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1. INTRODUCTION

The estimates of population parameters obtained through one-time surveys are usually
relevant only up to a limited period of time and could not be used for populations which
is dynamic, in the sense that population characteristics are subjected to changes over
time. To overcome this limitation, the only way is to repeat the survey at regular in-
tervals or even at random intervals over a period of time and, thus, the survey may
be considered repetitive in character. Theory of successive sampling appears to have
started with the work of Jessen (1942). Yates (1949) was the first to follow up the work
of Jessen and to develop the theory of partial replacement for more than two occasions.
Subsequently, Narain (1953), Tikkiwal (1951, 1953, 1956, 1958) published a series of in-
teresting papers under same set up of estimation as given by Jessen. Utilizing different
kinds of estimates and choice of samples, Sen (1971,1972,1973), Gupta (1979), Singh et
al. (1991), Singh and Singh (2001) and Singh (2003) contributed a lot of researches to-
wards the development of the theory of estimation of population mean in successive
sampling. Feng and Zou (1997), Singh (2005), Choudhary et al. (2004) and Singh et al.
(2012) considered the application of auxiliary information at both the occasions.

1.1. Non-response in successive sampling

Repeated surveys are generally more prone to the problem of non-response than sin-
gle occasion surveys. Many authors have suggested different methods to deal with the
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problem on non-response where Sub-sampling and Imputation methods are predomi-
nant. Imputation is the technique of filling-in the incomplete sampled data in order to
have a complete data set that can be analysed with traditional analysis methods. To deal
with missing values effectively Kalton et al. (1981) and Sande (1979) suggested some im-
putation methods. Lee et al. (1994) used the information on an auxiliary variable for
the purpose of imputation. Based on auxiliary variable, Singh and Horn (2000) sug-
gested compromised methods of imputation. Several papers based on imputation tech-
niques to deal with non-response in successive sampling have been suggested by Singh
and Priyanka (2010), Singh et al. (2008), Singh et al. (2009), Singh et al. (2013) and
Pandey et al. (2016).

In this paper we have proposed an imputation method based on a family of “factor-
type estimator” for dealing with the problem of non-response assuming that the target
population has been sampled at two different occasions. One parameter “factor-type es-
timators (FTE)” propounded by Singh and Shukla (1987) exhibits some nice properties,
and includes sample mean estimator, ratio estimator, product estimator and dual to ratio
estimator as particular cases.

2. THE PROBLEM AND NOTATIONS USED

Let Ω be the finite population of size N under consideration which has been sampled
over two occasions. Let the characteristic under study be denoted by X (Y ) on the first
(second) occasion. Let the information on an auxiliary variable (with known population
mean) Z be available such that Zh ; (h = 1,2) stand for the auxiliary variable Z on h t h

h = 1,2 occasion. We assume the presence of non-response at both the occasions. Let
a simple random sample without replacement (SRSWOR) denoted by sn of size n be
selected at the first occasion, out of which r1 units be respondents and n− r1 be non-
respondents. We denote the sets of respondent units and non-respondent units in this
sample by R1 and RC

1 respectively. Obviously then sn=R1

⋃

RC
1 . Further, a random sub-

sample sm of m = nλ units is retained (matched), for its use at the second occasion, from
the r1 units of the sample sn and it is assumed that these matched units will respond at
the second (current) occasion as well. A SRSWOR sample of size u = (n−m)= nµ units
denoted by su is selected afresh at the second occasion from the entire population so that
the overall sample size at the second occasion remain n. Let the number of responding
units out of sampled u units, which are drawn afresh at the current occasion be denoted
by r2. Let us denote the sets of respondents and non-respondents in the sample su by
R2 and Rc

2 respectively so that su=R2 RC
2 . We observe that λ and µ; (λ+µ) = 1 are the

fractions of the matched and fresh samples, respectively, on the current occasion.
In what follows next, we shall use the following notations.

• X̄ , Z̄1: population means of the respective variables X and Z at the first occasion.

• Ȳ , Z̄2: population means of the respective variables Y and Z at the second occa-
sion.
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• x̄n , ȳm , x̄m , x̄r1
, ȳr2

, z̄r1
, z̄r2

: sample means of the respective variables based on the
sample sizes shown in suffices.

• ρX ,Y ,ρX ,Z1
,ρX ,Z2

,ρY,Z1
,ρY,Z2

,ρZ1,Z2
: correlation coefficients between the variables

shown in suffice.

• S2
X , S2

Y , S2
Z1

, S2
Z2

: population mean squares of the variables X ,Y ,Z1 and Z2 respec-
tively.

• SX ,Y : population covariance between the variables X and Y.

• Cp : coefficient of variation of the variable p.

• s2
X (m), s2

X (n) : sample mean squares of the variables shown in suffice on the basis of
sample of size given in the parenthesis.

• sX Y (m): sample covariance between the variables shown in suffices in the sample
given in the parenthesis.

• f1 =
r1
n , f2 =

r2
u , f

′ = u
N , f

′′ = n
N , t1 = 1− f1, t2 = 1− f2.

Other notations will be defined as and when required.

3. PROPOSED IMPUTATION METHODS

3.1. For the fresh sample

As we have assumed that non-response is present in the population at both the occasions,
hence, the sample of size u, selected from the population of size N , which is a fresh
sample, would exhibit some non-respondent units, which are, at the first, to be filled up
through the method of imputation. Let us define the method as follows

y.i =







yi if i ∈ R2

ȳr2
u−r2
[uφu (k)− r2] if i ∈ Rc

2

(1)

where

φu (k) =
(A+C )Z̄2+ f

′
B z̄r2

(A+ f ′B)Z̄2+C z̄r2

. (2)

Here we have A=(k−1)(k−2),B=(k−1)(k−4) and C=(k−2)(k−3)(k−4); k > 0
being the parameter involved in the FTE φu (k).
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THEOREM 1. The imputation method (1) gives rise to the point estimator Tu for esti-
mating the population mean Ȳ at the second occasion on the basis of fresh sample, as

Tu = ȳr2

(A+C )Z̄2+ f
′
B z̄r2

(A+ f ′B)Z̄2+C z̄r2

= ȳr2
φu (k). (3)

The proof of the theorem is given in the Appendix.

3.2. For the matched sample

The second estimator based on the matched sample sm of size m is common to both
the occasions and utilizes the information from the first occasion. Since, there is non-
response at the first occasion also; therefore, first of all the missing values in the sample
sn of size n will be filled-in by imputation for the computation of the sample mean x̄n
at the first occasion which would be an estimator at that occasion. For the purpose, we
define the following imputation method

x.i =







xi if i ∈ R1

x̄r1
n−r1
[nφm(k)− r1] if i ∈ Rc

1

(4)

where

φm(k) =
(A+C )Z̄1+ f

′′
B z̄r1

(A+ f ′′B)Z̄1+C z̄r1

. (5)

THEOREM 2. Under the imputation method (4), the estimator x̄n for estimating the
population mean X̄ at the first occasion is given by

x̄n = x̄r1

(A+C )Z̄1+ f
′′
B z̄r1

(A+ f ′′B)Z̄1+C z̄r1

. (6)

Since our aim is to define an estimator for estimating the population mean at the second
occasion, that is,Ȳ ,on the basis of the matched sample; a double sampling regression estimator
may be defined for the purpose, considering the sample sn as a preliminary sample. A double
sampling regression estimator for Ȳ mean at the second occasion, utilizing the information
gathered in the matched sample, is defined as

Tm = ȳm + by x (x̄n − x̄m) = ȳm + by x

 

x̄r1

(A+C )Z̄1+ f
′′
B z̄r1

(A+ f ′′B)Z̄1+C z̄r1

− x̄m

!

, (7)

where by x is the estimate of population regression coefficient βy x of Y on X .
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4. THE PROPOSED POINT ESTIMATOR

In order to define an estimator for population mean Ȳ at the second occasion, on the
basis of both fresh and matched samples, we take a convex linear combination of Tu and
Tm and hence we have the estimator as

T = δTu +(1−δ)Tm , (8)

where δ is an unknown real constant to be determined under certain condition (0 <
δ < 1).

REMARK 3. It is quite evident from (8) that may be considered as weight associated
with the estimators defined on the basis of the unmatched (fresh) sample and the matched
sample.

4.1. Some special members of the family T

It is to be pointed out here that as the family of estimators T is a function of two different
factor type estimators, some special cases are worthwhile to discuss herewith for assigned
values of the parameter k. We consider here four values of k, namely, k = 1,2,3 and 4.
Table 1 below depicts the estimators Tu and Tm for k = 1,2,3,4.

TABLE 1
Special cases of T for specific values of k.

k Tu Tm

1 ȳr2

Z̄2
z̄r2

ȳm + by x

�

x̄r1

Z̄1
z̄r1
− x̄m

�

2 ȳr2

z̄r2

Z̄2
ȳm + by x

�

x̄r1

z̄r1

Z̄1
− x̄m

�

3 ȳr2

Z̄2− f
′
z̄r2

(1− f ′ )Z̄2
ȳm + by x

�

x̄r1

Z̄1− f
′′

z̄r1

(1− f ′′ )Z̄1
− x̄m

�

4 ȳr2
ȳm + by x

�

x̄r1
− x̄m

�

REMARK 4. Table 1 shows that one gets ratio-type, product type, dual to ratio-type and
usual mean estimators on the basis of matched sample as special cases of Tu for k = 1,2,3,4.
Similarly, in the regression-type estimator Tm the similar estimators have been used for es-
timating the unknown population mean X̄ respectively for k = 1,2,3,4 but the estimators
are related to the first occasion estimators.

REMARK 5. The convergence property of the FTE which states that as k −→∞ the
limiting estimator converges to the estimator which is obtained for k = 1. Letting k −→∞
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and taking limit of Tu and Tm , we observe that

limTu = ȳr2

Z̄2

z̄r2

(9)

and

Tm = ȳm + by x

�

x̄r1

Z̄1

z̄r1

− x̄m

�

. (10)

Hence, contrary to other one-parameter families of estimators for estimating population

mean, such as, ˆ̄Y = ȳn(
X̄
x̄n
)β; β being a constant, which does not exist for large values of β;

the FTE possesses a novel property of convergence and existence for any arbitrarily chosen
larger value of the parameter k.

5. BIAS AND MEAN SQUARE ERROR OF THE ESTIMATOR T

The bias and MSE of the estimator is given below. The proof of the theorem is given in
the Appendix.

THEOREM 6. The bias of the estimator T , to the first order of approximation and for
large population (ignoring finite population corrections) is given by

B(T ) = δB(Tu )+ (1−δ)B(Tm), (11)

where
B(Tu ) =−D

′ 1
r2

Ȳ (θ
′

2C 2
Z2
−ρY Z2

CY CZ2
) (12)

and

B(Tm) = X̄βY X

�

1
m
− 1

r1

�

�

C300

X̄ S2
X

−
C210

X̄ SX Y

�

+ X̄βY X
D
′′

Z̄1 r1

�

C111

SX Y
−

C201

S2
X

�

+ X̄βY X
1
r1

�

D
′′
ρX ,Z1

CX CZ1
−θ′′1θ

′′

2C 2
Z1
+θ

′′

2C 2
Z1

�

.

(13)

REMARK 7. It is evident that B[T ] is a function of the parameter k. It is, therefore, easy
to obtain the bias of the estimators Tu and Tm for the special cases as mentioned in Table 1.

THEOREM 8. The MSE of the estimator T , to the first order of approximation is given
by

M (T ) = δ2M (Tu )+ (1−δ)
2M (Tm),

where
M (Tu ) =

1
r2

Ȳ 2(C 2
Y +D ′2C 2

Z2
+ 2D

′
ρY Z2

CY CZ2
) (14)
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and

M (Tm) = S2
Y

�

1
m
(1−ρ2

X Y )+
ρ2

X Y

r1
+

1
r1

D
′′
ρX Y

CZ1

CX

�

D
′′
ρX Y

CZ1

CX
+ 2ρY Z1

��

. (15)

Further since Tu and Tm are based on two different non-overlapping samples of size u
and m respectively, therefore, for large population, we consider C ov(Tu ,Tm) = 0. Hence
the theorem.

REMARK 9. It can be seen that if the coefficients of variation of the variables Y , X , Z1,
and Z2 are all equal, that is, CX = CY = CZ1

= CZ2
then expression (15) can further be

simplified as

M (Tm) = Ȳ 2C 2
Y

�

1
m
(1−ρ2

X Y )+
1
r1

¦

ρ2
X Y +D

′′2ρ2
X Y + 2D

′′
ρX YρY Z1

©

�

. (16)

REMARK 10. We observe that in both the expressions (14) and (15), the only terms
which are function of k are D

′
and D

′′
. Hence, the optimum value of the parameter k, say

k0 which minimizes M (Tu ) and M (Tm) respectively can be obtained by solving the equations
∂ M (Tu )/∂ k = 0 and ∂ M (Tm)/∂ k = 0, which give

∂ D
′
/∂ k =D

′

0 =−ρY Z2

CY

CZ2

(17)

and

∂ D
′′
/∂ k =D

′′

0 =−
ρY Z1

ρY X

CX

CZ1

, (18)

for which

M (Tu )mi n =
1
r2

Ȳ 2C 2
Y (1−ρ

2
Y Z2
) (19)

and

M (Tm)mi n = Ȳ 2C 2
Y

�

1
m
(1−ρ2

Y X )+
1
r1

¦

ρ2
Y X −ρ

2
Y Z1

©

�

. (20)

Therefore, for a given value of the constant δ the minimum MSE of the estimator T
would be given by

M (T )mi n =δ
2 1

r2
Ȳ 2C 2

Y (1−ρ
2
Y Z2
)+ (1−δ)2Ȳ 2C 2

Y

×
�

1
m
(1−ρ2

Y X )+
1
r1

�

{ρ2
Y X −ρ

2
Y Z1

©

�

.
(21)
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6. MINIMIZING M (T ) WITH RESPECT TO δ

Using the result
M (T ) = δ2M (Tu )+ (1−δ)

2M (Tm),

we see that the optimum value of the constant δ, which minimizes the MSE of the
estimator T for a specific choice of the parameter k would be

δ0 =
M (Tm)

M (Tu )+M (Tm)
. (22)

The corresponding MSE of T then would be

M [T ] =
M (Tm)M (Tu )

M (Tu )+M (Tm)
. (23)

Further, the minimum M [T ] for the choice of k = k0 would be

M [T ]mi n =
M (Tm)mi n M (Tu )mi n

M (Tu )mi n +M (Tm)mi n
. (24)

REMARK 11. It is seen that D
′

and D
′′

are two different functions of the parameter k,
therefore equations (17) and (18) will yield possibly two different values of k which mini-
mizes M (Tu ) and M (Tm). Let k1 and k2 be the values of k satisfying equations (17) and
(18) respectively. Therefore, expressions (19) and (20) are actually M (Tu )k1

and M (Tm)k2

respectively. Since M [T ] is

M (T ) = δ2M (Tu )+ (1−δ)
2M (Tm),

therefore, ∂ M (T )/∂ k = δ2∂ M (Tu )/∂ k + (1− δ)2∂ M (Tm)/∂ k = 0 implies that nec-
essarily ∂ M (Tu )/∂ k and ∂ M (Tm)/∂ k would be zero, which yield k = k1 and k = k2
respectively. Therefore, the optimum k for which M (T ) would be minimum, will be

k0 = δ
2k1+(1−δ)

2k2.

7. OPTIMUM REPLACEMENT POLICY

If the ultimate sample sizes at both the occasions is n, we know that the size of the
fresh sample u = (n −m) = nµ. Thus, µ = u/n, that is, µ represents the fraction of
the sample at the second occasion, which is replaced. It is, therefore, desirable to know
that what must be the optimum replacement fraction of the sample of size n at the
second occasion such that the estimate on the current occasion may have the maximum
precision. In order to get the optimum values of µ, say µo pt , we use the notations µ for
u/n and (1−µ) for m/n respectively in the expression (24). We then have

M [T ]mi n =
S2

Y

n
P ( f1Q +R)−µP R
f1P +µS −R f2µ2

, (25)
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where P = (1−ρ2
Y Z2
), Q = (1−ρ2

Y X ), R= (ρ2
Y X −ρ

2
Y Z1
), and S =Q f1 f2− f1P +R f2.

Further, minimizing the expression (25), with respect to µ, we get

µ∗o pt =
P R f2( f1Q +R)±

p

(P R f2( f1Q +R))2− f2P R2( f2RP 2+ P S( f1Q +R))
f2P R2

. (26)

Therefore, the expression (25) will become

M [T ]∗o pt = |M [T ]mi n |µo pt
=

S2
Y

n

P ( f1Q +R)−µ∗o pt P R

f1P +µ∗o pt S −R f2µ
∗2
o pt

. (27)

REMARK 12. As the value ofµ should lie between 0 and 1, a negative and/or imaginary
root as obtained from (26) would be inadmissible. Only a positive value of µ∗o pt , such that
0≤µ∗o pt ≤ 1 is admissible.

8. SOME SPECIAL CASES

8.1. Case I: Non-response only at first occasion

If non-response is experienced only at the first occasion and it is not observed at the
second occasion, then obviously

Tu = ȳu
(A+C )Z̄2+ f

′
B z̄u

(A+ f ′B)Z̄2+C z̄u

(28)

and f2 = 1 since r2 = u. Accordingly, µo pt for this case can be obtained from (26) by
substituting f2 = 1 , after obtaining the MSE of Tu as given in (28). Obviously, the MSE
of Tu would be similar as (14) with the replacement of r2 by u.

8.2. Case II: Non-response only at second occasion

In this case r1 = n implying that f1 = 1. Further the estimator Tm would be

Tm = ȳm + by x

�

x̄n
(A+C )Z̄1+ f

′′
B z̄n

(A+ f ′′B)Z̄1+C z̄n

− x̄m

�

. (29)

The corresponding µo pt could be obtained from (26), letting f1 = 1, when the MSE
of Tm as given in (29) is obtained accordingly.
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8.3. Case III: Non-response at any occasion

Under this case, we have f1 = f2 = 1, and are given by (28) and (29) respectively. The
corresponding µo pt , say µ∗∗o pt can, therefore, be easily obtained, letting f1 = f2 = 1 in
(26), and using changes in the expressions of M (Tu ) and M (Tm). We then have

µ∗∗o pt =
P R(Q +R)±

p

(P R(Q +R))2− P R2(RP 2+ PV (Q +R))
P R2

,

where V =Q − P +R. The corresponding M [T ]mi n would be given by

M [T ]∗∗o pt =
S2

Y

n

P (Q +R)−µ∗∗o pt P R

P +µ∗∗o pt V −Rµ∗∗2o pt
. (30)

9. EFFECT OF NON-RESPONSE ON THE PRECISION OF THE ESTIMATORS

The ideal situation in any kind of survey would be where there is no problem of non-
response. It is, therefore, desirable to investigate the effect of presence of non-response
with varying population parameters, on the performance of any estimator. With this
view, we have tried to observe the percent relative loss in precision of the estimator T
with respect to the estimator under the same circumstances but with complete informa-
tion at both the occasions.

We define

L=
M (T )∗o pt −M (T )∗∗o pt

M (T )∗o pt
· 100

as the percent relative loss in precision.
Since the MSE of T under optimality conditions involve correlations ρY Z1

and ρY Z2
,

for simplicity in calculation of L, we assume that ρY Z1
= ρY Z2

= ρ0. We have then
computed the values of µ∗o pt ,µ

∗∗
o pt and L for different combinations of ρ0,ρX Y , t1 =

(n−r1)
n and t2 =

(u−r2)
u where t1 and t2, obviously are non-response rates in the samples

selected at the first and second occasions respectively. Table 2 depicts the results.

REMARK 13. From Table 2 the following conclusions can be drawn.

(i) For the fixed values of ρX Y , ρ0 and t2 (non-response rate at second occasion), the val-
ues of µ∗o pt increase while the values of L decrease with the increasing values of t1

(non-response rate at first occasion). Thus, the higher the non- response rate at the first
occasion, larger should be the fresh sample at the second occasion. Further, decrease
in the values of L, indicates that the loss in precision of the estimator T (defined in the
presence of non-response) would be smaller as compared to that of the estimator, defined
in the case of absence of non-response, and sometimes T under non-response would be
better than estimator T without non-response.
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(ii) For fixed values of t1,ρX Y andρ0,µ∗o pt and L increases for increasing values of t2. That
is, if non-response is more at the second occasion, the size of the fresh sample should be
larger and the loss in precision of the proposed estimator T would be more.

(iii) For the fixed values of, t1, t2 and ρX Y , the values of µ∗o pt and L decrease when ρ0

increases, implying that higher the correlation between study and auxiliary variables,
lower the amount of fresh sample required at the current occasion and the loss in preci-
sion will also decrease.

(iv) The overall comparison betweenµ∗o pt andµ∗∗o pt reveals that the replacement fraction is
uniformly higher, when there exist non-response, than when the non-response is absent
irrespective of values of other parameters.

(v) It is observed that the loss in precision of T reduces if there is a strong correlation
between study and auxiliary variables.

TABLE 2
Values of L,µ∗o pt and µ∗∗o pt for different values of ρX Y ,ρ0, t1 and t2.

ρ0 0.7 0.8 0.9
t1 t2 ρX Y µ∗∗o pt µ∗o pt L µ∗∗o pt µ∗o pt L µ∗∗o pt µ∗o pt L
0.05 0.05 0.3 0.43 0.49 1.94 0.38 0.44 1.30 0.31 0.36 -0.14

0.5 0.45 0.54 2.29 0.40 0.47 1.67 0.33 0.38 -0.34
0.7 - - - 0.45 0.55 2.36 0.37 0.43 1.18

0.15 0.3 0.43 0.59 8.31 0.38 0.50 7.40 0.31 0.39 5.88
0.5 0.45 0.68 9.07 0.40 0.54 7.87 0.33 0.42 6.36
0.7 - - - 0.45 0.71 9.28 0.37 0.48 7.26

0.15 0.05 0.3 0.43 0.55 0.59 0.38 0.50 -1.25 0.31 0.42 -5.54
0.5 0.45 0.59 1.51 0.40 0.52 -0.19 0.33 0.44 -4.10
0.7 - - - 0.45 0.60 1.69 0.37 0.49 -1.60

0.15 0.3 0.43 0.63 7.51 0.38 0.55 5.56 0.31 0.45 1.52
0.5 0.45 0.71 8.74 0.40 0.59 6.64 0.33 0.48 2.85
0.7 - - - 0.45 0.74 9.03 0.37 0.54 5.21

Note: Values of µ∗o pt and µ∗∗o pt Table 2 shown by dashes indicate that µ values do
not exist.

10. EFFICIENCY COMPARISON

For the comparison of the proposed imputation strategy, we have chosen the estima-
tor T ∗ proposed by Singh et al. (2013), which has been developed under the similar
conditions.
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10.1. Point estimator obtained on the fresh sample

Using the following imputation method in order to fill-in the missing data at the second
occasion

y.i =















yi
Z̄2
z̄2u

if i ∈ R2

ȳr2
z̄r2

Z̄2
z̄2u

z2i if i ∈ Rc
2

(31)

the estimator T ∗u for estimating the population mean Ȳ on the basis of the fresh sample
of size u, can be obtained as

T ∗u = Z̄2

ȳr2

z̄r2

. (32)

10.2. Point estimator obtained on the matched sample

The imputation method utilized in order to fill-in the missing data in the sample of size
n was

x.i =















xi
Z̄1
z̄1n

if i ∈ R1

x̄r1
z̄r1

Z̄1
z̄1n

z1i if i ∈ Rc
1

(33)

which yielded the point estimator for X̄ as

x̄∗n = Z̄1

x̄r1

z̄r1

. (34)

Therefore, the estimator of Ȳ on the basis of the matched sample was defined as

T ∗m = ȳm
x̄∗n
x̄m

Z̄2

z̄2m
. (35)

Finally, the estimator T ∗, combining the two estimators T ∗u and T ∗m , was defined as

T ∗ = δ∗T ∗u +(1−δ
∗)T ∗m . (36)

Using the expression M [T ∗], the optimum replacement policy, as obtained by Singh
et al. (2013) was

µ
′

o pt =
A∗C ∗ f2( f1B∗+C ∗)

f2A∗C ∗2

±
p

(A∗C ∗ f2( f1B∗+C ∗))2− f2A∗C ∗2( f1C ∗A∗2+A∗D∗( f1B∗+C ∗))
f2A∗C ∗2

,

(37)
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where

M [T ∗]min =
S2

Y

n

A∗( f1B∗+C ∗)−µ′o pt A∗C ∗

f1A∗+µ′o pt D∗−C ∗ f2,µ′2o pt
(38)

with

A∗ =2(1−ρY Z2
);B∗ = 3+ 2(ρX Z2

−ρY Z2
−ρX Y );

C ∗ =2(ρZ1Z2
+ρX Y −ρX Z2

−ρY Z1
);

D∗ =B∗ f1 f2− f1A∗+C ∗ f2.

For the comparison purpose, we have assumed that ρY Z1
= ρX Z2

= ρY Z2
= ρ∗0. The

efficiency of the proposed estimator T , under the optimality conditions, with M [T ]∗o pt ,
given in (27), with respect to the estimator T ∗ under respective optimality conditions,
with M [T ∗]o pt , given in (38), is defined as

E =
M [T ∗]o pt

M [T ]∗o pt
∗ 100.

Table 3 depicts the values of E for some assumed values of ρ0,ρz1 z2
and ρX Y .

TABLE 3
Values of E for some values of ρ0,ρz1 z2

and ρX Y .

ρz1z2 0.5 0.7
ρ0 0.3 0.5 0.7 0.9 0.3 0.5 0.7 0.9
ρX Y 0.3 - 371.5 189.3 159.8 - - 320.8 236.6

0.5 354.5 - 200.9 161.4 504.3 - 1235.3 266.5
0.7 204.7 110.6 - 170.9 258.3 205.8 - 363.4
0.9 134.4 83.6 - - 158.5 116.2 62.6 -

REMARK 14. Table 3, which exhibits the performance of the proposed estimator T over
the estimator T ∗, proposed by Singh et al. (2013), reveals that T it is more efficient than T ∗

in almost all the combinations of different correlations, except for two choices of correlations.
As we closely look into the table; for low or moderate values ofρ0 the efficiency of the proposed
estimator decreases as ρX Y increases and for high correlation values of ρ0 efficiency increases
with the increase of ρX Y . Although, the analysis depends upon a number of approximations
related to correlation values, but since the selected values of correlations cover a larger range
of their values, they may be generalized for most of the populations with positive correlations.
As for some combinations, the optimum µ values do not exist, a clear-cut picture of the
trend of the efficiency is hard to discuss herewith. However, it can be seen that the higher the
correlation between the auxiliary variables Z1 and Z2 higher is the efficiency for all choices
of ρX Y value.
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11. CONCLUDING REMARKS

The work presented suggested some imputation methods for the adjustment of non-
response at both the occasions in rotation sampling when estimation of mean of the
surveyed population at the current occasion was aimed at. It was observed that a com-
bination of matched and fresh samples was taken into account for this purpose, the effi-
ciency of the proposed estimator under non-response has been compared when there is
no non-response. For some specific values of correlations, estimator in presence of non-
response is found to be better than without non-response which validate the effectiveness
of the proposed estimator. Apart from this the proposed estimator was proved to be bet-
ter than Singh et al. (2013) imputation method for almost all correlation combinations.
The presented work may also be used to estimate the changes in the performance of the
estimator over time, which is another advantage of successive sampling scheme.

APPENDIX

A. PROOFS

PROOF (THEOREM 1). It is clear that the mean of the fresh sample, say ȳu will be
an unbiased estimator of Ȳ at the second occasion, where

ȳu =
1
u

∑

i∈su

yi =





1
u

∑

i∈R2

yi +
∑

i∈Rc
2

ȳr2

(u − r2)
(uφu (k)− r2)





since
∑

i∈R2

yi = r2 ȳr2
.

Now, as there are (u − r2) units in Rc
2, hence we have

ȳu =
r2 ȳr2

u
+
(u − r2)

u

ȳr2

(u − r2)
uφu (k)−

(u − r2)
u

ȳr2

(u − r2)
r2 =φu (k)ȳr2

.

Therefore we get

Tu = ȳr2
φu (k).

Hence the theorem. 2

PROOF (THEOREM 2). On the same lines Theorem 2 can be proved. The large sam-
ple bias and MSE of T could be obtained up to the order (O(n−1)), using the following
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large sample approximations

ȳm = Ȳ (1+ e0) x̄m = X̄ (1+ e1)

ȳr2
= Ȳ (1+ e2) z̄r2

= Z̄(1+ e3)

x̄r1
= X̄ (1+ e4) z̄r1

= Z̄1(1+ e5

sxy(m)
= SX Y (1+ e6) s2

x = S2
X (1+ e7),

such that E(eg ) = 0,
�

�

�eg

�

�

�< 1 for g = 0,1,2,3,4,5,6,7 and letting Cab c = E[(x−X̄ )a(y−
Ȳ )b (z − Z̄)c]

Under the above mentioned large sample approximations,Tu takes the following
form, retaining terms only up to the second degree of e2 and e3

Tu = Ȳ [1+ e2+D
′
(e3+ e2e3−θ

′

2e2
3 ] where

D
′
= (θ

′

1−θ
′

2); f
′
=

u
n

; θ
′

1 =
f
′
B

A+ f ′B +C
; θ

′

2 =
C

A+ f ′B +C
.

Similarly, the estimator Tm , up to the order O(n−1) is obtained.

Tm = Ȳ (1+e0)+X̄βY X (e4−e1+D
′′
e5+D

′′
e4e5−θ

′′

1θ
′′

2 e2
5+θ

′′2

2 e2
5+(e4−e1+D

′′
e5)(e6−e7)],

where

D
′′
= (θ

′′

1 −θ
′′

2); f
′′
=

n
N

;θ
′′

1 =
f
′′
B

A+ f ′′B +C
; θ

′′

2 =
C

A+ f ′′B +C
. 2

PROOF (THEOREM 6). We have

B(Tu ) = E[Tu]− Ȳ = Ȳ E[e2+D
′
(e3+ e2e3−θ

′

2e2
3 )].

Thus
B(Tu ) = Ȳ D

′
E[e2e3−θ

′

2e2
3 ],

where
E(e2e3) =

1
r2
ρY Z2

CY CZ2

and
E[e2

3 ] =
1
r2

C 2
Z2

.

Hence we obtain as

B(Tu ) =−D
′ 1
r2

Ȳ (θ
′

2C 2
Z2
−ρY Z2

CY CZ2
).

On similar lines B(Tm) can be obtained. 2
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PROOF (THEOREM 8). We know that

M (Tu ) = E[Tu − Ȳ ]2 = E[Ȳ (1+ e2+D
′
(e3+ e2e3−θ

′

2e2
3 )− Ȳ ]2.

Therefore

M (Tu ) =E[Ȳ (e2+D
′
(e3+ e2e3−θ

′

2e2
3 )]

2

=
1
r2

Ȳ 2(C 2
Y +D ′2C 2

Z2
+ 2D

′
ρY Z2

CY CZ2
).

Hence the result. Similarly M [Tm] can be obtained. 2
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SUMMARY

In this paper we have proposed an imputation method based on a family of factor-type estimator
to deal with the problem of non-response assuming that the target population has been sampled
at two different occasions. The aim is to estimate the current population mean on the basis of
matching the sample from the previous occasion and on the basis of fresh sample selected at the
current occasion. It has been assumed that the non-response is exhibited by the population at both
the occasions and, therefore, the imputation of missing values is required in both the samples,
namely, matched sample and fresh sample. Accordingly, a combined point estimator has been
suggested after imputation which generates a one-parameter family of estimators. The properties
of the estimator have been investigated and the replacement policy has been discussed. Finally, the
comparison of the proposed class has been made with another estimator for their performances.

Keywords: Non-response; Imputation; Repeated surveys, Factor type estimator.


