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1. INTRODUCTION

Lifetime distributions are used to explain the life of a system, a device, and in gen-
eral, time-to-event data. These distributions are frequently used in the fields like re-
liability, biology, engineering, insurance, etc. The distributions such as exponential,
gamma, Weibull have been frequently used in statistical literature to analyze lifetime
data. Nadarajah et al. (2013) introduced a family of lifetime models by adding a param-
eter to the Marshall-Olkin family of distributions. Jayakumar and Babu (2015) intro-
duced a class of distributions containing Marshall-Olkin extended Weibull distribution
and studied the role of this distribution in the study of minification process. Babu (2016)
introduced Weibull-truncated negative binomial (W T'NB) distribution and studied the
application of this distribution in medical sciences.

According to the quadratic rank transmutation map (QRT M) approach by Shaw
and Buckley (2007), the cumulative distribution function (cdf) satisty the relationship

F(x)= (14 )G(x) = ALGx)P; A <1, ©)

where G(x) is the c¢d f of the base distribution. When A =0, we get the cd f of the base
random variable. Differentiating (1) yields

f(x)=g@)[1+A=-2AG(x)]; A <1, &)

where f(x) and g(x) are the probability density functions corresponding to F(x) and
G(x) respectively. The survival function of (1) is given by

F(x)=1—F(x)=1—Gx)[14+ AG(x)]; |A| <1, 3)

! Corresponding Author. E-mail: giristat@gmail.com



252 K. Jayakumar and M. Girish Babu

where G(x) =1— G(x).

Recently various research papers have been appeared in the literature on transmuted
generalizations of distributions. Some of them are: transmuted extreme value distribu-
tion by Aryal and Tsokos (2009), transmuted Weibull distribution by Aryal and Tsokos
(2011), transmuted modified Weibull distribution by Khan and King (2013a), trans-
muted generalized inverse Weibull distribution by Khan and King (2013b), transmuted
log-logistic distribution by Aryal (2013), transmuted additive Weibull distribution by
Elbatal and Aryal (2013) and transmuted Weibull Lomax by Afify et al. (2015).

Alzaatreh er al. (2013b) developed a method to generate a family of continuous dis-
tributions called 7 — X family of distributions. The 7'— X family is a method for
generating generalized distributions of X using 7. The random variable X is known
as "the transformer" and the random variable 7" is known as "the transformed". The
resulting family has a connection with the hazard functions where each generated dis-
tributions is considered as weighted hazard function of the random variable X. Several
known continuous distributions are found to be special cases of this family. This family
is defined as follows:

Let r(z) be the probability density function (pdf) of a random variable T'¢[a, b], for
—00 <a < b < ooand W(F(x)) be a function of the cdf F(x) of any random variable
X which satisfies the following conditions:

W(F(x)) € [a,b],
W (F(x)) is absolutely continuous and monotonically non-decreasing, 4)
W(F(x))—aasx ——ooand W(F(x))— b asx— oo.

The cdf of T — X family of distributions is defined as

W (F(x))
Jx) = J H(o)dr. 6

where W (F(x)) satisfies the conditions in (4). Here the cdf J(x) can be written as J (x) =
R{W(F(x))}, where R{.} is the cdf of the random variable 7. The pdf corresponding
to (5) is

. d

) = { - WE@) | r(WEC)) ©

Aljarrah er al. (2014) introduced a wider class of W(.) functions defined in (4) as
W :(0,1) — (a,b), where —00 < a < b < o0, is right continuous and non decreasing
function, such that, lim_,, W(y)=aandlim _,;_ W(y)= 5. Now J(x),—o00 < x <
00, is a distribution function satisfies the following conditions:
i) J(x) is non-decreasing,
i1) J(x) is right continuous and
i11) J(x) > 0 as x — —oo and J(x) — 1 as x — oo.
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Let W(F(x)) = —In(1 — F(x)), and the random variable T be defined on (0, c0).
Then the cdf of the T'— X family of distributions becomes

—In(1—F(x))
](x):JO dR(¢). )

Several research papers are appeared in the literature based on the 7'— X family
introduced by Alzaatreh ez al. (2013b). Some of them are the Weibull-Pareto distribution
by Alzaatreh et al. (2013a), gamma-half normal distribution by Alzaatreh and Knight
(2013), Weibull-X family by Alzaatreh and Ghosh (2015), beta Marshall-Olkin family
by Alizadeh et al. (2015), generalized transmuted family by Alizadeh et al. (2017), etc.

In this paper, we introduce a combined family of 7'— X and transmuted distribu-
tions. The results of this paper is organized as follows: In Section 2, we introduce a
new family of distributions called "T-transmuted X family" and study its properties.
Some members of T-transmuted X family are identified in Section 3. Properties of one
of the members of T-transmuted X family called, Exponential-transmuted Exponential
(ETE) distribution are studied in Section 4. Two real data sets are analyzed in Section 5,
to show the flexibility of £ T'E distribution to model life time data. Finally, conclusions
are given in Section 6.

2. T-TRANSMUTED X FAMILY OF DISTRIBUTIONS

In the composite function W(F(x)) defined in (4), if we take F(x) as the transmuted
family defined (1), we get several family of distributions. As a special case, we take

W (F(x)) = —In[F(x)], the cumulative hazard function of F(x), where F(x) is a trans-
muted family of distributions given in (1). That is
W(F(x) =—In[ 1= G(x)[1+ AG(x)]]-
Then from (7), the cdf of the new family is

—In[1-G(x)[ 14+AG(x)] ]
o=
0

where R(t) is the cdf of the random variable 7" with pdf »(z). We call J(x) as the "T-

transmuted X family" of distributions.

dR(t)=R{~In[1-Gx)[1+1G)]]},  ®

The pdf of (8) is
. _i . _ g(o)[1+A=2AG(x)] 11— Gl >
)= U= e ey T WG ©)

The hazard rate function (hrf) is given by

i) g+ A—2AG(x)] 7 {—In[1—Gx)(1+AG(x)]}
1=J(x)  1=G(x)[1+AG(x)] 1—R{—1n[1—c;(x)<1+xc';(x>)]}'

h(x) = (10)
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The shapes of the density and hazard rate functions of T-transmuted X family can be
described analytically. The critical points of the density function are the roots of the
equation
Jlni(x)) _ g'lx) _ 2A(x)  g(x[1+A-2AG(x)]
dx gx) 1+A=2AG(x) 1—G(x)[14 AG(x)]

1
[r {~In[1—G(x)(1+ AG(x))]} " 1} =0 (v

Here (11) may have more than one root. If x = x, isa root of (11), then it corresponds
2005 21 -
to a local maximum if W < 0, a local minimum if w > 0, and a point of
inflection if % =0.
Similarly, the critical points of 4(x) are the roots of the equation

2In(h(x) g'v)  2hg(x)
dx  g(x) 14+1=2AG(x)
g(x)[14+A—2AG(x)] 1

1 G[1+AG(x)] [r{—ln[l—G(x)(l—F/\G(x))]} T w
r{—ln[l—G(xleG(x))]} +1]:o
1—R{~In[1—G(x)(1+ AG(x))]} '

There may be more than one root to (12). If x = x, is a root of (12), then it corresponds
to a local maximum if % < 0, a local minimum if %
inflection if w =0.

Several family of distributions can be derived from T-transmuted X family for dif-
ferent choices of 7(¢). Some of them are given below:

> 0, and a point of

i) When 7(t) follows exponential distribution with parameter 6. We have r(¢) = fe%";
t > 0,6 > 0. Then from (9)

j(x)=0g(x)[ 14+ A=2AG(x)][1 = G(x)(1 + AG(x))] . (13)
i1) When 7(t) is exponentiated exponential distribution with parameters & and a. We
have r(t) = W; t>0,0>0,a>0. Then

i) BN+ A= 206 [[1-(1— Gt + AGE) T ”
[1—G(x)(1+ AG(x))]*—0

iii) When r(t) is beta-exponential with parameters ¢, and (.

We have r(t):%_g&w; t>0,0>0,a>0,8>0.
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Then

a—1

Bg(x)[14A—2AG(x)] [ 1= (1= G(x)(1+ AG(x))) |
B(a,f5) [1—G(x)(1+ AG(x))]-%

1) =

iv) When 7(t) is gamma distribution with parameters o and 3.
We have 7(t) = Wt"‘*le_f; t>0,a>0,8>0.
Then

j(x)= r(gof)x/; [14+ A—2AG(x)][1— G(x)(1+ AG(x))]7 .

v) When 7(t) is half normal distribution with parameter o.
1 2

We have 7(t) = %(%)26_2‘7; t>0,0>0.

Then

j(x)= l<£>2 g(x)[14+4—24G(x)] e—ﬁ[1n(1—G(x)(1+/1@(x)))]2-
o\m/ 1—G(x)(1+AG(x)

vi) When 7(t) is Levy distribution with parameter a.
1 2
We have r(t) = (%)E £ X t>0,a>0.
t2
Then

2 g(x)[1+ A—21G(x)]e TG iz
7 [1—G(x)(1+ AG(x))][=In(1 — G(x)(1+ AG(x)))?]

vii) When 7(t) is log-logistic distribution with parameters @ and 3.

Lys—
We have 7(t) = a[ﬁl(:()i)pl]z;t >0,a>0,8>0.
Then

iy = BB+ A=26(0)] [l = GLa)(1+ AGE)T)

viii) When r(t) is Rayleigh distribution with parameter o.
2

We have 7(¢) = #eilt?; t>0,0>0.

Then _

—In[1—G(x)(1+ AG)]g(x)[1+ A—2AG(x)]

o [1—G(x)(1+ /1(_;(96))]6272[ln(l_G(x)(lJrAG))]2
ix) When 7(t) is Type-2 Gumbel distribution with parameters @ and /3.
We have 7(t) = a,@t‘“_le_ﬁﬂ; t>0,a>0,8>0.

j(x)=

1—G(x)(14 AG(x)) [a,@ +[~In[1— Glx)(1+ AG(x))]]ﬁ ]2 |

(15)

(16)

(17)

(18)

(19)

(20)
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Then
](x) — a’ﬁ g(x)[l + /1— 2/1_G<x>] e—ﬁ[—ln[l—G(x)(1+,{G(x))]1—a
1=Gx)(1+AG(x)) [In[1 - G(x)(1+ AG(x))]]

a+l’ (21)

x) When r(¢) is Lomax distribution with parameters & and x.

We have 7(t) = (Hgﬁ; t>0,0>0,x>0.
Then

e Ox g(x)[14+ A—2AG(x)] R

[1—G(x)(1+AG(x)][1—6 In[1—G(x)(1 + Aé(x))]]"“

x1) When r(¢) is Weibull distribution with parameters & and c.

13

We have 7(¢)=75(z)'e™#; £ >0,60 >0,c>0.
Then

c g(x — )1 | —=In[1—G(x 14+ 1G(x ot
)=z i+ 2/1?( ) [ : 111[(1;(@(1“0(;(»] (f ))]] 23)
0° [1—G(x)(14 AG(x))] e(%)

3. SOME MEMBERS OF T-TRANSMUTED X FAMILY OF DISTRIBUTIONS AND THEIR
PROPERTIES

In this section we discuss some members of the T-transmuted X family. Here we con-
sider the case where T follows exponential distribution with parameter & > 0 and the
cdf and pdf are respectively, R(t) =1—e~?" and r(¢)=0e=%; t > 0,6 > 0.

3.1.  Exponential-transmuted exponential (E T E) distribution
Let W(F(x))=—1In (1—1:"(x)) =—In [1—G(x)(1+/1@(x))], where the base distribution
is exponential with cdf, G(x) =1—e=2%; x >0, 3> 0.
Then the cdf of the corresponding family is given by
J(x)= l—e_ﬁﬁx(l—/l—l- /Ie_'gx)e; x>0,0>0,8>0,]A <1. (24)

We call this new family of distributions as exponential-transmuted exponential (ETE)
distribution with parameters 0, 8 and A.
The pdf of this distribution is

(1 —/1+2/16_/3x)
(1= A4 deBx)' ™"

When A =0, ETE distribution becomes the well known exponential distribution. The

shapes of the pdf of £ T E distribution for various parameter values are shown in Figure
1.

j(x)=0Be 0P ; x>0,0>0,8>0,]4| < 1. (25)
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3.2, Exponential-transmuted uniform (ET U ) distribution

We consider the base distribution as uniform distribution with cdf and pdf are given by,

G(x) = and g(x) = é; 0 < x < a. Then the cdf and pdf of ET U distribution are
given by

J(x)= 1—[1—2[1”(1—2)]}9 (26)
and
j(x):g[l—§[1+/1(1—g)]]6_1<1+/1(1—%c)>, 27)

where, > 0,0 >0,[A|<land 0<x < a.
Shape of pdf of ET U distribution for various parameters are shown in Figure 2.

3.3, Exponential-transmuted Fréchet (ETF) distribution

Here we consider the base distribution as Fréchet distribution with cdf and pdf are given

by, G(x) = e=(©)" and g(x)= a[)’“x_(”l)e_(g)a; x>0,0>0,3>0. Then W(F(x))=
—In(1—e 14 A1—eE7))).

Now the cdf and pdf of ETF distribution are given by

J(x) = R[—ln(l—e—(§>“[1+/1(1_e_(§)a)])}

%
= 1—|:1—€7(§>1|:1+/1(1—€7(§>1):|i| (28)

and
. 14 A—20e~(5F
j(x)= Qaﬁ“x_(““)e_(é) (ﬁ + ‘ 2 ,
(1—e [T+ A1 —e (B0
where, @ > 0,3 > 0,6 > 0,|A] < 1 and x > 0. Shape of pdf of ETF distribution for
various parameters are shown in Figure 3.

(29)

3.4.  Exponential-transmuted Rayleigh (E T R) distribution

We consider the base distribution as Rayleigh distribution with cdf and pdf are given by
G(x)=1— ¢ and g(x) = %67;7. Then the cdf and pdf of ETR distribution are
given by

6x2

](x):l—e_m[l—/l+/1€_2%]6 (30)
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and
6x2 _ 2
exe_ZTZ [1—/14-2/16 Z"Z:I
ol [1—/1+/16 202 ]1 -’

where, o > 0,6 > 0,|A] < 1 and x > 0. Shape of pdf of ETR distribution for various
parameters are shown in Figure 4.

j(x)= €2))

3.5, Exponential-transmuted Weibull (ET W) distribution

Here we consider the base distribution as Weibull distribution with cdf and pdf are
given by G(x) = 1—e " and g(x) = aBx*'e=P*". Then the cdf and pdf of ETW

distribution are given by
J)=1—e P [1— A4 Ae 7] (32)

and

—Bx*
i(6) = O Bret o057 (1—A424e7P) (33)

(1— A4 de=Px)1=6°
where, 2 >0, > 0,0 > 0,|A| < 1 and x > 0. Shape of pdf of ET W distribution for

various parameters are shown in Figure 5. In the next section, we study some properties
of one of the members of T-transmuted X family, namely ETE distribution.

2 — 6=15p8=054=-06
8=0.5.5=1.5=0.9
— 8=2p-051--08
o | 0=25p=14=—09
o
b —
O
=
~
o
™~
o
(=] —
O
T T T T T
0 . P 3 4

Figure 1 - Pdf of ETE distribution for various choices of @, and A.
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Figure 2 - Pdf of ET U distribution for various choices of @, and A.
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Figure 3 - Pdf of ETF distribution for various choices of 8,, 8 and A.
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Figure 4 - Pdf of ETR distribution for various choices of 8,0 and A.
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Figure 5 - Pdf of ET W distribution for various choices of 8,2, 8 and A.
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4. PROPERTIES OF ETE DISTRIBUTION

Using the binomial expansion, the cdf of E T E distribution given in (24) can be expressed
as

](x) = 1—676’6}6(1—/1(1_3*596))9

= 1= (e

1=0

_ l_e—eﬁxi(_l)l( ;9 )Aii(_l>k< ]i >e—kﬂx

1=0 k=0
_ 1_6—6ﬁx22(_1)i+k/1i< f >< 2 >e—/e,3x
k=0 i=k

= 1—ZSk(9 /1 k+§

1

where §,(0,4) =372, (— )‘+/€< (9 >< /i )/V.

That is
= 1_Zsk<<9 A)e=k+98 (34)
Then the pdf can be expressed as
()= D S0, Nk + 0)Be*TOP, (35)
k=0

4.1.  Shapes of the density function

The shapes of the density function can be described analytically. The critical points of
ETE density function are the roots of the equation:

9 In(j(x))
B =0.
That is
d In(j(x)) AB(O—1)eP* 2ABePx
dx 5P 1—A4+de P 1—A42)e P> 06)
This implies

W[40 ]+ u[AA—=1)(A#0 + 1]+ 60(1— A =0, (37)
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where # = . Here (37) is a quadratic equation of # and since, 0 < # < 1, the possible
root of (37) is

—/1[(86+ 1)z — (40 + 1)}
A 80 '
Therefore, the solution of (36) is
—In(u)

3

Xo =

Since, ¢ > 0 and 0 < # < 1, the root x, exist only if =1 < A< w < 0. Thus
(8€+1)2+(4€ 1)

the shape of the density function of ETE distribution is unimodal for x > 0,6 >0, 8 >

i
Oand —1< A< w < 0. Also note that
(80+1)7 +(46—1)

d%In(j e
3(2 = 11— Nt [

6—1 2 ]

+ 38
(1— A+ AeFx)2 " (1—A424eFx)2 68)
Since, A < 0,6 >0, 8>0and 0 < e™#* < 1 equation (38) is always negative. That is

len( (x))
e

The third derivative 83138;(’6)) is also exist. The mode of ETE distribution is given by

Xo —

1 ln[1_,1<(8<9+1);—(4(9+1>>:|, (39)

B A 80
where § > 0and —1 < A < w < 0. Thus, the shape of the pdf of ETE is
(86+1)2+(46 1)

w</1<1andisunimodalf0r—1</1< w<0.

decreasing for :
(80+1)2 +(46—1) (80+1)24+(46—1)

4.2.  Hazard rate function

The hazard rate function of ETE distribution is given by

7(x) 1— 42 P>
- ——""
1—J(x) P 1— A+ Ae=P

Here note that, lim,_,h(x) = 03(A+ 1), and lim
We have the following cases:

h(x)= ,x>o,6>o,,6>o,|,1|gl. (40)

oo P(x)=0.



T'transmuted X family of Distributions 263

Case i. When —1 < A <0, h(x) is an increasing function increases from (1+ A)03 to
0.

Case ii. When A=0, h(x) =63, a constant function.

Case iii. When 0 < A< 1, h(x) is a decreasing function decreases from (1+ )0 8 to 6 5.
Case iv. When A =1, h(x) =203, a constant function.

The shapes of the hazard rate function for various parameter values are presented in
Figure 6.

=
o™
W
% o |
= = PEE———
— 8=1,8=13=—1
8=1p=12=—05
. — 8=1,6=14=-0.1
o — 8=18=14=0
0=1,p=1.2=0.1
8=1p=12=05
8=1.5=12=0.9
o 0=1p=12=1
T T T T T
0 1 2 3 4

Figure 6 — Hazard rate function of ETE distribution for various parameter values.

4.3.  Quantile function

The p*?quantile x , of ETE distribution is the real solution of the equation

J(x,)=p.

That is
1—e PP (1= A+ e P5) =
= e (1= A4 e Po)=(1—p)5. (1)

Let # = e P%, then x —— )y

?
Then from (41)
/11424—(1—/1)%—(1—;))% =0
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(1= )£ (1= A2 +4A(1—p)7

>u=
24

Since 0 < # < 1, the possible root of # is

(1= +/ (1= 2 +4A(1—p)?
22 '

u =

Therefore

e L LR GO S B

4.4. Moments

Here we derive the expression for raw moments of ET'E distribution as

b=EX) = | oS0 Wk+ )
0

ZSk (6, )k +6) ,BJ PRGN

_ Zs,e 6,) /:“;),16) (@4)

The first four raw moments are ,
DI ’1) k+€ . 1 _Zk 20 S0, ) ENYEEks
IuS =325, /1) k+n9 T and ,u4 = Zk %0 ( A)ﬁ , respectively.

Then, skewness = =5 and kurtosis = v £
/“z /“2

+1)
(35 +1)2+
(8€+1) —(46+1)
(89+1)2 +(46—1)
mode value is always less than the mean value, it shows the right skewness.

—(46+1)

< A < 1it may be
+(46—1)

Since the pdf of ETE distribution is decreasing for &

2—
1
2

skewed to the right. Also for —1 < A< < 0 the pdf is unimodal and the
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Table 1 gives the raw moments, central moments, mode, skewness and kurtosis of
ETE distribution for different choices of parameter values. In all the cases the distribu-
tion shows a positively skewed behavior.

TABLE 1
Moments, skewness and kurtosis for various choices of parameters.

Parameter Raw moments Central moments Mode Skewness Kurtosis

6=1.0 H fgﬁ (1, =0.048
B=5.0 M= 007 3 =0.019 0.058  3.28 8.66
A=—05 ﬁ,s o006 s =0.020
,=0.
6=0.5 Hy =461 (1, =17.19
U, =38.44 2
B=05 P o sy = 131.66 L114 3414 8.25
A=-05 :,3_—7509' s Wy =2438.05
', =7509.
h=05 =021 (1, =0.043
, =0.096 2
B=10 7 0058 5 =0.016 0.055  3.35 8.58
A=-05 ﬁ; ~ ooty (4, =0.015
,=0.
6=25 # =11 (1, =0.95
Y, =225 2
B=05 1 sy = 1.46 0.076  2.477 6.63
A=-05 b3 =0 =5.99
u, =21.74 s
6=05 Ky igﬁ (1, =4.27
B=10 32:58' o ;= 16.48 0557  3.48 8.31
A=—05 M o2 Uy =151.78
M4 =707
6=0 # =162 =333
' Uy =5.95 Ha =2
B=10 Aoy sy = 14.13 0 5.43 11.06
A=0.5 :3 e g =122.37
,=273.
p=30 M ToI6 (1, =0.015
' u,=0.028 27~
B=20 2 oot 43 =0.004 0 6.23 12.35
A=05 Hy =" (. = 0.003




266 K. Jayakumar and M. Girish Babu

4.5.  Moment generating function

The moment generating function of £ T E distribution is obtained as

My(t) = E(e)
_ f ¢ S5,(6, Ak + 6)Be P
0 k=0

Ak +6 ,Bf Akl

pIRA
k=0
gskw,»(k ey 45)

4.6.  Maximum likelihood estimation of the parameters

The likelthood function of ETE distribution is given by

Les0, 8.0 = (00) e PEan [ [(1— A+ 24 P) [ J(1— A+ AP~ o)

=1 =1

The log likelihood function is
In(L(x;0,8,4) = nIn@)+n In(B)— H,Bin + Zln(l — A42eP%)
HO—1)D In(1— A+ deP%). 47)
=1

Equation (47) can be maximized either directly or by solving the nonlinear likelihood
equations obtained by differentiating this with respect to ¢, 5 and A. The components
of the score vector

In(L(x; In(Z(x; In(Z(x;
V(@):<8 0,8,4)) 2 0,53, 4)) 3 9,3/1>

a0 ’ apg aA

are given by
d ln(L(x;@,,B,l)) _on z Z —px

20 = g—ﬂiz:;xi+izz;ln(l—/1+/1e ),
e ln(L(x;@,,B,/l)) n n n 2,{ﬁe—ﬂx1 —/BX

= —__4 L _

ap B ;xl iz:;l—/l+2/\e—ﬁ" Z 1—/1—1—/16—5"

a ln(L(x;@,,B,l)) n 2o~ B " /3 X _1

= S —— - S —
adA Zl—){+2/16—5"i+( )Zl—/‘{+le—ﬁxi

1=1 =1
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That is, the normal equations takes the following form

%—ﬁixﬁilnm—mf%:
=1 =1

n - 7 e_ﬂxz
——0 —24 —AB(6—1 — =0, (49
B ;x IBZ ,1+2,1e Bz, Al );:1_,14_,167/3;5, (49)
- =B, L —Bxi
2e e 1 (50)

1 _err=
>§ 1— A+ Ae—Px

These equations do not have explicit solutions and they have to be obtained numerically.
From (48), the M LE of & can be obtained as follows

23 0

4 n
Bl =2 In(1— A+ de=Pri)’

Substituting (51) in (49) and (50), we get the M LEs of 3 and A. Statistical softwares like
nlm package in R programming can be use to solve these equations numerically.

(1)

4.7.  Simulation study

In order to check the performance of the maximum likelihood estimate given by (46)
we conducted a simulation study.

TABLE 2
Average of MLEs with standard error of ETE(0, 3, A) for various choices of parameter values.
Parameters n é(sAe(é)) ,é(sAe(,é)) /i(sAe(/i))
P 50 0.990(1.108)  5.717(1.891)  -0.598(0.275)
= 100 1.112(1.081)  5.228(1.840)  -0.595(0.299)
A/i “os 200 10#90717)  5.114(1948) -0.579(0.138)
: 500 1.047(0.667)  5.007(1.901)  -0.554(0.101)
Py 50 4.416(1.231)  9.639(2.054)  0.622(0.342)
fotp 100 46950343 9747(1479)  0.5810.189)
o5 200 4831(1207) 9.839(1582) 0.513(0.221)
: 500 4.919(0.943)  10.098(1.809)  0.507(0.226)
o5 50 0418(0.299) 0.431(0.238) -0.807(0.167)
B= 0'5 100  0.432(0.257)  0.452(0.370) -0.814(0.121)
15 200 0456(0248)  0.4750.248) -0.851(0.093)
: 500  0.499(0.201)  0.507(0.164)  -0.883(0.071)
6—10 50  9.120(1.155)  2.249(0.792)  0.869(0.149)
fogs 100 94350827) 24960755 0837015
Cog 200 9.971(0729)  2507(0479)  0.825(0.071)
: 500 10.094(0.226)  2.503(0.223)  0.818(0.039)
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We take the sample sizes to be » = 50,100,200 and 500. The process is replicated
1000 times and the average estimate along with the standard error are presented in Ta-
ble 2. Here we can see that as the sample size increases the MLE estimates of ETE
distribution converges to the true value and the corresponding standard error decreases.

4.8.  Entropies

Entropy measures the variation or uncertainty of a random variable X. The popular
measures of entropy are Rényi and Shannon entropies. The Rényi entropy of a random
variable X, with pdf j(x) is defined as,

1i}/ln< L - jV(x)dx>,

for y > 0and y # 1, see Rényi (1961). The Rényi entropy for a random variable from
the T-transmuted X family of distributions is obtained as

Ip(y)=

(52)

—_

| * g/ (x)[1+ A=24G(x)]/
o [

1= G(x)(1+ AG(x))]7 (r{=In(1=G()1+ lé(x)])})ydx],

where G(x) is the cdf of the base distribution with pdf g(x) and r{.} is the pdf of an

arbitrary distribution.
For the ETE distribution, the Rényi entropy is obtained by using (52) as

) = (@) + )

-7
+ |4 1n<f e*}/@ﬁx<l_/1+/lef,3x)}’(‘9f1)

I—y 0
(1—,1+2Ae*ﬁx)ydx>. (53)

For given values of 8, 3, A and y, the Rényi entropy can be numerically computed
using R programming or any other statical softwares. Table 3 shows the values of en-
tropy for given parameter values and y.

The Shannon entropy of a random variable X is defined by E (—ln[ 7(X )]), see Shan-
non (1948). It is the special case of the Rényi entropy when y — 1. The Shannon entropy
of T-transmuted X family of distributions is given by
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B(=n(06)) = —£(in(g00))-(1n[1+4-24600))
+E<ln|:1—G(x)(1+/1(_;(x)>:|>
+E[ln[y<—ln[l—G(X)<1+/1@(X))])]}- (54)

For the ETE distribution, the Shannon entropy obtained as
E<—ln (j(X))> - G,BE(X)—E[ 1n<1 — A4 dexp X ﬂ

—(6—1)E[ln<1—/1+/1exp—ﬁx>]. (55)

TABLE 3
Rényi entropy for given values of 0, 3, A and y.

[ /6 A y=05 y=20 y=30 y=50
1 -1 1.5963 1.0986 1.0075 0.9183
-0.5 1.5216 09808 0.8836  0.7907

0.5 1.1732 0.3449 0.1813  0.0189
0.6931  0.0000 -0.1438 -0.2908

2 1 -1 1.0383 0.5935 0.5106 0.4284
-0.5 09081 0.6768 0.2939  0.1999

0.5 0.4029 -0.3769 -0.5306 -0.6852

0.0001 -0.6931 -0.8369 -0.9835

2 2 -1 0.3452  -0.0996 1.4407 -0.1826
-0.5 0.2149 -0.3028 -0.3993 -0.4933

0.5 -0.2903 -1.0700 -1.2237 -1.3783

-0.6932  -1.3863 -1.5301 -1.6771

05 05 -1 2.8918 23375 2.2357 2.1371
-0.5 2.8510 22723  2.1683  2.0696

0.5 19387 1.7819  1.6028 1.4261

1 2.0794 13863 1.2427  1.0955

—_

5. APPLICATIONS

In this section, to show how the ETE distribution works in practice, we use two real
data sets. We compare the fit of the ETE distribution with the following life time dis-
tributions:
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(2) Kumaraswamy Exponential (K#E) distribution having pdf
f(x:0,8,¢)=0Bce*(1—e= ")/ [1—(1—e %)% x> 0,0, 8,c>0.
(b) Exponentiated Weibull (E W) distribution having pdf
f(x;0,B,¢c)= Qﬁecxg_le_(ﬁx)g(l —e_wx)H)”_l; x>0,0,8,c>0.
(c) Weibull (W) distribution having pdf
f(x:0,8)= ,Bﬁfgxﬁflef(ex)ﬂ; x>0,0,8>0.
(d) Exponential (E) distribution having pdf
f(x;0)= Be %, x>0,0>0.

The values of the log-likelihood functions (—In(L)), the statistic K — S (Kolmogorov-
Smirnov), AIC (Akaike Information Criterion), A C C (Akaike Information Criterion
with correction) and BIC (Bayesian Information Criterion) are calculated for the five
distributions in order to verify which distribution fits better to these data. The bet-
ter distribution corresponds to smaller K — S, —In(L), AIC, AICC and BIC values
and high p-value. Here, AIC = —2 In(L) + 2k, AICC = =2 In(L) + (niin_1> and
BIC = —2 In(L) + k In(n) where L is the likelihood function evaluated at the maxi-
mum likelihood estimates, & is the number of parameters and 7 is the sample size. The
K —§ distance D, = sup, |F(x)— F,(x)|, where, F,(x) is the empirical distribution

n

function.

5.1.  First data set

Here we consider the data set of the life of fatigue of Kelvar 373 /epoxy that are subject to
constant pressure at the 90% stress level until all had failed. The data sets are taken from
Andrews and Herzberg (1985). The data are: (0.0251, 0.6751, 1.0483, 1.4880, 1.8808,
2.2460, 3.4846, 0.0886, 0.6753, 1.0596, 1.5728, 1.8878, 2.2878, 3.7433, 0.0891, 0.7696,
1.0773, 1.5733, 1.8881, 2.3203, 3.7455, 0.2501, 0.8375, 1.1733 1.7083, 1.9316, 2.3470,
3.9143, 0.3113, 0.8391, 1.2570, 1.7263, 1.9558, 2.3513, 4.8073, 0.3451, 0.8425, 1.2766,
1.7460, 2.0048, 2.4951, 5.4005, 0.4763, 0.8645, 1.2985, 1.7630, 2.0408, 2.5260, 5.4435,
0.5650, 0.8851, 1.3211, 1.7746, 2.0903, 2.9941, 5.5295, 0.5671, 0.9113, 1.3503, 1.8275,
2.1093, 3.0256, 6.5541, 0.6566, 0.9120, 1.3551, 1.8375, 2.1330, 3.2678, 9.0960, 0.6748,
0.9836, 14595, 1.8503, 2.2100, 3.4045).

The descriptive statistics of the above data set are given in Table 4. The values in
Table 5 shows that the £ TE distribution leads to a better fit compared to the other four
models.
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TABLE 4
Descriptive statistics of first data set.
n Min Max Mean Median Sd  Skewness Kurtosis
76 0.0251 9.0960 1.959 1.736 1.57 2.019 5.60

TABLE 5
Parameter estimates and goodness of fit statistics for various models fitted for the first data set.
Model ML estimates —In(L)  AIC AICC BIC K-S  p-value
0 =1.346
ETE IBA =0.579 121.461 248922 249.255 255914 0.0984 0.4266
A =-0.848
0 =1.556
KuE lgA —2.448 122.094 250.188 250.521 257.180 0.0990 0.4191
¢=0.328
g=1.101
EW IBA —0.609 122.166  250.332 250.665 257.324 0.0992 0.4160
¢ =1.443
A\ ’b: = 1326 122.526  249.052 249.216 253.714 0.1098  0.2968
0 =0.469
E g =0.510 127.114  256.228 256.282 258.559 0.5120 0.0266
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The inverse of the Hessian matrix of the M LEs of ETE distribution is computed as

1.53140 —0.49821 0.00369
—0.49821 0.16548 —0.00493
0.00369 —0.00493 0.01661

The 95% confidence interval for &, and A are (1.0678,1.6242),(0.4875,0.6705) and
(—0.8770,—0.8190) respectively.
Figure 7 shows the fitted density curves for the first data set.

04

03
I

— ETE
| KuE

Density
02
1

0.1

00
I

Figure 7 - Fitted pdf plots of first data set.

5.2, Second data set

The second real data set represents the survival times of 121 patients with breast cancer
obtained from a large hospital in a period from 1929 to 1938 taken from Lee (1992). The
data are: (0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3,11.0, 11.8, 12.2,
12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8,
20.4,20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0,
32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0,
41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0,
52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0,
68.0, 69.0, 78.0, 80.0,83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0,
115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0).
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TABLE 6
Descriptive statistics of second data set.

n Min Max Mean Median Sd  Skewness Kurtosis
121 0.30 154 46.33 40.00 35.28 1.056 0.471

The descriptive statistics of the second data set are given in Table 6.
The values in Table 7 shows that the E TE distribution leads to a better fit compared
to the other four models.

TABLE 7
Payameter estimates and goodness of fit statistics for varions models fitted for the second data ser.

Model ML estimates —In(L)  AIC AICC BIC KS  p-value

ETE IBA:O.018 578.878 1163.76 1163.96 1172.14 0.0569 0.8284

Il

—
(o
(9,1}
—_

KuE —0.098 583.314 1172.63 1172.83 1181.02 0.1152 0.0803

Il
o
o 7
(53
—_

o
€

—0.017 579.879 1165.76 1165.96 1174.15 0.0664 0.6606

Il
o
g S
O
1>

=13056 00004 1164.05 116415 1169.64 0.0588  0.7967

=

x

E 6 =0.022 585.128 1172.26 117229 1175.05 0.1206 0.0594

The inverse of the Hessian matrix of the M LEs of ETE distribution is computed as

0.18112 0.02364 0.03916
0.02364 0.00017 0.00015
0.03916 0.00015 0.01529

The 95% confidence interval for ¢, 3 and A are (1.8002,1.9518),(0.0157,0.0203) and
(—0.7870,—0.7430) respectively.
Figure 8 shows the fitted density curves for the second data set.
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Figure 8 - Fitted pdf plots of second data set.

6. CONCLUSION

Transmuted family of distributions and 7'— X family of distributions have been of
great attention among the researchers recently. In this paper we introduce a new family,
namely, "T-transmuted X family" of distributions. Many of the existing family of dis-
tributions are sub models of this new family. A special case of this family, exponential-
transmuted exponential (£ 7T E) distribution is studied in detail. Two real data sets are
analyzed to show the importance and flexibility of this distribution.
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SUMMARY

Using the quadratic transmutation map (QRT M) approach of Shaw and Buckley (2007) and the
T —X family method by Alzaatreh ez al. (2013b), we have developed a new family of distributions
called T-transmuted X family of distributions. Many of the existing family of distributions are sub
models of this family. As a special case, exponential transmuted exponential (E T E) distribution
is studied in detail. The application and flexibility of this new distribution is illustrated using two
real data sets.

Keywords. Exponential distribution; Hazard rate; Maximum likelihood estimation; Moments;
T-X family of distributions.



