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1. INTRODUCTION

The concept of residual life is of special interest in reliability theory and survival anal-
ysis as it measures the life remaining to a device or an individual after it has attained a
specific age. Various characteristics of residual life such as its mean, variance, coefficient
of variation, higher moments and percentiles have been extensively studied in literature.
Among these, the variance residual life has attracted many researchers including Dallas
(1981), Karlin (1982), Chen et al. (1983), Gupta (1987), Gupta et al. (1987), Abouammoh
et al. (1990), Adatia et al. (1991), Stein and Dattero (1999), Gupta and Kirmani (2000,
2004), Stoyanov and Al-Sadi (2004), Gupta (2006) and Nair and Sudheesh (2010) when
lifetime is treated as a continuous random variable. These works emphasize the im-
portance of variance residual life as (i) a reliability function useful in modelling lifetime
data with special reference to inference procedures and characterizations (ii) a means to
classify lifetime distributions through the monotonicity properties and (iii) through its
relationship with the mean residual life in the same way as the mean to the variance;
see Hall and Wellner (1981). In the discrete case also the topic in the univariate case has
been well studied by several authors that includes Hitha and Nair (1989), Roy (2005), El-
Arishy (2005), Sudheesh and Nair (2010), Khorashadizadeh et al. (2010) and Al-Zahrani
et al. (2013). The only study that appears to be made in higher dimensional discrete
case is that of Roy (2005) who characterized some bivariate discrete distributions by cer-
tain simple properties of the variance residual life. There are several multicomponent
devices and systems in which the lifetimes of the components are measured as the num-
ber of time units completed, or the number of cycles in operation before failure. Also,
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in survival analysis, when continuous lifetimes are subjected to censoring, discrete data
arise. In such cases, to ascertain the role of multivariate variance residual life and its
properties, a systematic study of the topic does not appear to be available in reliability
literature. This motivates the present study. Our objective is to make a theoretical ex-
position of the properties of the multivariate discrete variance residual life. It includes
properties of the variance residual life, characterization of life distributions and classes
of life distributions based on the monotonic properties of the variance residual life. As
a by-product we also get some properties in the univariate case, that do not seem to have
been discussed in the previous studies.

The paper is organized into five sections. In Section 2 we have included some prelim-
inary definitions and results required in the sequel. This is followed by the definition and
properties of the p-dimensional variance residual life function in Section 3. In Section 4
various classes of life distributions are discussed. The study ends with a brief conclusion
in Section 5.

2. PRELIMINARIES

Let X= (X1,X2, ...,Xp ) be a discrete random vector taking values in Np , N= (0,1,2, ...)
with survival function S(x) = P [X ≥ x] and probability mass function f (x) = P [X =
x] where x = (x1, x2, ..., xp ) and the equalities and inequalities of vectors involved are
taken component wise. The residual life of a multicomponent device whose lifetime X
is defined as the vector

Xx =
�

X1− x1|X> x,X2− x2|X> x, ...,Xp − xp |X> x
�

. (1)

The mean residual life function of X is given by the vector

�

m1(x), m2(x), ..., mp (x)
�

,

where

mi (x) = E[Xi − xi |X> x]; i = 1,2, ..., p; xi =−1,0,1,2, ...

=
1

S(x+ ep )

∞
∑

t=xi+1

S(t ,x(i)+ ep−1),

where x(i) = x−{xi} and ep is the p- dimensional vector with unity as its elements. It
can be seen that

S(x1+ 2, x2+ 1, ..., xp + 1)

S(x1+ 1, x2+ 1, ..., xp + 1)
=

m1(x)− 1
m1(x1+ 1,x(1))

. (2)
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Further the mean residual life vector determines S(x) uniquely through the formula

S(x) =
x1−1
∏

r=0

m1(r − 1,x(1))− 1

m1(r,x(1))

x2−1
∏

r=0

m2(0, r − 1, x3, ..., xp )− 1

m2(0, r, ..., xp )
...

xp−1
∏

r=0

mp (0, ..., 0, r − 1)− 1

mp (0, ..., 0, r )

=
x2−1
∏

r=0

m2(x1, r − 1, x3, ..., xp )− 1

m2(r,x(2))
...

x1−1
∏

r=0

m1(r − 1,0, ..., 0)− 1
m1(r, 0, ..., 0)

...

=
xp−1
∏

r=0

mp (x1, ..., xp−1, r − 1)− 1

mp (x1, ..., xp−1, r )
...

xp−1−1
∏

r=0

mp−1(0, ..., 0, r − 1,0)− 1

mp−1(0, ..., 0, r − 1,0)
. (3)

These are discrete analogues of the results in Arnold and Zahedi (1988).
Corresponding to the vector X, we can define a vector Y= (Y1,Y2, ...,Yp ) in Np such

that the distribution of Y is specified by the conditional probability mass functions

g1(x1|Y(1) > x(1)) =
P [X1 > x1|X(1) > x(1)]

E[X1|X(1) > x(1)]

g2(x2|Y(2) > x(2)) =
P [X2 > x2|X(2) > x(2)]

E[X2|X(2) > x(2)]

...

gp (xp |Y(p) > x(p)) =
P [Xp > xp |X(p) > x(p)]

E[Xp |X(p) > x(p)]
.

The above definitions are extensions to the multivariate case of the concept of contin-
uous bivariate equilibrium distributions discussed in Gupta and Sankaran (1998), Nair
and Preeth (2008) and Navarro and Sarabia (2010). Notice that the above conditional
probability mass functions lead to a multivariate distribution if and only if

P [Yi > xi |Y(i) > x(i)]

P [Y j > x j |Y( j ) > x( j )]
=

Aj (x( j ))

Ai (x(i))
,

where Ai (.) and Aj (.) are survival functions. The distribution of Y is called the multi-
variate equilibrium distribution of the random vector X.
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3. MULTIVARIATE VARIANCE RESIDUAL LIFE

Let X be the p-dimensional random vector defined in Section 2. Then the variance
residual life of Xi is defined as

σ2
i (x) = E

�

(Xi − xi )
2|X> x

�

−m2
i (x); xi =−1,0,1,2, ...; i = 1,2, ..., p. (4)

The evaluation of (4) can be accomplished by the formula

σ2
i (x) =

2
S(x+ e)

∞
∑

ti=xi+1

∞
∑

ui=ti+1

S(x1+ 1, ..., xi−1+ 1, ui , xi+1+ 1, ..., xp + 1)

−mi (x)(mi (x)− 1). (5)

To prove this, we note that

E[(Xi − xi )
2|X> x]

=
1

S(x+ e)

∞
∑

t1=x1+1

...
∞
∑

tp=xp+1

(ti − xi )
2 f (x)

=
1

S(x+ e)

∞
∑

ti=xi+1

(ti − xi )
2
�

S(x1+ 1, ..., xi−1+ 1, ti , xi+1+ 1, ..., xp + 1)

−S(x1+ 1, ..., ti + 1, ..., xp + 1)
�

=
1

S(x+ e)

∞
∑

ti=xi+1

[2(ti − xi )− 1] S(x1+ 1, ..., xi−1+ 1, ti , ..., xp + 1)

=
2

S(x+ e)

∞
∑

ti=xi+1

(ti − xi )S(x1+ 1, ..., ti , ..., xp + 1)+mi (x)

=
2

S(x+ e)

∞
∑

ti=xi+1

∞
∑

ui=ti+1

S(x1+ 1, ..., xi−1+ 1, ui , xi+1+ 1, ..., xp + 1)+mi (x). (6)

Substituting (6) into (4), we have (5). In the bivariate case

E
�

(X1− x1)
2|X1 > x1,X2 > x2

�

=
2

S(x1+ 1, x2+ 1)

∞
∑

t1=x1+1

∞
∑

u=t1+1

S(u, x2+1)+m1(x1, x2)

(7)
and similarly,

E
�

(X2− x2)
2|X1 > x1,X2 > x2

�

=
2

S(x1+ 1, x2+ 1)

∞
∑

t2=x2+1

∞
∑

u=t2+1

S(x1+1, u)+m2(x1, x2),

(8)
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from which σ2
1 (x1, x2) and σ2

2 (x1, x2) are computed. In the univariate case, for X1,

σ2
1 (x1) =

2
S(x1+ 1)

∞
∑

t=x1+1

∞
∑

u=t+1

S(u)−m1(x1)(m1(x1)− 1). (9)

EXAMPLE 1. For the bivariate geometric distribution (Nair and Nair, 1988) with sur-
vival function

S(x1, x2) = q x1
1 q x2

2 θ
x1 x2 ; xi = 0,1,2, ...; 0< qi < 1; 0≤ θ≤ 1;1−θ≤ (1− q1θ)(1− q2θ);

(10)
i = 1,2, we have

mi (x1, x2) =
�

1− qiθ
x3−i+1�−1 ; i = 1,2

and
2

S(x1+ 1, x2+ 1)
=

2q1θ
x2+1

1− q1θ
x2+1

.

Thus from (5), when p = 2, i = 1, we obtain

σ2
1 (x1, x2) =

q1θ
x2+1

(1− q1θ
x2+1)2

and similarly for i = 2

σ2
2 (x1, x2) =

q2θ
x1+1

(1− q2θ
x1+1)2

.

3.1. Properties of variance residual life

1. If i1, i2, ..., ir ; r = 1,2, ..., p are permutations of the integers (1,2, ..., r ), the vari-
ance residual life of the marginal distributions of X are obtained from (5) by setting
xir+1

...=−1 whenever r < p. In particular

σ2
i (−e) = σ2

i ,

the variance of the marginal distribution of Xi .

2. There exists a recurrence relation for σ2
i (x). Without loss of generality, we take

i = 1 and state it as

σ2
1 (x1+1,x(1)) = m1(x1+1,x(1))

�

σ2
1 (x)

m1(x)− 1
+m1(x)−m1(x1+ 1,x(1))− 1

�

. (11)
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PROOF. When i = 1, (5) can be written as

σ2
1 (x) =

2
S(x+ e)

∞
∑

t1=x1+1

m1(t1,x(1))S(t1+ 1,x(1)+ ep−1)−m1(x)(m1(x)− 1).

Thus,

�

σ2
1 (x)+m1(x)[m1(x)− 1]

	

S(x1+ 1, ..., xp + 1)

−
¦

σ2
1 (x1+ 1,x(1))+m1(x1+ 1,x(1))

�

m1(x1+ 1,x(1))− 1
�©

S(x1+ 2, x2+ 1, ..., xp + 1)

= 2m1(x1+ 1,x(1))S(x1+ 2, x2+ 1, ..., xp + 1). (12)

Dividing (12) by S(x1+ 1, ..., xp + 1) and using (2), we obtain

�

σ2
1 (x)+m1(x)[m1(x)− 1]

	

−
¦

σ2
1 (x1+ 1,x(1))+m1(x1+ 1,x(1))

�

m1(x1+ 1,x(1))− 1
�© m1(x)− 1

m1(x1+ 1,x(1))

= 2(m1(x)− 1).

Simplifying the above equation, we get (11). When n = 1, we have the univariate
result as

σ2
1 (x1) = (m1(x1)− 1)

�

σ2
1 (x1+ 1)

m1(x1+ 1)
+m1(x1+ 1)−m1(x1)+ 1

�

. (13)

2

3. The variance residual life function can be expressed in terms of mean residual life
function as the following theorem shows.

THEOREM 1.

σ2
1 (x) = E

�

m1(X1,x(1))(m1(X1− 1,x(1))− 1)|X> x
�

. (14)

PROOF. From (12), we can write

�

σ2
1 (x)+m1(x)(m1(x)− 1)

	

S(x+ e)

= σ2
1 (x1+1,x(1))+m2

1(x1+1,x(1))+m1(x1+1,x(1))S(x1+2, x2+1, ..., xp +1).



Discrete Multivariate Variance Residual Life 187

Dividing by S(x+ e), we have

σ2
1 (x) =

�

1−
f (x1+ 1,x(1)+ ep−1)

S(x+ e)

�

�

σ2
1 (x1+ 1,x(1))+m2(x1+ 1,x(1))

+m1(x1+ 1,x(1))
�

−m1(x)(m1(x)− 1).

Now using (2)

σ2
1 (x1+ 1,x(1))−σ

2
1 (x) = m2

1(x1+ 1,x(1))+m1(x1+ 1,x(1))

−
�

σ2
1 (x1+ 1,x(1))+m2

1(x1+ 1,x(1))+m1(x1+ 1,x(1))
�

1+m1(x1+ 1,x(1))−m1(x)

m1(x1+ 1,x(1))
−m1(x)(m1(x)− 1)

=
f (x1+ 1,x(1)+ ep−1)

S(x+ e)
σ2

1 (x1+ 1,x(1))−
f (x1+ 1,x(1)+ ep−1)

S(x+ e)
�

m1(x1+ 1,x(1))(1−m1(x))
�

.

The last expression simplifies to

σ2
1 (x)S(x+ e)−σ2

1 (x1+ 1,x(1))S(x1+ 1,x(1)+ ep−1) =
�

m1(x1+ 1,x(1))

(m1(x)− 1)] f (x1+ 1,x(1)+ ep−1). (15)

Adding the above identity for values of x1

σ2
1 (x)S(x + e) =

∞
∑

t1=x1+1

m1(t1,x(1))(m1(t1 − 1,x(1)) − 1) f (t1,x(1) + ep−1),

which is same as (14). 2

REMARK 2. In the univariate case, (p = 1)

σ2
1 (x1) = E [m1(X1)(m1(X1− 1)− 1)|X1 > x1] ,

a formula that does not seem to have appeared in literature. It can be used for obtain-
ing quick estimates of σ2

1 (x1) based on the estimates of m1(x1).

4. A problem of traditional interest in modelling situations is to characterize life
distributions by properties of reliability functions that enable easy identification
of the appropriate model. We give some such properties in the following results.
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THEOREM 3. A random vector X in Np has a variance residual life of the form

σ2
i (x) = pi (x(i)); i = 1,2, ..., p; (16)

for all x if and only if X follows the multivariate geometric distribution

S(x) =
p
∏

i=1

q xi
i

p
∏

i , j=1;i< j

q
xi x j

i j ...q
x1 x2...xp

12... p ; xi = 0,1,2, ...; 0< qi , qi j , ..., q12... p < 1 (17)

and 1−
∑p

i=1 qi +
∑p

i , j=1;i< j qi j − ...+(−1)p q12... p ≥ 0.

PROOF. By direct calculation

σ2
i (x) =

a(x(i))

(1− a(x(i)))2
, (18)

where

a(x(i)) = q1

p
∏

j=2

q
x j

i j

p
∏

j ,k=2; j<k

q
x j xk

i j k ...q
x2...xp

12... p .

This proves the “if” part. Now assume that (17) holds. Using (15) with suffix 1
replaced by i , we get

pi (x(i)) = mi (xi + 1,x(i))(mi (x)− 1),

which cannot be true unless mi (x) = ai (x(i)), a function independent of xi . Taking
i = 1 and p = 1, the mean residual life of X1 is independent of x1, say c1. Then the
survival function S1(.) of X1 satisfies

S1(x1) =
x1−1
∏

t=0

m1(x1− 1)− 1
m1(x1)

=
�

c1− 1
c1

�x1

= q x1
1 ; 0< q1 < 1.

In general, Si (xi ) = q xi
i . Similarly for p = 2 and i = 1, in the bivariate case

S2(x1, x2) =
x1−1
∏

t=0

m1(t − 1, x2)− 1
m1(t , x2)

S(0, x2) (19)

= [b1(x2)]
x1 q x2

2 ; b1(x2) =
a1(x2)− 1

a1(x2)
; 0< b1(x2)< 1.

Similarly working with i = 2 and p = 2, we obtain

S(x1, x2) = [b2(x1)]
x2 q x1

1 . (20)
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From (19) and (20)

x1 log b1(x2)+ x2 log q2 = x2 log b2(x1)+ x1 log q1.

The left side of the above equation can be written as

x1(log b1(x2)− log q1) = x2(log b2(x1)− log q2),

which is linear in x1 and hence right side must also be linear in x1 and similarly
for x2. The only solution in this case is

b1(x2) = q1q x2
12 for some 0< q12 < 1

and
b2(x1) = q2q x1

12 .

This gives
S(x1, x2) = q x1

1 q x2
2 q x1 x2

12 .

Proceeding in this fashion, we arrive at (18) by mathematical induction and the
proof is completed. In the bivariate case, the theorem reduces to the characteriza-
tion result of the bivariate geometric distribution mentioned in (10). 2

REMARK 4. The property
�

σ2
1 (x), ...,σ

2
p (x)

�

= (c1, c2, ..., cp ) where the c’s are inde-
pendent of x is satisfied if and only if the distribution of X is specified by

S(x) = q x1
1 q x2

2 ...q
xp
p ; 0< qi < 1; xi = 0,1,2, ...; i = 1,2, ..., p. (21)

THEOREM 5. A bivariate random vector (X1,X2) in N2 has variance residual life
of the form

�

σ2
1 (x1, x2),σ

2
2 (x1, x2)

�

=











(c1 c2); x1 > x2

(c3 c4); x2 > x1

(c1 c4); x1 = x2,
(22)

where ci ; i = 1,2,3,4 are independent of x1 and x2 if and only if its survival function
is

S(x1, x2) =











q x2 q x1−x2
1 ; x1 ≥ x2

q x1 q x2−x1
2 ; x2 ≥ x1; x1, x2 = 0,1,2, ...

0< q < q1, q2 < 1; 1+ q ≥ q1+ q2.
(23)

PROOF. First we assume that the distribution of (X1,X2) is specified by (22).
Then the mean residual life is calculated as

(m1(x1, x2), m2(x1, x2)) =











(k1, k2); if x1 > x2

(k3, k4); if x2 > x1

(k1, k4); if x1 = x2,
(24)



190 U. N. Nair, S. G. Paduthol and N. P. Ramesh

where k1 = (1− q1)
−1, k2 =

�

1−
q
q1

�−1

, k3 =
�

1−
q
q2

�−1

and k4 = (1− q2)
−1.

Also

�

σ2
1 (x1, x2),σ

2
2 (x1, x2)

�

=







































































q1

(1− q1)2
,

q

q1(1−
q
q1
)2









; x1 > x2









q

q2(1−
q
q2
)2

,
q2

(1− q2)2









; x2 > x1

�

q1

(1− q1)2
,

q2

(1− q2)2

�

; x1 = x2,

(25)

showing that it is of the form stated in (23). Conversely, assuming (23), we see
from (16) with p = 2 that σ2

1 (x1, x2) = (c1, c2) for x1 > x2 gives

m1(x1+ 1, x2) (m1(x1, x2)− 1) = c1

and similarly
m2(x1, x2+ 1)(m2(x1, x2)− 1) = c2.

The solutions of these equations must be of the form

(m1(x1, x2), m2(x1, x2)) = (k1, k2)

for some constants k1 and k2, both independent of x1 and x2. Similarly, we can
work with the regions x2 > x1 and x1 = x2 to reach at (24). Substituting the values
of (m1(.), m2(.)) in Formula (3), the bivariate geometric distribution of the form
(23) is recovered. 2

REMARK 6. The p-variate version of (23) can be stated as

S(x) = q
xi1
i1

�

qi1 i2

qi1

�xi2

...

 

qi1 i2...ip

qi1 i2...ip−1

!xi p

; xi1
≥ xi2

≥ ...≥ xip
, (26)

where i1, i2, ..., ip are the permutations of (1,2, ..., p),

0< qi1
< qi1 i2

< ...< q1q2...qp < 1,

and

1−
p
∑

i=1

qi +
∑

i< j

qi j ...+(−1)p q1q2...qp ≥ 0.
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The method of proof used in Theorem 5 is applicable in this case also, but with lengthy
expressions for the mean and variance residual lives according to the various regions
of the sample space required by xi1

≥ xi2
≥ ... ≥ xip

. Note that the variance residual
life is piece-wise constant.

The next theorem is on some special relationships between the variance and mean
residual lives that characterizes some distributions.

THEOREM 7. A random vector X taking values in Np satisfies the property

σ2
i (x) = ki mi (x) [mi (x)− 1] ; i = 1,2, ..., p (27)

for all x if and only if the distribution of X is multivariate Waring with

S(x) =

�

A0+A2x2+ ...+Ap xp

�

x1
�

A0+A1+A2x2+ ...+Ap xp

�

x1

...
(B0+B3x3)x2

(C0)x3

(B0+B2+B3x3)x2
(C0+C3)x3

, (28)

xi = 0,1,2, ...; i = 1,2, ..., p and negative hyper geometric with

S(x) =

�

α0+α1+α2x2+ ...+αp xp − x1
α0+α2x2+ ...+αp xp − x1

�

�

α0+α1+α2x2+ ...+αp xp
α0+α2x2+ ...+αp xp

�
...

�

β0+β1+β3xp−3− xp−1
β0+β3xp−3− xp−1

�

�

β0+β1+β3xp−3
β0+β3xp−3

�

�

δ0+δ1− xp
δ0− xp

�

�

δ0+δ1
δ0

�
, (29)

x1 = 0,1,2, ...,α0; ...; xp = 0,1,2, ...,δ0,
according as ki > 1 and 0< ki < 1.

PROOF. Since the proof of the theorem in the p- variate case is apparent from the
tri-variate version, we consider the latter only, for brevity. Recall that

σ2
i (x) =

2
S(x+ e)

∞
∑

ti=xi+1

mi (ti ,x(i))S(ti + 1,x(i)+ ep−1)−mi (x) (mi (x)− 1) , (30)

i = 1,2, ..., p. Taking p = 3, i = 1 and x = (x1, x2, x3), we can write the above
identity when (27) holds as

(k+1)m1(x) (m1(x)− 1)) =
2

S(x+ e3)

∞
∑

t1=x1+1

m1(x1, x2, x3)S(t1+1, x2+1, x3+1).
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(k+1)m1(x) (m1(x)− 1)) =
2

S(x+ e3)

∞
∑

t1=x1+1

m1(x1, x2, x3)S(t1+1, x2+1, x3+1).

Hence

(k + 1)m1(x) (m1(x)− 1) S(x+ e3)− (k + 1)m1(x1+ 1, x2, x3)
(m1(x1+ 1, x2, x3)− 1) S(x1+ 2, x2+ 1, x3+ 1) = 2S(x1+ 2, x2+ 1, x3+ 1)

m1(x1+ 1, x2, x3).

Dividing by S(x1 + 1, x2 + 1, x3 + 1) and invoking (14) with p = 3, we get, after
some simplifications, that

(k + 1) [m1(x)−m1(x1+ 1, x2, x3)] = 2

or

m1(x)−m1(x1+ 1, x2, x3) =
k1− 1
k1+ 1

.

The solution of the above partial difference equation is

m1(x) = α1x1+ p1(x2, x3), α=
k1− 1
k1+ 1

.

Likewise for i = 2 and 3, we further have from (30)

m2(x) = α2x2+ p2(x1, x3)

and

m3(x) = α3x3+ p3(x1, x2).

From (3), the survival function is written as

S(x) =
x1−1
∏

r=0

α1(r − 1)+ p1(x2, x3)− 1
α1 r + p1(x2, x3)

x2−1
∏

r=0

α2(r − 1)+ p2(0, x3)− 1
α2 r + p2(0, x3)

x3−1
∏

r=0

α3(r − 1)+ p3(0,0)− 1
α3 r + p3(0,0)
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=
x2−1
∏

r=0

α2(r − 1)+ p2(x1, x3)− 1
α2 r + p2(x1, x3)

x3−1
∏

r=0

α3(r − 1)+ p3(x1, 0)− 1
α3 r + p3(x1, 0)

x3−1
∏

r=0

α1(r − 1)+ p1(0,0)− 1
α1 r + p1(0,0)

=
x3−1
∏

r=0

α3(r − 1)+ p3(x1, x2)− 1
α3 r + p3(x1, x2)

x1−1
∏

r=0

α1(r − 1)+ p1(x2, 0)− 1
α1 r + p1(x2, 0)

x2−1
∏

r=0

α2(r − 1)p2(0,0)− 1
α2 r + p2(0,0)

. (31)

When k > 1,αi > 0 the terms under the product symbol can be written in terms
of the Pocchamer symbol

(t )r = t (t + 1)...(t + r − 1).

Thus

S(x) =

�

p1(x2, x3)− 1
α1

− 1
�

x1
�

p1(x2, x3)
α1

�

x1

�

p2(0, x3)− 1
α2

− 1
�

x2
�

p2(0, x3)
α2

�

x2

�

p3(0,0)− 1
α3

− 1
�

x3
�

p3(0,0)
α3

�

x3

and similarly the other two equivalent forms. A complete specification of S(x)
requires the solution of the functions p1(x2, x3), p2(x1, x3) and p3(x1, x2) for which
we consider

S(x1+ 1, x2+ 1, x3+ 1)
S(x1, x2, x3)

=
S(x1+ 1, x2+ 1, x3+ 1)

S(x1, x2+ 1, x3+ 1)
S(x1, x2+ 1, x3+ 1)

S(x1, x2, x3+ 1)
S(x1, x2, x3+ 1)

S(x1, x2, x3)

=
S(x1+ 1, x2+ 1, x3+ 1)

S(x1+ 1, x2, x3+ 1)
S(x1+ 1, x2, x3+ 1)

S(x1+ 1, x2, x3)
S(x1+ 1, x2, x3)

S(x1, x2, x3)

=
S(x1+ 1, x2+ 1, x3+ 1)

S(x1+ 1, x2+ 1, x3)
S(x1+ 1, x2+ 1, x3)

S(x1, x2+ 1, x3)
S(x1, x2+ 1, x3)

S(x1, x2, x3)
.
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Converting the right hand expressions in terms of the mean residual life functions
using (14) lead to three functional equations. One of these equations has the form

(m1(x1− 1, x2, x3)− 1)
m1(x1, x2, x3)

(m2(x1− 1, x2− 1, x3)− 1)
m2(x1− 1, x2, x3)

(m3(x1− 1, x2− 1, x3− 1)− 1)
m3(x1− 1, x2− 1, x3)

=
(m1(x1− 1, x2− 1, x3− 1)− 1)

m1(x1, x2− 1, x3− 1)

(m2(x1, x2− 1, x3)− 1)
m2(x1, x2, x3)

(m3(x1, x2− 1, x3− 1)− 1)
m3(x1, x2− 1, x3)

p1(x2, x3)− 1
α1

+ x1− 1

p1(x2, x3)
α1

+ x1

p2(x1− 1, x3)− 1
α2

+ x2− 1

p2(x1− 1, x3)
α2

+ x2

p3(x1, x2)− 1
α3

+ x3− 1

p3(x1, x2)
α3

+ x3

=

p1(x2− 1, x3− 1)− 1
α1

+ x1− 1

p1(x2− 1, x3− 1)
α1

+ x1

p2(x1, x3)− 1
α2

+ x2− 1

p2(x1, x3)
α2

+ x2

p3(x1, x2− 1)− 1
α3

+ x3− 1

p3(x1, x2− 1)
α3

+ x3

which can be rearranged into

p1(x2, x3)− 1
α1

+ x1− 1

p1(x2, x3)
α1

+ x1

p1(x2− 1, x3− 1)
α1

+ x1

p1(x2− 1, x3− 1)− 1
α1

+ x1− 1

=

p1(x1, x3)− 1
α2

+ x2− 1

p1(x1, x3)
α2

+ x2

p2(x1− 1, x3)
α2

+ x2

p2(x1− 1, x3)
α2

+ x2− 1
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p3(x1, x2− 1)− 1
α3

+ x3− 1

p3(x1, x2− 1)
α3

+ x3

p3(x1, x2)
α3

+ x3

p3(x1, x2)− 1
α3

+ x3− 1
.

The terms on the left side are linear in x1 and therefore the functions p1(x1, x3)
and p2(x1, x3)must be linear in x1. Similar arguments using two other equations of
the same kind reveals that p1(x1, x3), p2(x1, x3) and p3(x1, x2) should involve only
linear terms in the respective variables. This enables to write the solution of the
functional equations as

p1(x2, x3) = a0+ a2x2+ a3x3

p2(x1, x3) = b0+ b1x1+ b3x3

p3(x1, x2) = c0+ c1x1+ c2x2.

Substituting these in (31) and after renaming the constants, we get

S(x1, x2, x3) =
(A0+A2x2+A3x3)x1

(A0+A2x2+A3x3+A1)x1

(B0+B3x3)x2

(B0+B3x3+B2)x2

(C0)x3

(C0+C3)x3

(32)

=
(B0+B3x3+B1x1)x2

(B0+B3x3+B1x1+B2)x2

(C0+C1x1)x3

(C0+C1x1+C3)x3

(A0)x1

(A0+A1)x1

(33)

=
(C0+C1x1+C2x2)x3

(C0+C1x1+C2x2+C3)x3

(A0+A2x2)x1

(A0+A2x2+A1)x1

(B0)x2

(B0+B2)x2

, (34)

as required. Now assuming the above distribution for X, we have

m1(x) =
(A0+A2(x2+ 1)+A3(x3+ 1)+A1)x1+1

(A0+A2(x2+ 1)+A3(x3+ 1))x1+1
∞
∑

t=x1+1

(A0+A2(x2+ 1)+A3(x3+ 1))t
(A0+A2(x2+ 1)+A3(x3+ 1)+A1)t

=
A0+A2(x2+ 1)+A3(x3+ 1)+A1+ x1

(A1− 1)
,

on using Waring expansion

1
x − a

=
1
x
+

a
x(x + 1)

+
a(a+ 1)

x(x + 1)(x + 2)
+ ...
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Likewise

σ2
1 (x) =

(A0+A2(x2+ 1)+A3(x3+ 1)+A1+ x1)
(A1− 1)(A1− 2)

(A0+A2(x2+ 1)+A3(x3+ 1)+ x1+ 1) .

Thus σ2
1 (x) = k1m1(x)(m1(x)− 1), k1 =

A1

A1− 2
> 1.

Using (33) and (34) in the same way, k2 =
B1

B1− 2
> 1 and k3 =

C1

C1− 2
> 1.

When ki < 1, α is negative. The proof runs along the same lines as in the Waring
case, except that in (31) the terms form a descending factorial expression resulting
in a hyper geometric function. The survival function takes the form

S(x1, x2, x3) =

�

α0+α1+α2x2+α3x3− x1
α0+α2x2+α3x3− x1

�

�

α0+α2x2+α3x3+α1
α0+α2x2+α3x3

�

�

β0+β1+β3x3− x2
β0+β3x3− x2

�

�

β0+β1+β3x3
β0+β3x3

�

�

δ0+δ1− x3
δ0− x3

�

�

δ0+δ1
δ0

�
.

The mean and variance residual life functions are

m1(x) =
α0+α1+α2(x2+ 1)+α3(x3+ 1)− x1

α1+ 1

and

σ2
1 (x) =

(α0+α1+α2(x2+ 1)+α3(x3+ 1)− x1)
(α1+ 1)2(α1+ 2)

(α0+α2(x2+ 1)+α3(x3+ 1)− x1− 1)

and hence
σ2

1 (x) = k1m1(x)(m1(x)− 1); k1 =
α1

α1+ 2
< 1.

This completes the proof. 2

REMARK 8. The value ki = 1 omitted in the theorem corresponds to the multivariate
geometric distribution (17).
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REMARK 9. It is evident from the theorem that the multivariate Waring distribution
and negative hyper geometric distributions are characterized by a linear mean residual
life function and a quadratic variance residual life function in x1, x2, ..., xp .

REMARK 10. The results in Theorem 7 are more general than that of Roy (2005) in
which he has taken p = 2 and ki = k; i = 1,2. When p = 1, we have the characteri-
zation of univariate Waring and negative hyper-geometric models discussed in Hitha
and Nair (1989).

5. Let X and Y be two discrete random vectors defined on Np with mean residual
life of the i th components as mXi

(x) and mYi
(x). The corresponding variance

residual lives are denoted by σ2
i (x) and ρ2

i (x). Then we say that X is less than Y
in multivariate mean residual life if mXi

(x) ≤ mYi
(x), for i = 1,2, ..., p and all x

in Np and is denoted by X ≤M M RL Y. Similarly, we say that X is less than Y in
multivariate variance residual life if σ2

i (x) ≤ ρ
2
i (x), for i = 1,2, ..., p and all x in

Np and is denoted by X≤MV RL Y.
From Theorem 1, we see that

X≤M M RL Y⇒X≤MV RL Y.

6. Consider the equilibrium distribution of the vector X considered in Section 2.
Denoting the mean residual life function of Y as

r(x) =
�

r1(x), r2(x), ..., rp (x)
�

where
ri (x) = E[Yi − xi |Y> x]; i = 1,2, ..., p.

We see that

ri (x) =
1

SY(x+ e)

∞
∑

t=x1+1

SY(t , x2+ 1, ..., xp + 1)

=

∑∞
t=x1+1

∑∞
u=t+1 S(u, x2+ 1, ..., xp + 1)

∑∞
t=x1+1 S(t , x2+ 1, ..., xp + 1)

.

With the aid of (6) and (4),

σ2
1 (x)+mi (x)(mi (x)− 1) = 2ri (x)(mi (x)− 1). (35)

Writing

C 2
i (x) =

σ2
i (x)

mi (x)(mi (x)− 1)
,
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ri (x) =
1
2

�

1+C 2
i (x)

�

mi (x).

It may be noticed that in the discrete case, C 2
i (x) enjoy properties analogous to the

coefficient of variation of the residual life when X is continuous. For a discussion
of the role of the coefficient of variation of residual life in reliability modelling,
see Gupta and Kirmani (2000) and Gupta (2006).

4. CLASSES OF LIFE DISTRIBUTIONS BASED ON VARIANCE RESIDUAL LIFE

Multivariate life distributions can be classified using the behaviour of their variance
residual lives. In the multivariate case, there can be different ways of defining their
monotonicity and as such we have an increasing(decreasing) multivariate variance resid-
ual life class MIVRL(MDVRL) corresponding to each mode of definition. Following
Zahedi (1985) and Nair and Asha (1997), four different versions of classes are studied in
this section.

A discrete random vector X defined on Np is said to be

(i) MIVRL-1(MDVRL-1) if
σ2

i (x+ t)≥ (≤)σ2
i (x)

for all x and t= (t1, t2, ..., tp ) in Np and i = 1,2, ..., p.

(ii) MIVRL-2(MDVRL-2) if

σ2
i (x1, x2, ..., xi−1, xi + t , xi+1, ...xp )≥ (≤)σ

2
i (x),

for all x and t ∈N and i = 1,2, ..., p.

(iii) MIVRL-3(MDVRL-3) if

σ2
i (x1+ t , x2+ t , ..., xn + t )≥ (≤)σ2

i (x),

for all n ≤ p; i = 1,2, ..., p and t ∈N.

(iv) MIVRL-4(MDVRL-4) if

σ2
i (x + t , x + t , ..., x + t )≥ (≤)σ2

i (x, x, ..., x),

for all x, t ∈N and i = 1,2, ..., p.

The interpretation of (i) is that the variance residual life of a p- component device where
the components are of different ages increase(decrease) with different intensities. In (ii)
the variance residual life increases when a working component is replaced by a younger
one, whereas in (iii), the components are initially of different ages and the variance resid-
ual life is reckoned after the same time for all of them. Lastly in (iv), the variances are
compared after the same time when initially they are of the same age.
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From the definitions, it is easy to see that

MIVRL-2(MDVRL-2)⇐MIVRL-1(MDVRL-1)
⇒MIVRL-3(MDVRL-3)⇒MIVRL-4(MDVRL-4).

Further, MDVRL-1 and MIVRL-1 are simultaneously satisfied when σ2
i (x) = ki , a

constant independent of x. In this case, the distribution of X is multivariate geomet-
ric in Remark 4. Likewise, X is both MIVRL-2 and MDVRL-2 if and only if σ2

i (x) =
pi (x(i)); i = 1,2, ..., p so that the corresponding distribution is as in (17). The multivari-
ate geometric distribution in Remark 4 satisfies the property of being both MDVRL-3
and MIVRL-3. Finally, the X is both MIVRL-4 and MDVRL-4 is satisfied if and only if

Ai (x + t ) =Ai (x),

where Ai (x) = σ
2(x, x, ..., x). The above is a univariate functional equation, from which

a multivariate solution is difficult to emerge. The Waring and negative hyper geometric
laws are respectively MIVRL-k and MDVRL-k for k = 1,2,3,4 so that all the classes are
well defined.

Some properties of the MIVRL and MDVRL classes are given below. It may be noted
that various classes based on the multivariate mean residual life can also be defined in
the same manner as with σ2(x). Accordingly, we say that X belongs to the

(i) MIMRL-1(MDMRL-1) class if

mi (x+ t)≥ (≤)mi (x); i = 1,2, ..., p.

(ii) MIMRL-2(MDMRL-2) class if

mi (x1, ..., xi−1, xi + t , xi+1, ..., xp )≥ (≤)mi (x); i = 1,2, ..., p.

(iii) MIMRL-3(MDMRL-3) class if

mi (x1+ t , x2+ t , ..., xn + t )≥ (≤)mi (x); n ≤ p; i = 1,2, ..., p.

(iv) MIMRL-4(MDMRL-4) class if

mi (x + t , x + t , ..., x + t )≥ (≤)mi (x); x, t ∈N; i = 1,2, ..., p.

THEOREM 11. The random vector X is MIVRL-2(MDVRL-2) if and only if

σ2
i (x1, ..., xi−1, xi + 1, ..., xp )≥ (≤)mi (x1, x2, ..., xi−1, xi + 1, xi+1, ..., xp )(mi (x)− 1)

for i = 1,2, ..., p.
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PROOF. We have from (11)

σ2
1 (x1+ 1,x(1))−σ

2
1 (x) =

m1(x1+ 1,x(1))−m1(x)+ 1

m1(x1+ 1,x(1))
�

σ2
1 (x1+ 1,x(1))−m1(x1+ 1,x(1))(m1(x− 1))

�

. (36)

Since the above is an identity, X is MIVRL if and only if

σ2
1 (x1+ 1,x(1))≥ m1(x1+ 1,x(1))(m1(x)− 1).

The proof of i = 2,3, ..., p is similar. 2

THEOREM 12. X is MIMRL-2(MDMRL-2)⇒ X is MIVRL-2(MDVRL-2).

PROOF. Using (5), we write

σ2
1 (x1+ 1,x(1))−m1(x1+ 1,x(1))(m1(x)− 1) =

2
S(x1+ 2,x(1)+ ep−1)

∞
∑

t=x1+2

∞
∑

u=t+1

S(u,x(1)+ ep−1)−m1(x1+ 1,x(1))(m1(x1+ 1,x(1))− 1)

−m1(x1+ 1,x(1))(m1(x)− 1)

=
2

S(x1+ 2,x(1)+ ep−1)

∞
∑

t=x1+2

m1(t ,x(1))S(t + 1,x(1)+ ep−1)−m1(x1+ 1,x(1))

�

m1(x1+ 1,x(1))+m1(x)− 2
�

=
2

S(x1+ 2,x(1)+ ep−1)

∞
∑

t=x1+2

�

m1(t ,x(1))−m1(x1+ 1,x(1))
�

+
2m1(x1+ 1,x(1))

S(x1+ 2,x(1)+ ep−1)





∞
∑

t=x1+2

S(t ,x(1)+ ep−1)− S(x1+ 2,x(1)+ ep−1)





−m1(x1+ 1,x(1))(m1(x1+ 1,x(1))+m1(x)− 2)

=
2

S(x1+ 2,x(1)+ ep−1)

∞
∑

t=x1+2

�

m1(t ,x(1))−m1(x1+ 1,x(1))
�

S(t + 1,x(1)+ ep−1)

+m1(x1+ 1,x(1))(m1(x1+ 1,x(1))−m1(x)).



Discrete Multivariate Variance Residual Life 201

When X is MDMRL-2, m1(t ,x(1))≤ m1(x1+ 1,x(1)) for all t ≥ x1+ 2 and also m1(x1+
1,x(1))≤ m1(x). Hence the expression on the right is negative and hence by Theorem 1,
X is MDVRL-2. The case of i = 2,3, ... is similar and so is the case of MIVRL-2. 2

The above result gives only a sufficient condition for X to be MIVRL-2, besides being
the implication among the MMRL and MVRL classes. A stronger result is presented in
the next theorem.

THEOREM 13. Suppose that S(x) is strictly decreasing. Then X is MIVRL-2(MDVRL-2)
if and only if the vector Y is MIMRL-2(MDMRL-2).

PROOF. Using (35), we can write for i = 1

2
�

r1(x1+ 1,x(1))− r1(x)
�

= 2

�

σ2(x1+ 1,x(1))+m1(x1+ 1,x(1))m1(x1+ 1,x(1))

2m1(x1+ 1,x(1))m1(x1+ 1,x(1))
− 1

�

=
σ2

1 (x1+ 1,x(1))

m1(x1+ 1,x(1))m1(x1+ 1,x(1))
− 1. (37)

Hence

σ2
1 (x1+ 1,x(1))

m1(x1+ 1,x(1))(m1(x)− 1)
=

�

m1(x1+ 1,x(1))− 1
��

1+ r1(x1+ 1,x(1))− r1(x)
�

m1(x)− 1
.

Also from (37)

σ2
1 (x)

m1(x)(m1(x)− 1)
= 2

�

r1(x)− r1(x1− 1,x(1))+ 1
�

.

The last two equations provide

σ2
1 (x)−σ

2
1 (x1+ 1,x(1)) =

�

m1(x1+ 1,x(1))−m1(x)+ 1
��

m1(x)−m1(x1+ 1,x(1))
�

�

1+ r1(x1+ 1,x(1))− r1(x)
�

=

�

m1(x1+ 1,x(1))−m1(x)+ 1
�

1+ r1(x)− r1(x1− 1,x(1))

�

r1(x1− 1,x(1))− r1(x)
�

.

On using the identity

m1(x) = r1(x)
�

1+ r1(x)− r1(x1− 1,x(1))
�

,
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further simplification yields

σ2
1 (x)−σ

2
1 (x1+ 1,x(1)) =

�

m1(x1+ 1,x(1))−m1(x)+ 1
�

(m1(x)− r1(x))

= m1(x)
�

m1(x1+ 1,x(1))−m1(x)+ 1
��

r1(x1− 1,x(1))− r1(x)
�

. (38)

By (2), m1(x1 + 1,x(1))−m1(x) + 1 > 0 since S(x) is strictly decreasing. Moreover the
sign of the left side of (38) is the same as that of r1(x1− 1,x(1))− r1(x). This proves the
assertion for i = 1. The same method applies to i = 2,3, ..., p. 2

REMARK 14. Equation (38) reveals that X is MIVRL-2(MDVRL-2) if and only if

mi (x)≥ (≤)ri (x).

This is also equivalent to the statement

X is MIVRL-2(MDVRL-2) ⇐⇒ X≥M M RL (≤M M RL)Y.

The above result helps us to provide bounds on the variance residual life as stated in the
following theorem.

THEOREM 15. (a) If (X1,X2) is MIVRL-2(MDVRL-2), then VRL components have
the lower (upper) bounds as follows.

σ2
1 (x1, x2)≥ (≤)m1(x1, x2) [m1(x1, x2− 1)− 1] (39)

σ2
2 (x1, x2)≥ (≤)m2(x1, x2) [m2(x1− 1, x2)− 1] . (40)

PROOF. The proof follows from Theorem 11 by noting that the left side of (36) is
positive when (X1,X2) is MIVRL-2 and negative when MDVRL-2. Now change x1+ 1
to x1 for (a) and x2+ 1 to x2 for (b). 2

Some other properties of the MIVRL-2 class are given below.

1. MDVRL-2 class is not closed under mixing. To see this, let (σ2
1 (x),σ

2
2 (x), ...,σ

2
p (x))

be the variance residual life of a mixture of two life distributions. Assume that the
mixture is MDVRL-2. Then σ2

1 (x) is decreasing in x1 for all x2, ..., xp and hence
σ2

1 (x1) of X1 is decreasing. But, in general univariate VRL is not closed under the
formation of mixtures. Hence σ2

1 (x) is not decreasing. Hence X is not DVRL.

2. Both MDVRL-2 and MIVRL-2 classes are not closed under convolutions. The
proof is similar to previous one and hence omitted.

In the absence of multivariate discrete concepts corresponding to their univariate coun-
terparts, extension of some of the univariate results to the multivariate case is still open.
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5. CONCLUSION

In this paper, we have presented several properties of the different versions of multi-
variate variance residual life in discrete time. Also the classification of life distributions
based on the monotonicity of the concept were discussed. It is hoped that the results will
be useful in modelling and analysis of discrete multivariate data, which is not much seen
in reliability literature. Inference procedure for estimating the variance residual life is a
problem to be discussed in this context. Some attempts are being made in this direction
and will be reported in a separate work.
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SUMMARY

Among various characteristics of residual life, the concept of variance residual life in the univariate
case has been extensively discussed in reliability literature. In the present work we extend this
notion to the discrete multivariate case and study its properties. Different versions of classes of
multivariate distributions based on the monotonicity of variance residual life are also presented
along with some characterizations.

Keywords: Multivariate variance residual life; Geometric, Waring and negative hyper geometric
distributions; Increasing (decreasing) variance residual life classes; Multivariate equilibrium mod-
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