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1. INTRODUCTION

Let X =
�

xi , j

�

be a p ×m random matrix having a matrix variate normal distribution

with mean matrix Θ =
�

θi , j

�

and covariance matrix V ⊗ Im , where V is known or
unknown, Im is the m×m identity matrix and⊗ denotes the Kronecker product. This
note considers estimation of Θ relative to the divergence loss function

L (a;Θ) =
1

β(1−β)

�

1−
∫

Rp×m

f β (X|a) f 1−β (X|Θ)dx
�

, (1)

where 0 < β < 1, f (X|Θ) is the conditional density function of X given Θ and a is an
estimator of Θ.

Estimators for the mean matrix have been proposed under different loss functions.
Efron and Morris (1972) proposed an empirical Bayes estimator outperforming the max-
imum likelihood estimator, X , for the case m > p + 1. Stein (1973), Zhang (1986a),
Zhang (1986b), Bilodeau and Kariya (1989), Ghosh and Shieh (1991), Konno (1991),
Tsukuma (2008), Tsukuma (2010) and others found minimax estimators better than the
maximum likelihood estimator for quadratic loss and general quadratic loss functions.

The most recent minimax estimator forΘ is that due to Zinodiny et al. (2017). They
estimated Θ under the balanced loss function. But Zinodiny et al. (2017) considered
only the case V = σ2Ip , where σ2 is unknown. In this note, we consider three cases
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as outlined in the abstract. Furthermore, the divergence loss function in (1) has attrac-
tive properties not shared by other loss functions, including the balanced loss function.
Firstly, it is invariant to one-to-one coordinate transformation of a. Secondly, the Fisher
information function, used commonly to measure the sensitivity of estimates, is pro-
portional to (1). Thirdly, many loss functions including the balanced loss function are
symmetric, but (1) is not symmetric. If β is closer to 1 more weight is given to a. If β
is closer to 0 more weight is given to Θ. Other attractive properties of (1) can be found
in Kashyap (1974).

The divergence loss function is directly comparable to the densities f (X|Θ) and
f (X|a). Robert (2001) refers to it as an intrinsic loss function, see also Amari (1982) and
Cressie and Read (1984). The divergence loss function has been applied in many areas.
Some examples include: discrimination between stationary Gaussian processes (Cord-
uas, 1985); the Vocal Joystick engine, a real-time software library which can be used
to map non-linguistic vocalizations into realizable continuous control signals (Malkin
et al., 2011); risk-aware modeling framework for speech summarization (Chen and Lin,
2012); models for web image retrieval (Yang et al., 2012); models for coclustering the
mouse brain atlas (Ji et al., 2013); properties of record values (Paul and Thomas, 2016).

The aim of this note is to estimate the mean matrix of the matrix variate normal
distribution under the divergence loss function. The contents are organized as follows:
Section 2 shows that the empirical Bayes estimators dominate the maximum likelihood
estimator under (1) for m > p + 1 and hence the latter is inadmissible for the case V is
known. We find a general class of minimax estimators using a technique due to Stein
(1973) when V = Ip . Section 3 shows that X is inadmissible for m > p + 1 when V =
σ2Ip , where σ2 is unknown. Section 4 shows that X is inadmissible for the case V is
unknown. These sections in fact extend the results of Ghosh et al. (2008) and Ghosh
and Mergel (2009) to the multivariate case. Section 5 performs a simulation study to
compare one of the derived estimators with that in Zinodiny et al. (2017). Section 6
concludes the note.

2. ESTIMATION OF THE MEAN MATRIX WHEN V IS KNOWN

Here, we suppose

X∼Np×m (Θ,V⊗ Im) ,

where Np×m (Θ,V⊗ Im) denotes the matrix variate normal distribution with mean ma-
trix Θ and covariance matrix V ⊗ Im , where V is assumed known. We consider the
problem of estimating the mean matrix Θ under the loss function (1), namely

L (a;Θ) =
1

β(1−β)

�

1−
∫

Rp×m

f β (X|a) f 1−β (X|Θ)dx
�

=
1

β(1−β)

�

1− e−
β(1−β) tr((a−Θ)′V−1(a−Θ))

2

�

, (2)
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where tr(A) and A′ denote, respectively, the trace and the transpose of a matrix A, and
f (X|Θ) denotes the matrix variate normal density function. The usual estimator for Θ
is the maximum likelihood estimator, X .

Lemma 1 shows that the maximum likelihood estimator is minimax under the loss
function (2).

LEMMA 1. The estimator X is minimax under the loss function (2).

PROOF. Suppose the proper prior sequenceπn (Θ) is distributed according to a ma-
trix variate normal distribution with mean matrix zero and covariance matrix nC⊗Im ,
i.e. Θ ∼ Np×m

�

0p×m , nC⊗ Im

�

, where C is a p × p known positive definite matrix.
Then, the posterior distribution is

Θ|X∼Np×m

��

Ip −V (nC+V)−1
�

X,
�

V−1+(nC)−1�−1⊗ Im

�

.

Thus, the Bayes estimator is

δπn
(X) = E [Θ|X] =

�

Ip −V (nC+V)−1
�

X.

Moreover, the risk function of X and Bayes risk function of δπn
(X) are

R (X;Θ) =
1− [1+β (1−β)]−

p m
2

β (1−β)

and

rn = r
�

πn ,δπn
(X)

�

=
1−

�

�V−1+(nC)−1
�

�

m
2
�

�[1+β (1−β)]V−1+(nC)−1
�

�

− m
2

β (1−β)
,

respectively, where |A| denotes the determinant of A. Since the determinant of a matrix
is a continuous function, we have

lim
n→∞

rn =
1− [1+β (1−β)]−

p m
2

β (1−β)
= sup

Θ
R (X;Θ) .

Hence, using Theorem 1.12 on page 613 of Lehmann and Casella (1998) and results of
Blyth (1951), X is minimax under the loss function (2). 2

Now we construct a class of empirical Bayes estimators better than X . Assume we
have some additional information about Θ that can be written as

Θ∼Np×m

�

0p×m ,A⊗ Im

�

.
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The conditional distribution of Θ given X is

Np×m

��

Ip −V (V+A)−1
�

X,
�

V−1+A−1�−1⊗ Im

�

.

So, the Bayes estimator of Θ under (2) is

bΘB = E [Θ|X] =
�

Ip −VΣ−1
�

X,

where Σ=A+V. In an empirical Bayes scenario, Σ is unknown, and is estimated from
the marginal distribution of X. The marginal distribution of X is Np×m

�

0p×m ,Σ⊗ Im

�

.
So, S=XX′ is completely sufficient for Σ and an empirical Bayes estimator is

bΘEB = E [Θ|X] =
�

Ip −VbΣ−1(S)
�

X,

where bΣ−1(S) is an estimator forΣ−1 and bΣ−1(S) depends on X only through S. Accord-
ing to Ghosh and Shieh (1991), a natural candidate for bΣ−1 (S) is (m− p−1)S−1. Ghosh
and Shieh (1991) obtained this empirical Bayes estimator when the loss function was

L1 (δ;Θ) = tr
�

(δ −Θ)′Q(δ −Θ)
�

, (3)

where Q is a p × p known positive definite matrix.
To continue, we use the following notations borrowed from Ghosh and Shieh (1991):

let EΘ denote the expectation conditional on Θ; eE denotes the expectation over the
marginal distribution of Θ; E denotes the expectation over the joint distribution of X
and Θ. Let Ri (δ;Θ) = EΘ [Li (δ;Θ)], i = 1,2,3 and R (δ;Θ) = EΘ [L (δ;Θ)]. We use

the notation D=
�

di , j

�

, where di , j =
�

1+δi , j

2

�

∂
∂ si , j

(see the last line of page 308 in Ghosh

and Shieh (1991)), δi , j being the Kronecker deltas and si , j the (i , j )th element of S. Note
that D is a differential operator in the form of a matrix. If we assume f (A) is a real-
valued function of a p× p matrix A, then D f (A) is a p× p matrix with (i , j )th element
1+δi , j

2
∂ f (A)
∂ si , j

. For example, if p = 2 and f (A) = s2
1,1+ s2

2,2 then D f (A) =
�

2s1,1 0
0 2s2,2

�

.

Also for any p × p matrix T, D(T) is a p × p matrix with (i , j )th element
p
∑

l=1
di ,l tl , j .

For example, if p = 2 then D(S) =
� 3

2 0
0 3

2

�

.

THEOREM 2. The empirical Bayes estimator in (3) is minimax under (2) if it is mini-
max under the quadratic loss function (3) when Q=V−1.

PROOF. The difference of the risks of bΘEB and X is

R
�

bΘEB ;Θ
�

−R (X;Θ) =
1

β(1−β)

�

g (X;Θ)− g
�

bΘEB ;Θ
��

,
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where

g (δ;Θ) = E
h

e−β(1−β) tr((δ−Θ)
′V−1(δ−Θ))/2

i

.

Using the fact that e−x ≥ 1− x, we see that

g (bΘEB ;Θ)≥ g (X;Θ)−
β(1−β)

2[1+β(1−β)]
p m
2

EΘ[tr(X
′
bΣ−1V′V−1VbΣ−1X− 2tr(X′bΣ−1V′V−1(X−Θ))],

where EΘ is taken with respect to Np×m

�

Θ, V
1+β(1−β) ⊗ Im

�

. Using Theorem 2 in Ghosh
and Shieh (1991) and the notation R1 (δ;Θ) = EΘ [L1 (δ;Θ)], we can write

g
�

bΘEB ;Θ
�

− g (X;Θ)≥−
β(1−β)

2
[1+β(1−β)]−

p m
2

�

R1

�

bΘEB ;Θ
�

−R1 (X;Θ)
�

. (4)

Hence, if R1

�

bΘEB ,Θ
�

≤ R1 (X;Θ), then R
�

bΘEB ;Θ
�

≤ R (X;Θ). 2

Similar to Ghosh and Shieh (1991), we can write (4) as

g
�

bΘEB ;Θ
�

− g (X;Θ)≥−
β(1−β)

2
[1+β(1−β)]−

p m
2 E

�

tr
�

V
1
2 U1V

1
2

��

and

U1 = bΣ
−1(S)SbΣ−1(S)− 4D

�

SbΣ−1(S)
�

− 2(m− p − 1)bΣ−1(S),

and R1

�

bΘEB ;Θ
�

≤ R1 (X;Θ) if U1 ≤ 0 has a positive probability for some Θ. If bΣ−1(S)

is chosen in such a way that bΘEB improves on X under the quadratic loss function (3),
then it improves on X also under (2).

Let Op be the set of orthogonal matrices of order p and let Vm, p be the Stiefel

manifold, namely, Vm, p =
¦

V ∈Rm×p ,V′V= Ip

©

. Write the singular value decom-

position of X as ULV′, where U ∈ Op , V ∈ Vm, p and L = diag
�

l1, l2, . . . , lp

�

with

l1 > l2 > · · ·> lp > 0. Ghosh and Shieh (1991) showed that if bΣ−1(S) =UL−1Ψ∗ (L)U′,
where Ψ∗ (L) is a diagonal matrix with diagonal elements equal to ψ∗i (L), i = 1, . . . , p,
then bΘEB is minimax under the following conditions when the loss function is (3) with
Q=V−1.

THEOREM 3. Suppose that ψ∗i (L), i = 1, . . . , p satisfy

I. 0<ψ∗i (L)< 2 (m− p − 1), i = 1, . . . , p,
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II. For every i = 1, . . . , p, ∂ ψ
∗
i (L)
∂ li
≥ 0,

III. ψ∗i (L) are similarly ordered to li , that is
�

ψ∗i (L)−ψ
∗
t (L)

�

(li − lt )≥ 0 for every 1≤
i , t ≤ p.

Then, bΘEB =
�

Ip −VUL−1Ψ∗ (L)U′
�

X improves on X for m > p + 1 under the loss
function (3).

PROOF. See Ghosh and Shieh (1991). 2

Using Theorem 2, we can see that bΘEB =
�

Ip −VUL−1Ψ∗ (L)U′
�

X is minimax for
m > p + 1 under the conditions of Theorem 3 when the loss function is (2). This
means, X is inadmissible for m > p + 1 under the loss function (2). Examples (1) and
(2) in Ghosh and Shieh (1991) illustrated the above result. Of course, one may obtain
estimators of the form (3) which dominate X when the conditions of Theorem 3 are not
met. Some examples are given in Ghosh and Shieh (1991).

In the rest of this section, we consider the problem of estimating Θ under the loss
function (2) for the case V = Ip . Let δ = X+G, where G = G(X) is a p ×m matrix
valued function of X. Also let ∇ be a p × m matrix with (i , j ) element equal to the
differential operator ∂

∂ xi , j
. We obtain a general condition for minimaxity.

THEOREM 4. Suppose

δ =X+G

is minimax under (3). Then it is also minimax under (2).

PROOF. The difference of the risks of δ and X is

R (δ;Θ)−R (X;Θ) = g (X;Θ)− g (δ;Θ) ,

where

g (δ;Θ) = EΘ

�

e−
β(1−β) tr((δ−Θ)′(δ−Θ))

2

�

.

Using e−x ≥ 1− x, we see that

g (δ;Θ)≥ g (X;Θ)−
β(1−β)

2
[1+β(1−β)]−

p m
2 E

�

tr
�

G′G
�

+ 2tr
�

G′(X−Θ)
��

,

where EΘ is taken with respect to Np×m

�

Θ,
Ip

1+β(1−β) ⊗ Im

�

. Using Theorem 2 in Ghosh

and Shieh (1991), we can write

g (δ;Θ)− g (X;Θ)≥−
β(1−β)

2
[1+β(1−β)]−

p m
2 [R1 (δ;Θ)−R1 (X;Θ)] .

Hence, if R1 (δ;Θ)≤ R1 (X;Θ), then R (δ;Θ)≤ R (X;Θ). 2
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By Theorem 4, if EΘ [tr (G
′G)+ 2tr (G′(X−Θ))]≤ 0 then R (δ;Θ)≤ R (X;Θ). Us-

ing Stein (1973)’s identities, EΘ

�

tr(G′(X−Θ))
1+β(1−β)

�

= EΘ [tr (∇G′)], so we can write

EΘ
�

tr
�

G′G
�

+ 2tr
�

G′(X−Θ)
��

= E
�

tr
�

G′G
�

+ 2 [1+β(1−β)] tr
�

∇G′
�	

.

So, if tr (G′G) + 2 [1+β(1−β)] tr (∇G′) ≤ 0 with a positive probability for some Θ,
then δ is minimax under the loss function (2).

Now, assume the class of shrinkage estimators

δ =
�

Ip −UF−1Ψ (F)U′
�

X, (5)

whereΨ (F) = diag
�

ψ1, . . . ,ψp

�

is a diagonal matrix with ψi being functions of F= L2.
We obtain the following by applying Theorem 4.

COROLLARY 5. Suppose ψi satisfy

I. For fixed f1, . . . , fi−1, fi+1, . . . , fp , ∂ ψi
∂ fi
≥ 0, where i = 1, . . . , p,

II. 0≤ψp ≤ · · · ≤ψ1 ≤ 2 (m− p − 1).

Then, δ in (5) is minimax under the loss function (2).

PROOF. With the notation Φ(F) = (F′)−1Ψ (F), Stein (1973) showed that
δ =

�

Ip −UΦ(F)U′
�

X is minimax under conditions (I) and (II) when the loss function
is (3). Using Theorem 4, we can see that δ = X+G is minimax under (2), where G =
−UΦ(F)U′X. 2

Tsukuma (2008) showed that the proper Bayes estimators with respect to the follow-
ing prior

Θ∼Np×m

�

0p×m ,Λ−1
�

Ip −Λ
�

⊗ Im

�

are of the form δ =
�

Ip −UF−1Ψ (F)U′
�

X, where Λ is a p ×m random matrix with
the density function

π (Λ)∝ |Λ|
a
2−1 I

�

0p×p <Λ< Ip

�

.

Under certain a and loss function (3), these estimators are minimax, thus we can see
from Corollary 5 that δ is minimax under (2).
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3. ESTIMATION OF THE MEAN MATRIX WHEN V= σ2Ip AND σ2 IS UNKNOWN

Here, we assume that

X∼Np×m

�

Θ,σ2Ip ⊗ Im

�

,

where σ2 is unknown. So, S is independent of X and

S ∼ σ2χ 2
n ,

where χ 2
n denotes a chi-square random variable with n degrees of freedom. We consider

estimation of Θ under

L (a;Θ) =
1

β(1−β)

�

1−
∫

Rp×m

f β (X|a) f 1−β (X|Θ)dx
�

=
1

β(1−β)

�

1− e−
β(1−β) tr((a−Θ)′(a−Θ))

2σ2

�

. (6)

Similar to Lemma 1, one can show that the maximum likelihood estimator, X , is min-
imax under the loss function (6). Tsukuma (2010) obtained general conditions for min-
imaxity of estimators having the form δ1 = X+G (X, S), where G (X, S) is a p × m
matrix valued function of X and S under the quadratic loss function

L2 (a;Θ) =
tr ((a−Θ)′(a−Θ))

σ2
. (7)

THEOREM 6. The estimator δ1 = X+G (X, S) is minimax under the quadratic loss
function (6) if it is minimax under (7) for m > p + 1.

PROOF. We have

R (δ1;Θ)−R (X;Θ) =
1

β(1−β)
[g (X;Θ)− g (δ1;Θ)] .

Using e−x ≥ 1− x,

g (δ1;Θ)≥ g (X;Θ)−
β(1−β)

2
[1+β(1−β)]−

p m
2 EΘ

�

tr (G′G)+ 2tr (G′(X−Θ))
σ2

�

and

g (δ1;Θ)− g (X;Θ)≥−
β(1−β)

2
[1+β(1−β)]−

p m
2 [R2 (δ1;Θ)−R2 (X;Θ)] ,

where
R2 (δ;Θ) = EΘ [L2 (δ;Θ)] .
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So, if
R2 (δ1;Θ)≤ R2 (X;Θ) ,

then
R (δ1;Θ)≤ R (X;Θ) .

The proof is complete. 2

Tsukuma (2010) showed that if

(n− 2) tr (G′G)
s

+ 2tr
�

∇G′
�

+
∂ tr (G′G)

∂ s
≤ 0

then δ1 = X+G (X, S) is minimax under the loss function (7). So, using Theorem 6,
we see that δ is minimax under the loss function (6).

THEOREM 7. Consider the estimator

δ2 (X, S) =
�

Ip −UF−1Ψ(F, S)U′
�

X,

where F = L
s = diag

�

f1, . . . , fp

�

and Ψ(F, s) = diag
�

ψ1, . . . ,ψp

�

are diagonal matrices
with ψi being functions of F and s . If the following conditions hold, then δ2 is minimax
under the loss function (7)

I. For fixed F, ∂ ψi
∂ s ≤ 0,

II. For fixed f1, . . . , f j−1, f j+1, . . . , fp , ∂ ψi
∂ f j
≥ 0, where i , j = 1, . . . , p,

III. 0≤ψp ≤ · · · ≤ψ1 ≤
2(m−p−1)

n+2 .

PROOF. Tsukuma (2010) showed that δ2 is minimax under conditions I-III when
the loss function is (7). So, using Theorem 6, we see that δ2 is minimax under the loss
function (6) if conditions I-III hold. 2

4. ESTIMATION OF THE MEAN MATRIX WHEN V IS UNKNOWN

Here, we assume

X∼Np×m (Θ,V⊗ Im) ,

where V is unknown. So, bV is independent of X and

bV∼Wp (V, n) ,
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where Wp (V, n) denotes a Wishart random vector with n degrees of freedom and mean
nV. We consider estimating Θ under the loss function

L (a;Θ) =
1

β(1−β)

�

1−
∫

Rp×m

f β (X|a) f 1−β (X|Θ)dx
�

=
1

β(1−β)

�

1− e−
β(1−β) tr((a−Θ)′V−1(a−Θ))

2

�

. (8)

Similar to Lemma 1, one can show that the maximum likelihood estimator, X , is mini-
max under the loss function (8).

We now consider the relationship between this loss function and the following quadratic
loss function

L3 (a;Θ,V) = tr
�

(a−Θ)′Q∗(a−Θ)
�

, (9)

where Q∗ =V−
1
2 QV−

1
2 . Assume δ3 =X+G

�

X, bV
�

, where G
�

X, bV
�

is a p×m matrix

valued function of X and bV.

THEOREM 8. The estimator δ3 = X+G
�

X, bV
�

is minimax under the loss function
(8) if it is minimax under (9).

PROOF. We have

R (δ3;Θ)−R (X;Θ) =
1

β(1−β)
[g (X;Θ)− g (δ3;Θ)] ,

where

g (δ3;Θ) = E

�

e−
β(1−β) tr((δ3−Θ)′V−1(δ3−Θ))

2

�

.

So,

g (δ3;Θ)≥ g (X;Θ)−
β(1−β)

2
[1+β(1−β)]−

p m
2

EΘ[tr(G
′Q∗G)+ 2tr(G′Q∗(X−Θ))],

where EΘ is taken with respect to Np×m

�

Θ, V
1+β(1−β) ⊗ Im

�

. Using

R3(δ;Θ) = EΘ[L3(δ;Θ)],

we can write

g (δ3;Θ)− g (X;Θ)≥−
β(1−β)

2
[1+β(1−β)]−

p m
2 [R3 (δ3;Θ)−R3 (X;Θ)] .

Hence, if R3 (δ3;Θ)≤ R3 (X;Θ), then R (δ3;Θ)≤ R (X;Θ). 2



Minimax estimation of the mean matrix 379

Shieh (1993) considered empirical Bayes estimators of the form

bΘ1EB =
�

Ip − bVS−1τ
�

bV,S
��

X,

where S = XX′ and τ
�

bV,S
�

is a symmetric matrix. Shieh (1993) showed that bΘ1EB is
better than the maximum likelihood estimator, X , under (8). For example, he showed
that if τ

�

bV,S
�

= (m− p − 1)Ip , then bΘEB improves on X for m > p + 1.
For the case Q = V = Ip , Konno (1990), Konno (1991), Konno (1992) considered

the estimators

δ4 =

( �

Ip −RF−1Φ(F)R′
�

X, if m < p,
�

Ip −QF−1Φ(F)RQ−1
�

X, if m ≥ p,

where, for p < m, XbV−1X′ =RFR′, R ∈Op and, for p ≥ m, QbV−1Q′ = Ip , Q′XX′Q=

F = diag
�

f1, . . . , fm∧p

�

, f1 ≥ · · · ≥ fm∧p > 0. Under the following conditions, Konno
(1990), Konno (1991), Konno (1992) showed that δ4 improves on X when the loss func-
tion is (8):

i) For i = 1, . . . , p, φi (F) is nondecreasing in fi ;

ii) 0≤φm∧p (F)≤φm∧p−1(F)≤ · · · ≤φ1(F)≤
2(m∨p−m∧p−1)
n+(2m−p)∧p+1 .

So, using Theorem 8, we see that these estimators are minimax under (8).

5. SIMULATION STUDY

As mentioned in Section 1, Zinodiny et al. (2017) estimated Θ under the balanced loss
function when V= σ2Ip , where σ2 is unknown. Here, we perform a simulation study
to compare this estimator with the estimator under the divergence loss function, see
Theorem 8. The simulation study was performed as follows:

1. simulate 10000 random samples each of size n from a matrix variate normal dis-
tribution with zero means and V= σ2Ip ;

2. compute Zinodiny et al. (2017)’s estimator and the estimator in Theorem 8 for
each of the samples, say

¦

bΘ1, bΘ2, . . . , bΘ10000

©

and
¦

eΘ1, eΘ2, . . . , eΘ10000

©

;

3. compute the biases of Zinodiny et al. (2017)’s estimator and the estimator in The-
orem 8 as

1
10000m p

10000
∑

i=1

p
∑

j=1

m
∑

k=1

bΘi , j ,k
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and

1
10000m p

10000
∑

i=1

p
∑

j=1

m
∑

k=1

eΘi , j ,k ;

4. compute the mean squared errors of Zinodiny et al. (2017)’s estimator and the
estimator in Theorem 8 as

1
10000m p

10000
∑

i=1

p
∑

j=1

m
∑

k=1

bΘ2
i , j ,k

and

1
10000m p

10000
∑

i=1

p
∑

j=1

m
∑

k=1

eΘ2
i , j ,k .

We repeated this procedure for n = 10,12, . . . , 109. We chose σ = 1, m = 10 and p = 5.

20 40 60 80 100
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20
−

0.
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0.
00
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20 40 60 80 100

−
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20
−

0.
10

0.
00

Figure 1 – Biases of Zinodiny et al. (2017)’s estimator (solid curve) and the estimator in Theorem
8 (broken curve) versus n.
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Figure 2 – Mean squared errors of Zinodiny et al. (2017)’s estimator (solid curve) and the estimator
in Theorem 8 (broken curve) versus n.

The biases versus n are drawn in Figure 1. The mean squared errors versus n are
drawn in Figure 2. We see that the estimator in Theorem 8 has consistently smaller bias
and consistently smaller mean squared error for every n. We took σ = 1, m = 10 and
p = 5 in the simulations. But the same observation was noted for a wide range of other
values of σ , m and p. Hence, the estimator in Theorem 8 is a better estimator with
respect to both bias and mean squared error.

6. CONCLUSIONS

We have considered the problem of estimating the mean of a matrix variate normal dis-
tribution. We have provided minimax estimators under the divergence loss function.
The divergence loss function has several attractive features compared to other loss func-
tions considered in the literature.

We have given minimax estimators for the mean considering different forms for the
covariance matrix. The forms considered include the cases that the covariance matrix is
known and the covariance matrix is completely unknown.

We have performed a simulation study to compare one of our estimators with the
most recently proposed estimator. The simulation shows that our estimator has consis-
tently smaller bias and consistently smaller mean squared error.
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SUMMARY

The problem of estimating the mean matrix of a matrix-variate normal distribution with a co-
variance matrix is considered under two loss functions. We construct a class of empirical Bayes
estimators which are better than the maximum likelihood estimator under the first loss function
and hence show that the maximum likelihood estimator is inadmissible. We find a general class of
minimax estimators. Also we give a class of estimators that improve on the maximum likelihood
estimator under the second loss function and hence show that the maximum likelihood estimator
is inadmissible.

Keywords: Empirical Bayes estimation; Matrix variate normal distribution; Mean matrix; Mini-
max estimation.


