.2515 2.81E-02 3.04E-02 0.2230 0.2363 2.13E-02 2.54E-02
7 0.2884 0.2935 6.27E-02 5.55E-02 0.2081 0.2154 2.26E-02 2.48E-02 0.1871 0.2010 1.67E-02 2.05E-02
8 0.2578 0.2632 4.53E-02 4.77E-02 0.1804 0.1880 1.83E-02 2.05E-02 0.1600 0.1743 1.32E-02 1.67E-02
9 0.2332 0.2388 3.9E-02 4.12E-02 0.1587 0.1664 1.51E-02 1.7E-02 0.1390 0.1535 1.06E-02 1.38E-02
10 0.2130 0.2188 3.38E-02 3.59E-02 0.1413 0.1491 1.25E-02 1.44E-02 0.1223 0.1368 8.68E-03 1.16E-02



232 A. Chaturvedi and S. Vyas

TABLE 7
Estimates of k and R(t) for different number of observed failures, their corresponding variances and

MSE.

r k̂ k̃ R(t) ˜R(t ) ˆR(t ) M SE ˆR(t ) V ˜R(t )
75 1.013251 0.999741 0.842105 0.840362 0.842141 0.000291 0.000283
60 1.016345 0.999405 0.842105 0.839963 0.842191 0.000371 0.000358
50 1.021046 1.000625 0.842105 0.839339 0.842020 0.000462 0.000443
40 1.025707 1.000064 0.842105 0.838731 0.842094 0.000572 0.000542
30 1.036973 1.002407 0.842105 0.837248 0.841762 0.000807 0.000750

TABLE 8
Estimates of k and R(t) for different censoring times, their corresponding variances and MSE.

t0 k̂ k̃ R(t) ˜R(t ) ˆR(t ) M SE ˆR(t ) V ˜R(t )
3.5 1.307094 0.494405 0.842105 0.798865 0.798614 0.001948 0.001970
3 1.040453 0.541392 0.842105 0.836315 0.836137 0.000107 0.000109

2.5 0.760967 0.600179 0.842105 0.877454 0.877343 0.001314 0.001306
2 0.484255 0.674531 0.842105 0.920173 0.920117 0.006138 0.006130

1.5 0.239859 0.765908 0.842105 0.959629 0.959610 0.013832 0.013828
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SUMMARY

A three parameter Burr distribution is considered. Two measures of reliability are discussed. Point
and interval estimation procedures are developed for the parameters, and reliability functions un-
der type II and type I censoring. Two types of point estimators namely- uniformly minimum
variance unbiased estimators (UMVUES) and maximum likelihood estimators (MLES) are de-
rived. Asymptotic variance-covariance matrix and confidence intervals for MLE’s are obtained.
Testing procedures are also developed for various hypotheses.
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