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1. INTRODUCTION

In parametric estimation problems, we often assume that a set of randomly selected
samples of pre-specified number of units, say n, is available. It is further assumed that
random observations follow a specified distribution. But in practice, observations on
all the units may not be available because observations corresponding to some units are
either not recorded or lost during intermediate transmission. The data thus obtained
are termed as censored sample. Estimation procedures for censored sample cases exist in
existing literature. It is worthwhile to mention here that the censoring may not be the
most efficient way to conduct experiments from theoretical point of view because it re-
duces the number of observations. But due to cost and time consideration, practical and
administrative constraints, the availability of censored observations is unavoidable. In
the other words, the censoring schemes compensate the loss of efficiency of an estimator
by providing the administrative convenience at lower costs.

In statistical literature, a number of censoring schemes e.g. time censoring (Type I
censoring), item censoring (Type II censoring), Type-I and Type-II hybrid censoring and
progressive censoring etc., have been discussed. It may be noted that termination of the
experiment at a pre-specified time (say, T) guarantees the duration of the test but effi-
ciency may vary as the number of observations in the censored sample becomes random
variable. On other hand, if the test is terminated at pre-specified number of observa-
tions, the duration of test becomes random variable although this censoring guarantees
a specified efficiency. The hybrid censoring ( a mixture of Type-I and Type-II censoring
schemes) provides a more flexible and administratively convenient life-testing procedure.
In Type-I hybrid censoring, the test is terminated whenever a pre-specified time T of the
duration of experiment has reached or a pre-specified number (R) of the observations
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have been obtained i.e. if XR:n denotes the Rth ordered failure time, the termination
of the experiment take place at min(T ,XR:n). Thus, it guarantees that the duration of
the test would be less than T but number of observation will vary and will be less than
R. The Type-I hybrid censoring scheme was originally proposed by Epstein (1954) and
used in reliability acceptance test MIL-STD-781C (1977). Many authors discussed the
estimation of the unknown parameters for various probability distributions in case of
Type-I hybrid censored data (see, Dubey et al. (2011); Chen and Bhattacharyya (1988);
Kundu (2007); Park and Balakirshnan (2012); Gupta and Singh (2012); Rastogi and Tri-
pathi (2012) and Yadav et al. (2016)).

In some areas like medical, military and aeronautics etc, level of efficiency is of
greater concern than the duration of experiment. Thus, one can propose a censoring
scheme where test is terminated whenever a pre-specified number of observations has
been obtained and pre-specified time for the duration of experiment has reached i.e. the
termination of the experiment take place at max(T ,XR:n). Such a censoring scheme
called Type-II hybrid censoring scheme. It may be noted here that in this censoring
scheme the total number of observation is random but it will not be less than R. Thus,
it guarantees a minimum efficiency but the duration of the test will be vary and may
be more than T . Balakrishnan and Kundu (2013) provides a detailed review on hybrid
censoring schemes with its generalisations and application in competing risks and step-
stress modelling. In addition to it, Childs et al. (2003); Ganguly et al. (2012); Banerjee
and Kundu (2008); Kohansal et al. (2015); Al-Zahrani and Gindwan (2014) can also be
referred for the estimation of the parameters under Type-II hybrid censoring schemes.

Prediction of future order statistics comes up quite naturally in several real life sit-
uations. Here, we consider the estimation of future order statistics under Bayesian
paradigm. Dansmore (1974); Lawless (1971) are the first two articles that address the
prediction problems and introduced the concept of predictive posterior. Since then, pre-
diction problems have been extended to various censoring schemes. Ebrahmini (1992)
discussed two sample prediction problems for exponential distribution under Type-I hy-
brid censoring. Shafay and Balakrishnan (2012) and Singh et al. (2016) discussed the one-
and two sample prediction problems based on Type-I hybrid censored sample for gen-
eral class of distribution and generalized Lindley distribution respectively. Balakrishnan
and Shafay (2012) developed estimation procedure for one- and two sample prediction
problems based on Type-II hybrid censored sample for general class of distribution.

An extension of the exponential distribution, called as flexible Weibull by Bebbing-
ton et al. (2007), is considered to be the lifetime model. The density function of the
flexible Weibull (FW) distribution is given by
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, x > 0,β> 0,α > 0. (1)

The cumulative density function (CDF) and hazard rate function (HRF), at epoch
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t , corresponding to the pdf (1) are given by
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The mean time to failure (MTF) is given by

MTF= E (X ) =

∞
∫

0

exp
�

−e
�

αx− β
x

��

d x. (4)

This distribution is capable to accommodate the various forms of the hazard rate in-
cluding IFR, IFRA, and MBT (modified bathtub), and in particular, allows considerable
flexibility in modelling the “pre-useful” (i.e., infancy) period. Figure 1 shows the pdf and
hazard function of FW distribution with various combinations of the parameters. Beb-
bington et al. (2007) have verified the goodness-of-fit of this distribution in comparison
to the Weibull, modified Weibull, reduced additive Weibull and extended Weibull distri-
butions for data set of failure times of secondary reactor pumps and recommended this
distribution as a more suitable alternative to the various generalizations of the Weibull
distribution. Motivating from the applicability of the FW distribution, Singh et al.
(2013, 2015) discussed the use of FW distribution under censoring mechanism and devel-
oped classical and Bayes estimators for the FW parameters under Type-II and progressive
Type-II censoring schemes respectively. They also derived One- and Two-sample predic-
tive posteriors for future order statistics on the basis of censored data. Selim and Salem
(2014) provided recurrence relations for moments of k-th upper record values from flex-
ible Weibull Distribution. Afify (2016) also discussed the flexible Weibull distribution
under progressive Type-I interval censoring schemes respectively.

Although a vast literature is available on the estimation under hybrid censoring, lim-
ited attention has been paid to the prediction of future ordered statistics based on hybrid
censored sample. On the other hand, the estimation and prediction for flexible Weibull
distribution is considered only for conventional Type-II (Singh et al., 2013), progressive
Type-II (Singh et al., 2015) and progressive Type-I interval censored data sets. Good
applicability notwithstanding, the Type-II hybrid censoring is overlooked in literature.
Realizing the pertinency of the Type-II hybrid censoring and flexible Weibull distribu-
tion, we, in this article, aim to develop estimation procedures for estimating parameters
and future observations based on Type-II hybrid censored data that follow the flexible
Weibull distribution.

The rest of the paper is organized as follows. In Section 2, the estimation of the
parameters, reliability, hazard rate and MTF is approached by using both classical and
Bayesian methods. We constructed point and interval estimates of the unknown param-
eters. Bayesian one sample and two sample prediction problems are discussed in Section
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Figure 1 – The pdf and hazard function of flexible Weibull distribution (Bebbington et al., 2007).

3. The predictive bounds of future samples are also constructed in respective section. To
compare the performance of the proposed estimators, Monte Carlo simulation results
are summarised in Section 4. A real data set is analysed in Section 5 for illustration. At
the end of this paper, conclusions are given in Section 6.

2. ESTIMATION OF THE PARAMETERS, RELIABILITY, HAZARD RATE AND MTF
UNDER TYPE-II HYBRID CENSORED SAMPLE

2.1. Estimation based on likelihood

Suppose that n identical units are placed on a life-test and their lifetimes follow the FW
distribution defined by the pdf (1). The life-test is terminated at pre-specified time (say,
T ) and at pre-determined number of failure (say, R≤ n) whichever occurs later i.e. the
test is terminated at max (XR:n ,T ), where, XR:n denotes the Rth order statistic. Under
such type of censoring scheme (known as Type-II hybrid censoring scheme), the random
observations would be obtained under the following cases:
Case I: {X1:n ,X2:n , . . . ,XR:n} if T <XR:n .
Case II:{X1:n ,X2:n , ...,Xk:n} if XR:n ≤ T , R≤ k < n.
Case III:{X1:n ,X2:n , ...,Xn:n} if Xn:n ≤ T .

The likelihood function under such a Type-II hybrid censoring scheme can be writ-
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ten as follows
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R for case-I
k for case-II
n for case-III

, t0 =











XR:n for case-I
T for case-II
Xn:n for case-III

and φ(x) = exp (αx −β/x).

The log-likelihood function is given by
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The MLEs α̂ and β̂ can be obtained as the simultaneous solution of the following

log-likelihood equations
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It can be seen that above equations cannot be solved explicitly and one needs iterative
method to solve the above equations numerically. Here, we propose the use of fixed
point iteration method which can be routinely applied as follows: from Equations (7)
and (8), we can write the fixed point iteration equations as
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. By using the guess values α j−1 and β j−1 for α and β, one

can get the next values of α and β as α j and β j respectively from Equations (9) and
(10). For some pre-assigned tolerance limit ε > 0, (α j ,β j ) will be the desired solution
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of Equations (7) and (8) if these satisfy the following inequalities |α j−1 − α j | ≤ ε and
|β j−1−β j | ≤ ε, j=1,2,3,....

The exact distribution of MLEs cannot be obtained explicitly. However, the asymp-
totic properties of MLEs can be used to construct the confidence intervals for the pa-
rameters. Under some regularity conditions, the MLEs (α̂, β̂) follow approximately bi-
variate normal distribution with mean µ

′ = (α,β) and variance matrix Σ = I−1(α̂, β̂),
where I (α̂, β̂) is the observed Fisher’s information matrix defined by

I
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The diagonal elements of I−1(α̂, β̂) provides the asymptotic variances for the param-
eters α and β respectively. A two-sided 100(1− γ )% normal approximation confidence
interval of α can be obtained as

�

α̂∓Zγ/2

Ç

var(α̂)
�

.

Similarly, a two-sided 100(1− γ )% normal approximation confidence interval of β
can be obtained as

�

β̂∓Zγ/2

Ç

var(β̂)
�

,

where Z is the standard normal variate (SNV).

2.2. Bayes estimation

In this section, we proposed Bayes estimators of the unknown parameters of FW distri-
bution based on Type-II censored sample. For Bayesian estimation, we need to specify
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prior distributions for the parameters. Berger (1985) have discussed various approaches
for prior specifications. The easiest way of prior specifications is to assume the func-
tional form for the prior density and then elicit its parameter(s) (called hyper- parame-
ter(s)). The gamma distribution is quite flexible to accommodate various shapes of the
density and provides conjugacy and mathematical ease in some cases, and has closed
form expressions for moments. In Bayesian estimation, the gamma distribution has
been widely exploited as a prior distribution for the parameters of various lifetime dis-
tributions. In this study, we also assume that α and β are independent gamma random
variables. The prior distribution of α and β are given by

g (α)∝ αb−1e−αa ;a > 0, b > 0,α > 0 (14)

g (β)∝βd−1e−βc ; c > 0, d > 0,β> 0, (15)

where the hyper-parameters a, b , c and d are assumed to be known, and chosen to reflect
the prior belief about the unknown parameters. These can be obtained, if we can guess
the expected values of the parameter as prior mean (M ) and confidence in the guessed
value as prior variance (V ). Thus, a, b , c and d can be elicited by solving the following
prior moments equations: b

a =M , b
a2 =V , d

c =M and d
c2 =V . Note that when a = b =

c = d = 0, the prior densities reduce to non-informative improper prior distributions as

g (α)∝ 1
α

;α > 0

g (β)∝ 1
β

;β> 0.

In some cases, the above prior distribution coincides with scale invariant Jeffrey
prior (see, Berger (1985); Jeffrey (1961)). The joint posterior density of α and β can be
obtained as

π (α,β | x ) = 1
C
αb−1βd−1 exp
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lnφ(x(i))

−
r0
∑

i=1

φ(x(i))− (n− r0)φ(t0)−αa−βc

�

,

(16)

where C is the normalizing constant. It is well established that Bayes estimator of any
parametric function, Ψ (α,β) under squared error loss is the expected value of that func-
tion with respect to the posterior distribution, i.e. Eπ [Ψ (α,β)] . Therefore, Bayes
estimates of α and β are the means of their posteriors. Similarly, the Bayes estimates of
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the reliability and hazard rate under squared error loss can be readily obtained as
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In the same way, the Bayes estimate of the MTF can be given by
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It can be seen that the above expressions (17-19) cannot be solved in nice closed form.
Therefore, we proposed to use Markov chain Monte Carlo (MCMC) methods namely
Gibbs sampler (Smith and Roberts, 1993) and Metropolis Hastings algorithm (Hastings,
1970; Brooks, 1998), to draw the random sample from the joint posterior so that sample
based inference can be drawn. For implementing the Gibbs algorithm, the full condi-
tional posterior densities of α and β are given by

π1 (α |β,x )∝ αb−1e
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.
(21)

The simulation algorithm consists of the following steps

Step 1. Initialize the values of {α(0),β(0)}.
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Step 2. At stage j, by using previous points, generate candidate points {α( j )c ,β( j )c } from
proposal densities {q1

�

α( j )|α( j−1)� , q2

�

β( j )|β( j−1)�}.

Step 3. Generate u ∼U (0,1) and set

α( j ) =
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�

β( j−1) otherwise.

Step 4. Repeat steps 2-3 for all values of j = 1,2, . . . , M .

Step 5. Using simulated posterior samples, obtain Bayes estimates of the parameters by

using following formulae: α̂ = Eπ (α | x ) ≈
1

M−M0

M−M0
∑

k=1
αk , β̂ = Eπ (β | x ) ≈

1
M−M0
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∑

k=1
βk , where, M0 is the burn-in-period of Markov Chain.

Step 6. Similarly, obtain the Bayes estimates of reliability, hazard rate and MTF by using
following formulae
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Step 7. Construct HPD credible intervals for α andβ by using the results given in Chen
and Shao (1998). Let {Θ(i) =

¦

α(i),β(i)
©

; i = 1,2, ..., M} be an ergodic MCMC

sample from π(Θ|x ) and let R j∗(M ) =
�

Θ( j ∗),Θ( j ∗+[(1−ψ)M ])
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. Then, the 100(1−
ψ)% HPD credible intervals for Θ is R j∗(M ), where j ∗ is chosen so that

Θ( j ∗+[(1−ψ)M ])−Θ( j ∗) = min
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�

.

That is, R j∗(n) has the smallest interval width among all R j (n).
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3. PREDICTIVE POSTERIOR ANALYSIS

In this section, we have derived the density of future order statistics from the FW distri-
bution using Type-II hybrid censored sample. The pdf of the future sample is referred
to as the predictive density. The prediction problems has been classified in two ways: (i)
One sample prediction and (2) Two sample prediction, which are discussed in the next
consecutive sub-sections.

3.1. One sample prediction

In Type-II hybrid censoring scheme, the data in hand consist of only few observed items
out of all units/items put on test. In such situations, the experimenter may be interested
to know the life times of the removed surviving units on the basis of the sample in hand.
Let r0 < n and we wish to predict Xs :n(r0 < s ≤ n). The conditional distribution of sth
order statistics given Type-II hybrid censored sample x shall be as follows
For Case-I:

f1 (xs :n |x ,α,β) = f (xs :n |xR:n ,α,β) =
fN u (Xs :n = xs :n ,XR:n = xR:n |α,β)

fDe (XR:n = xR:n |α,β)
. (22)

Therefore
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(n−R)!

(n− s)!(s −R− 1)!
[F (xs :n)− F (xR:n)]

s−R−1 [1− F (xs :n)]
n−s f (xs :n)

[1− F (xR:n)]
n−R , (23)

where x = {x1:n , x2:n , ..., xR:n}, xs :n > xR:n and R< s ≤ n. Putting (1) and (2) in (23), we
get

f1 (xs :n |x ,α,β) =(s −R− 1)
�

n−R
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�

�
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∑
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(−1)l
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l
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(24)

For Case-II:

f2 (xs :n |x ,K = k ,α,β) =
1

Pr (R≤K ≤ s − 1)
s−1
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k=R

fN u (Xs :n = xs :n ,Xk:n = xk:n |K = k ,α,β)
fDe (Xk:n = xk:n |α,β)

Pr (K = k) ,
(25)

where

fN u (. . . ) =
n! [F (T )]k−1 [F (xs :n)− F (T )]s−k−1 [1− F (xs :n)]

n−s f (T ) f (xs :n)
(k − 1)!(s − k − 1)!(n− s)!
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and

fDe (Xk:n = xk:n |α,β) =
n!

(k − 1)!(n− k)!
[F (T )]k−1 [1− F (T )]n−k f (T ).

Therefore
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, (26)

where x = {x1:n , x2:n , ..., xk:n}, k < s ≤ n, xs :n > T , and K is a random variable, repre-
sents the number of x ′i s that are at most T. Then

P (K = k) =
�

n
k

�

F (T )k [1− F (T )]n−k ; k = 0, 1, ..., n.

Putting (1) and (2) in (26), then equation (26) becomes

f2 (xs :n |x ,α,β) =
1

Pr (R≤K ≤ s − 1)
�

α+β/x2
s :n

�

φ (xs :n)
s−1
∑

k=R

s−k−1
∑

l=0

(−1)l

(s − k − 1)
�

n− k
n− s

��

s − k − 1
l

�

Pr (K = k)

exp [− (n− s + l + 1) (φ (xs :n)−φ (T ))] .

(27)

The One-sample predictive posterior density of future observables is defined by
For Case-I:

f ?1 (xs :n | x ) =
∞
∫

0

∞
∫

0

f1 (xs :n | α,β,x )π (α,β | x )dαdβ. (28)

For Case-II:

f ?2 (xs :n | x ) =
∞
∫

0

∞
∫

0

f2 (xs :n | α,β,x )π (α,β | x )dαdβ. (29)

The above predictive posteriors can not be reduced to any standard distribution and
hence numerical methods are required to explore the properties of the posteriors. Here,
we can used the M-H algorithm to draw the sample from the predictive posteriors and
obtain the estimates and predictive intervals for future observations using the approach
as discussed in the previous section. The survival function of future sample can be simply
defined as
For Case-I:

Sy (T0) = 1−

T0
∫

y=x(r )

∞
∫

0

∞
∫

0

f (xs :n | α,β,x )π (α,β | x )dαdβd y. (30)
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For Case-II:

Sy (T0) = 1−

T0
∫

y=T

∞
∫

0

∞
∫

0

f (xs :n | α,β,x )π (α,β | x )dαdβd y. (31)

We can also obtain the two sided 100 (1−α)% prediction intervals (Ls , Us ) for y(s)
by solving the following equations

Pr
�

y(s) >Ux | x
�

=
α

2
(32)

Pr
�

y(s) > Lx | x
�

= 1− α
2

. (33)

Confidence intervals can be obtained by using any suitable iterative procedure as
above equations cannot be solved directly.

3.2. Two sample prediction

In some other situation, we may be interested in the failure time of the kth ordered
observation from future sample of size N from the same lifetime distribution which is
independent of observed sample i.e. p

�

y(s) | α,β,x
�

= p
�

y(s) | α,β
�

. This leads to the
two sample prediction problems. The pdf of sth order statistic is given by

p
�

y(s :N ) | α,β
�

=
N !

(s − 1)!(N − s)!

�

F
�

y(s :N )

��k−1 �
R
�

y(s :N )

��N−k
f
�

y(s :N )

�

. (34)

Putting (1) and (2) in (34), we get

p
�

y(s :N ) | α,β
�

=
N ! φ (ys :N )
(s − 1)!(N − s)!

�

α+β/y2
(s :N )

�

s−1
∑

j=0

�

s − 1
j

�

(−1) j e−φ(ys :N )(N−s− j−1).
(35)

The Two-sample predictive posterior density of s th future observation is defined by

p
�

y(s :N ) | α,β
�

=

∞
∫

0

∞
∫

0

p
�

y(s) | α,β,x
�

π (α,β | x )dαdβ. (36)

The above predictive posterior density is same for both the cases (Case-I and Case-
II) since the density in (34) does not dependent on Type-II censoring and we can obtain
the predictive density for Case-I and Case-II by substituting the posterior π (α,β | x ) of
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the respective case. The above posterior density can be numerically explored by using
MCMC methods as discussed in the previous section. The survival function of future
sample can be simply defined as

Sy (T0) = 1−

T0
∫

y=0

∞
∫

0

∞
∫

0

p
�

y(s) | α,β,x
�

π (α,β | x )dαdβd y. (37)

We can also obtain the two sided 100 (1−α)% prediction intervals (Lk , Uk ) for y(k)
by solving the following two equations

P
�

y(s) >Ux | x
�

=
α

2
(38)

P
�

y(s) > Lx | x
�

= 1− α
2

. (39)

Confidence intervals can be obtained by using any suitable iterative procedure as
above equations cannot be solved directly.

4. SIMULATION STUDY

In this section, we conduct simulation study to compare the performance of the classical
and Bayesian estimation procedures under different Type-II hybrid censoring schemes.
The comparison between the MLEs and Bayes estimators of the parameters have been
made in terms of their mean squared errors(MSEs) and average width of confidence/HPD
intervals. For this purpose, we generated random sample of size n (= 20 small, 30
medium and 50 large) from the pdf (1) by using probability integral transformation for
given α and β. Here, we took arbitrarily α = 2 and β= 2. The random sample can be
drawn by using the following formula

x =
1

2α

h

log (− log(1− u))+
Æ

(log (− log(1− u)))2+ 4αβ
i

,

where u is the standard uniform variate. From each generated sample, we obtained
the MLEs and Bayes estimates for the parameters along with their confidence/HPD
intervals. The MLEs and Bayes estimates for the reliability characteristics have also been
obtained. Under gamma prior distribution, the hyper-parameters are chosen such that
the prior mean equals to the true value of the parameter and with specified prior variance
equals to 1. From the prior moments equations (given in Section 2.2), we obtained
a = c = 2, b = d = 4. It is denoted by Gamma− 1. The prior with hyper-parameters
identical to zero (a = c = b = d = 0) is referred to as Gamma− 0. We repeated the
process 1000 times and average estimates, the MSEs, and the average confidence/HPD
intervals are recorded. The simulation results are summarized in Tables 2-5.
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4.1. Specification of censoring parameters

In this subsection of simulation study, we consider the problem of specification of the
censoring parameters R and T , i.e. what pair of values of R and T should be considered
for studying the performance of the estimates. In such case, one can first set the value of
(R) the number of failures and take T by analysing the distribution of Rt h order statistic
form the sample of size n. For this purpose, two approaches, predictive inference and
bootstrap procedures have been utilized.

4.1.1. Bootstrap procedure
Bootstrapping is a method of estimating statistical parameters from the sample by means
of resampling with replacement. Like other non-parametric approaches, bootstrapping
does not make any assumptions about the distribution of the sample. The major as-
sumption behind bootstrapping is that the sample distribution is a good approximation
to the population distribution and samples are independent and identically distributed.
The bootstrap procedure is due to the pinion effort of Efron and Tibshirani (1986) that
can be routinely applied using the following steps.

Step 1. Generate sample {x1, x2, ..., xn} of size n form the pdf (1) by using inversion
method. Then estimated distribution function is given by F̂

�

x, Θ̂
�

, where, Θ =
{α,β;α > 0,β> 0}.

Step 2. Generate a bootstrap sample {x∗1 , x∗2 , ..., x∗n} of size n from F̂
�

x, Θ̂
�

. Calculate
bootstrap estimates of statistics t (x) of interest using bootstrap sample. Here,
t (x) =X ∗R:n .

Step 3. Repeat step 2, BOOT-times.

Step 4. Let {t(1), t(2), ..., t(BOOT)} be the ordered value of {t1, t2, . . . , tBOOT}. The empiri-

cal distribution function of {t1, t2, ..., tB} is defined as Ĝ (x) =
¦

Number of (tb<x)
BOOT

©

.
Then, mean and the two sided 100(1−γ )% boot-p confidence intervals for t (x)
can be obtained as

t̄ (x) = 1
BOOT

BOOT
∑

i=1
ti (x)

t (x) ∈ {t(BOOT×γ/2), t(BOOT×(1−γ/2))}

Step 5. Repeat steps 1-4, 1000 of times and calculate average of the estimates and confi-
dence intervals for the statistics of interest.

From Table 1, it can be easily seen that for n = 30 and R= 18, the censoring time T
may take values between 0.85 and 1.07. We have considered the following combination
of censoring parameters.
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• n = 20, R(= 12,16),T (= 0.90,1.00,1.25,1.50)

• n = 30, R(= 18,24),T (= 0.90,1.00,1.25,1.50)

• n = 50, R(= 35,40),T (= 0.90,1.00,1.25,1.50)

TABLE 1
Average Bootstrap and predictive estimates and 95% confidence intervals of Rth order statistics for

fixed values of α= 2 and β= 2.

n R Bootstrap procedure Prediction approach
Mean Lower Upper Mean Lower Upper

20 12 0.96165 0.82585 1.09620 0.95718 0.81814 1.09655
20 16 1.09773 0.95659 1.23930 1.09982 0.95617 1.24496
30 18 0.96749 0.85484 1.07882 0.96496 0.84377 1.08602
30 24 1.10712 0.98998 1.22489 1.10937 0.98317 1.23701
50 35 1.03952 0.95008 1.12855 1.03968 0.93885 1.14124
50 40 1.11514 1.02220 1.20792 1.11723 1.01287 1.22323

4.2. Candidate to the independent MH algorithm

In Metropolis-Hastings (MH) algorithm, the most conman task is to choose appropriate
candidate density for the posterior and it is very tricky since there are infinite number of
choice to the proposal density. There is a vast literature available on MCMC methods.
There have been various suggestion given for the selection of proposal density. Here,
we proposed the use of normal approximation of the posterior. The means of the ap-
proximating normal proposal density of α and β are calculated as the solution of the
following normal equations

r0
∑

i=1

1
�

α+β/x2
(i)

� +
r0
∑

i=1
x(i)− a−

r0
∑

i=1
x(i)φ(x(i))− (n− r )t0φ(t0)+

b−1
α =0

r0
∑

i=1

1/x2
(i)

�

α+β/x2
(i)

� −
r0
∑

i=1

1
x(i)
− c +

r0
∑

i=1

φ(x(i))
x(i)
+(n− r0)

φ(t0)
t0
+ d−1

β =0

and variances as the diagonal elements of the inverse of estimated Hessian matrix. We
have generated posterior sample using MH algorithm with normal proposal distribu-
tion and checked the convergence of the sequences of α andβ for their stationary distri-
butions through different starting values. It was observed that all the Markov chains
reached to the stationary condition very quickly. First thousand MCMC iterations
(Burn-in period) have been discarded from the generated sequence.

In the predictive case, the approximate properties of the predictive posterior den-
sity can not be possible to obtain analytically as the density contains many integrals and
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sums. The normal proposal is not a suitable choice for the predictive posterior density
since predictive posterior density is not symmetric. So, the method discussed above can
not be applied here. In such situation, one can take any asymmetric shaped distributions
as the proposal density similar to the target density because the shape of the candidate
relative to the target density affects the convergence of the algorithm. We found that the
three parameter Weibull distribution provides enough flexibility to cover the target den-
sity with different values of its parameters. The density of the three parameter Weibull
distribution is given by

g (x) =
w2

w3

�

x −w1

w3

�w2−1

e−
� x−w1

w2

�w3

, x > w1 > 0, w2 > 0, w3 > 0,

where the location parameter w1 has been taken as

for one sample prediction, w1 =
¨

XR:n for case-I
T for case-II,

for two sample prediction, w1 = 0.

The parameters w2 and w3 can be set by the experimenter such that the chain converges
to its stationary distribution with satisfactory acceptance rate.

4.3. Performance of the estimators

On the basis of simulation results, we observe the following

• The MSEs of all the estimators decreases as sample increases for fixed values of α
and β.

• In all the considered cases, it was noticed that the Bayes estimators show smaller
MSEs than the MLEs.

• The Bayes estimators obtained under non-informative prior (Gamma-0) behave
more or less similar to the MLEs. Although, the Bayes estimates obtained under
Gamma-1 is more efficient than those obtained under Gamma-0 prior. This in-
dicates that the Bayesian procedure with appropriate prior information provides
more accurate estimates of the parameters.

• The width of the HPD credible intervals is smaller than the width of the asymp-
totic confidence intervals in all the cases.
However, the width of the confidence/HPD intervals decreases as sample size in-
creases.

• The Bayes estimators and MLEs of the reliability and MTF show more or less
equal MSEs. However, the MSEs of the Bayes estimators of hazard rate are smaller
than that of MLEs.
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• For fixed values of n and R, the MSEs of all the estimators decrease as T increases.

• Generally, for fixed values of n and T , the MSEs of all the estimators decrease as
R increases.

TABLE 2
Average estimates of the parameters, reliability, hazard and MTSF and corresponding MSEs (in

brackets) with varying R and T for fixed n = 20,α= 2,β= 2, R(1) = 0.368,
h(1) = 4 and MTF= 0.910.

R Set-up T=0.9 T=1.0 T=1.25 T=1.50

R
=

12

C
la

ss
ic

al

α 2.252(0.557) 2.137(0.370) 2.079(0.178) 2.122(0.159)
β 2.202(0.430) 2.139(0.347) 2.098(0.219) 2.129(0.214)

R(t) 0.351(0.012) 0.369(0.009) 0.375(0.008) 0.370(0.007)
h(t) 5.044(8.195) 4.448(3.361) 4.192(1.666) 4.297(1.545)

MTF 0.910(0.004) 0.916(0.003) 0.916(0.003) 0.913(0.003)

Ba
ye

s G
am

m
a-

0 α 1.898(0.401) 1.841(0.328) 1.934(0.165) 2.001(0.128)
β 1.957(0.302) 1.923(0.264) 1.969(0.186) 2.016(0.177)

R(t) 0.389(0.009) 0.396(0.009) 0.380(0.007) 0.373(0.006)
h(t) 4.011(4.191) 3.727(2.510) 3.905(1.439) 4.072(1.218)

MTF 0.935(0.005) 0.938(0.005) 0.917(0.003) 0.911(0.003)

G
am

m
a-

1 α 1.908(0.137) 1.876(0.134) 1.941(0.099) 1.992(0.080)
β 1.954(0.114) 1.939(0.114) 1.970(0.111) 2.004(0.109)

R(t) 0.384(0.008) 0.389(0.007) 0.378(0.006) 0.371(0.006)
h(t) 3.919(1.703) 3.779(1.471) 3.934(1.151) 4.068(1.009)

MTF 0.923(0.004) 0.926(0.004) 0.914(0.003) 0.911(0.003)

R
=

16

C
la

ss
ic

al

α 2.175(0.296) 2.161(0.280) 2.082(0.177) 2.122(0.159)
β 2.160(0.295) 2.155(0.292) 2.099(0.220) 2.129(0.215)

R(t) 0.363(0.009) 0.364(0.008) 0.374(0.007) 0.370(0.007)
h(t) 4.575(3.675) 4.507(2.924) 4.195(1.655) 4.297(1.545)

MTF 0.911(0.003) 0.912(0.003) 0.916(0.003) 0.913(0.003)

Ba
ye

s G
am

m
a-

0 α 1.973(0.222) 1.964(0.213) 1.937(0.163) 2.002(0.128)
β 1.996(0.225) 1.991(0.224) 1.972(0.186) 2.016(0.177)

R(t) 0.376(0.007) 0.377(0.007) 0.380(0.007) 0.373(0.006)
h(t) 4.077(2.378) 4.026(1.956) 3.908(1.426) 4.072(1.218)

MTF 0.916(0.003) 0.916(0.003) 0.9166(0.003) 0.911(0.002)

G
am

m
a-

1 α 1.962(0.109) 1.956(0.105) 1.942(0.098) 1.992(0.080)
β 1.982(0.114) 1.979(0.114) 1.971(0.112) 2.004(0.109)

R(t) 0.375(0.007) 0.376(0.006) 0.378(0.006) 0.372(0.006)
h(t) 4.038(1.496) 4.005(1.289) 3.937(1.141) 4.068(1.010)

MTF 0.915(0.003) 0.915(0.003) 0.915(0.003) 0.911(0.002)
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TABLE 3
Average estimates of the parameters, reliability, hazard and MTF and corresponding MSEs (in

brackets) with varying R and T for fixed n = 30,α= 2,β= 2, R(1) = 0.3678,
h(1) = 4 and MTF= 0.9104.

R Set-up T=0.90 T=1.00 T=1.25 T=1.50

R
=

18

C
la

ss
ic

al

α 2.155(0.294) 2.068(0.209) 2.048(0.111) 2.079(0.095)
β 2.123(0.220) 2.078(0.191) 2.063(0.135) 2.085(0.129)

R(t) 0.357(0.008) 0.371(0.006) 0.373(0.005) 0.369(0.004)
h(t) 4.638(4.030) 4.227(1.908) 4.111(1.010) 4.191(0.914)

MTF 0.910(0.003) 0.916(0.002) 0.915(0.002) 0.913(0.001)

Ba
ye

s G
am

m
a-

0 α 1.931(0.236) 1.876(0.202) 1.954(0.106) 2.002(0.082)
β 1.970(0.175) 1.939(0.162) 1.979(0.121) 2.013(0.112)

R(t) 0.382(0.007) 0.390(0.006) 0.377(0.005) 0.372(0.004)
h(t) 4.000(2.543) 3.755(1.630) 3.926(0.927) 4.048(0.784)

MTF 0.925(0.003) 0.928(0.003) 0.915(0.002) 0.911(0.001)

G
am

m
a-

1 α 1.935(0.116) 1.897(0.109) 1.957(0.076) 1.998(0.059)
β 1.967(0.092) 1.951(0.091) 1.980(0.084) 2.007(0.081)

R(t) 0.379(0.006) 0.387(0.005) 0.376(0.004) 0.371(0.003)
h(t) 3.957(1.423) 3.791(1.126) 3.939(0.803) 4.048(0.699)

MTF 0.919(0.003) 0.923(0.003) 0.915(0.002) 0.911(0.001)

R
=

24

C
la

ss
ic

al

α 2.092(0.157) 2.091(0.155) 2.049(0.111) 2.079(0.094)
β 2.092(0.165) 2.091(0.165) 2.063(0.135) 2.085(0.127)

R(t) 0.368(0.005) 0.368(0.005) 0.373(0.005) 0.369(0.004)
h(t) 4.276(1.603) 4.266(1.522) 4.112(1.008) 4.191(0.914)

MTF 0.912(0.002) 0.913(0.002) 0.915(0.002) 0.913(0.001)

Ba
ye

s G
am

m
a-

0 α 1.964(0.133) 1.963(0.132) 1.954(0.106) 2.003(0.082)
β 1.988(0.139) 1.987(0.139) 1.979(0.121) 2.013(0.112)

R(t) 0.376(0.005) 0.376(0.004) 0.375(0.004) 0.372 (0.004)
h(t) 3.977(1.236) 3.969(1.185) 3.926(0.924) 4.048(0.784)

MTF 0.915(0.002) 0.915(0.002) 0.915(0.002) 0.911(0.001)

G
am

m
a-

1 α 1.962(0.083) 1.961(0.083) 1.957(0.075) 1.997(0.059)
β 1.983(0.089) 1.982(0.089) 1.979(0.085) 2.006(0.081)

R(t) 0.375(0.004) 0.375(0.004) 0.377(0.004) 0.371(0.004)
h(t) 3.971(0.946) 3.965(0.913) 3.941(0.798) 4.048(0.699)

MTF 0.915(0.002) 0.915(0.002) 0.914(0.002) 0.911(0.001)
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TABLE 4
Average estimates of the parameters, reliability, hazard and MTF and corresponding MSEs (in

brackets) with varying R and T for fixed n = 50,α= 2,β= 2, R(1) = 0.3678,
h(1) = 4 and MTF= 0.9104.

R Set-up T=0.90 T=1.00 T=1.25 T=1.50

R
=

35

C
la

ss
ic

al

α 2.089(0.137) 2.078(0.128) 2.029(0.070) 2.045(0.055)
β 2.078(0.122) 2.072(0.119) 2.041(0.086) 2.052(0.077)

R(t) 0.364(0.004) 0.365(0.003) 0.37214(0.002) 0.370(0.002)
h(t) 4.293(1.361) 4.240(1.126) 4.054(0.544) 4.093(0.453)

MTF 0.911(0.0014) 0.912(0.0013) 0.914(0.0012) 0.912(0.0011)

Ba
ye

s G
am

m
a-

0 α 1.991(0.119) 1.981(0.113) 1.974(0.068) 2.001(0.051)
β 2.004(0.106) 1.999(0.105) 1.993(0.081) 2.010(0.072)

R(t) 0.373(0.003) 0.374(0.003) 0.374(0.003) 0.371(0.002)
h(t) 4.044(1.089) 4.000(0.936) 3.943(0.522) 4.013(0.417)

MTF 0.914(0.001) 0.9151(0.001) 0.913(0.001) 0.911(0.001)

G
am

m
a-

1 α 1.986(0.082) 1.978(0.079) 1.974(0.055) 1.998(0.042)
β 1.999(0.075) 1.995(0.075) 1.991(0.064) 2.007(0.058)

R(t) 0.372(0.003) 0.373(0.003) 0.374(0.002) 0.371(0.002)
h(t) 4.024(0.836) 3.981(0.733) 3.949(0.476) 4.013(0.393)

MTF 0.914(0.001) 0.914(0.001) 0.913(0.001) 0.911(0.001)

R
=

40

C
la

ss
ic

al

α 2.065(0.101) 2.065(0.101) 2.029(0.069) 2.045(0.055)
β 2.064(0.104) 2.064(0.104) 2.041(0.086) 2.051(0.077)

R(t) 0.367(0.003) 0.367(0.003) 0.372(0.002) 0.370(0.002)
h(t) 4.182(0.888) 4.183(0.901) 4.053(0.543) 4.094(0.453)

MTF 0.911(0.001) 0.911(0.001) 0.913(0.001) 0.912(0.001)

Ba
ye

s G
am

m
a-

0 α 1.990(0.090) 1.990(0.090) 1.974(0.068) 2.000(0.051)
β 2.004(0.093) 2.004(0.093) 1.993(0.080) 2.010(0.071)

R(t) 0.373(0.003) 0.372(0.003) 0.375(0.002) 0.371(0.002)
h(t) 4.008(0.760) 4.010(0.772) 3.943(0.521) 4.013(0.417)

MTF 0.913(0.001) 0.913(0.001) 0.913(0.001) 0.911(0.001)

G
am

m
a-

1 α 1.986(0.068) 1.986(0.068) 1.974(0.054) 1.998(0.042)
β 1.999(0.071) 1.999(0.070) 1.992(0.064) 2.007(0.058)

R(t) 0.372(0.003) 0.372(0.002) 0.374(0.002) 0.371(0.002)
h(t) 4.002(0.637) 4.003(0.647) 3.949(0.475) 4.013(0.393)

MTF 0.913(0.001) 0.913(0.001) 0.913(0.001) 0.911(0.001)
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TABLE 5
Average confidence/HPD intervals of α and β from different hybrid Type-II censoring scheme for

fixed values of α= 2,β= 2.

n, R Set-up T=0.90 T=1.0 T=1.25 T=1.50

n=
20

,R
=

12 Classical α 0.943, 3.561 0.979, 3.295 1.301, 2.858 1.415, 2.828
β 1.113, 3.291 1.115, 3.162 1.239, 2.958 1.298, 2.959

Ba
ye

s N
on α 1.322, 2.476 1.327, 2.353 1.585, 2.283 1.683, 2.318

β 1.348, 2.592 1.335, 2.535 1.428, 2.541 1.484, 2.576

G α 1.468, 2.349 1.469, 2.284 1.634, 2.246 1.709, 2.275
β 1.413, 2.532 1.406, 2.503 1.471, 2.503 1.512, 2.527

n=
20

,R
=

16 Classical α 1.221, 3.129 1.217, 3.113 1.304, 2.859 1.415 ,2.828
β 1.213, 3.107 1.211, 3.098 1.240, 2.959 1.298, 2.960

Ba
ye

s N
on α 1.551, 2.396 1.545, 1.603 1.587, 2.285 1.683, 2.318

β 1.423, 2.595 1.420, 2.589 1.429, 2.542 1.484, 2.576

G α 1.606, 2.317 2.384, 2.310 1.636, 2.247 1.709, 2.275
β 1.464, 2.531 1.462, 2.527 1.472, 2.504 1.512, 2.527

n=
30

,R
=

18 Classical α 1.122, 3.188 1.138, 2.999 1.422, 2.674 1.516, 2.643
β 1.266, 2.981 1.262, 2.893 1.372, 2.754 1.421, 2.750

Ba
ye

s N
on α 1.474, 2.391 1.463, 2.291 1.674, 2.235 1.748, 2.256

β 1.460, 2.496 1.448, 2.451 1.534, 2.442 1.580, 2.467

G α 1.553, 2.317 1.544,2.249 1.699, 2.214 1.762, 2.256
β 1.505, 2.456 1.498, 2.429 1.560, 2.422 1.595, 2.441

n=
30

,R
=

24 Classical α 1.342, 2.843 1.341, 2.840 1.423, 2.675 1.516, 2.643
β 1.343, 2.841 1.343, 2.839 1.372, 2.755 1.421, 2.750

Ba
ye

s N
on α 1.630, 2.299 1.629, 2.297 1.674, 2.235 1.748, 2.256

β 1.521, 2.474 1.521, 2.473 1.534, 2.443 1.580, 2.467

G α 1.662, 2.259 1.661, 2.259 1.699, 2.214 1.762, 2.233
β 1.547, 2.441 1.547, 2.440 1.560, 2.421 1.595, 2.441

n=
50

,R
=

35 Classical α 1.420, 2.758 1.416, 2.740 1.549, 2.509 1.618, 2.472
β 1.468, 2.688 1.465, 2.679 1.512, 2.571 1.546, 2.557

Ba
ye

s N
on α 1.693, 2.291 1.686, 2.279 1.758, 2.190 1.807, 2.193

β 1.624, 2.397 1.620, 2.392 1.645, 2.351 1.674, 2.359

G α 1.711, 2.260 1.706, 2.250 1.769, 2.179 1.814, 2.183
β 1.636, 2.374 1.633, 2.369 1.656, 2.339 1.681, 2.346

n=
50

,R
=

40 Classical α 1.492, 2.638 1.492, 2.638 1.549, 2.510 1.618, 2.472
β 1.493, 2.636 1.493, 2.636 1.512, 2.571 1.546, 2.557

Ba
ye

s N
on α 1.733, 2.247 1.733, 2.247 1.758, 2.191 1.807, 2.193

β 1.639, 2.378 1.639, 2.378 1.769, 2.179 1.674, 2.359

G α 1.747, 2.227 1.747, 2.227 1.646, 2.351 1.814, 2.183
β 1.649, 2.361 1.649, 2.361 1.656, 2.339 1.681, 2.346
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5. REAL DATA ANALYSIS

In this section, a real data set has been analysed to illustrate our discussed methodologies.
The data represents the times between failures of secondary reactor pumps. This data
was first reported by Suprawhardana et al. (1999), and modelled by Bebbington et al.
(2007) using the FW distribution. Singh et al. (2013) have discussed the classical and
Bayesian estimation methods under the Type-II censoring schemes of the data set. The
times between failures of 23 secondary reactor pumps are as follows

2.160, 0.746, 0.402, 0.954, 0.491, 6.560,
4.992, 0.347, 0.150, 0.358, 0.101, 1.359,
3.465, 1.060, 0.614, 1.921, 4.082, 0.199,
0.605, 0.273, 0.070, 0.062, 5.320.

Three hybrid censoring schemes have been considered for analysis of this real data,
namely

Scheme 1: R=20, T=3.0
Scheme 2: R=18, T=4.5
Scheme 3: R=18, T=2.0

Using these schemes, the censored samples are obtained from the complete data set
and the MLEs and Bayes estimates along with the corresponding asymptotic confidence
intervals (CIs) and HPD credible intervals are computed. In order to guess the starting
values, the log-likelihood profile is studied. Figure 2 shows the log-likelihood curve
with respect to the given sequence of the parameters. From the Figure 2, we can see
that the likelihood achieves its maximum at neighborhood of (α,β) = (0.2,0.2) which
we used as initial guess in the fixed point iteration method. Table 6 provides the MLEs
and Bayes estimates for Type-II hybrid censoring schemes based on real data set. Table 7
consists the CIs and HPD intervals for Type-II hybrid censoring schemes based on real
data set. The estimates, obtained under three censoring schemes given above, of MTF
are summarised in Table 6 and estimated reliability and hazard functions for real data
are plotted in Figure 4.

Since, in real study, there is no prior information available regarding the true values
of the parameters, the hyper-parameters are chosen such that the prior mean (M ) equals
to the MLE of the parameter and prior variance (V ) is 1. Thus hyper-parameters are
obtained by using the following relations: b

a = α̂ml e , b
a2 = 1, d

c = β̂ml e and d
c2 = 1. We

call these priors as Gamma-1. In Table 6, Gamma-0 denotes the especial form of the
gamma prior with hyper-parameters identical to zero.

By using MCMC algorithm, ten thousands sample points have been generated from
the posterior. The properties of the simulated samples have been studied. The poste-
rior plots and convergence plots are plotted in Figure 3. Clearly, the MCMC chains
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(posterior samples) are well mixed and converged to their stationary distributions, and
proximately normally distributed. The scattered diagram shown in Figure 3 indicates
that correlation between the chains of α and β is negligible.

One- and two-sample predictive densities are also explored through the use of MCMC
methods. The summary statistics of one- and two-sample predictive densities are pro-
vided in Tables 8-12. It is to be observed that the standard error (SD) as well as the
width of confidence intervals increases as the values of s increases i.e. the predictive
densities become more and more wider for larger order statistics. The survival func-
tions corresponding to one- and two-sample predictive densities for different values of s
are obtained by using the Monte Carlo technique and plotted in Figures 5 and 6 respec-
tively.

TABLE 6
MLEs and Bayes estimates for real data set.

Scheme MLE Gamma-1 Gamma-0

Scheme 1
α̂ 0.1908 0.1721 0.1717
β̂ 0.2606 0.2512 0.2502

ÖMTF 1.5581 1.8000 1.8119

Scheme 2
α̂ 0.1744 0.1557 0.1555
β̂ 0.2624 0.2531 0.2521

ÖMTF 1.6768 1.9713 1.9777

Scheme 3
α̂ 0.2751 0.2323 0.2281
β̂ 0.2557 0.2458 0.2466

ÖMTF 1.1682 1.8334 2.2050

TABLE 7
The 95% asymptotic confidence intervals (CI) and HPD credible intervals for real data set.

Scheme CI HPD(Gamma-1) HPD(Gamma-0)
Lower Upper Lower Upper Lower Upper

Scheme 1 α 0.0723 0.3094 0.0850 0.2581 0.0854 0.2587
β 0.1315 0.3897 0.1681 0.3395 0.1635 0.3404

Scheme 2 α 0.0624 0.2864 0.0721 0.2346 0.0711 0.2369
β 0.1333 0.3914 0.1643 0.3421 0.1667 0.3421

Scheme 3 α 0.0704 0.4799 0.0794 0.3916 0.0552 0.3971
β 0.1254 0.3860 0.1598 0.3375 0.1579 0.3398
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Figure 2 – Log likelihood function based on scheme 1.

TABLE 8
Sample based summary for one sample predictive posterior based on Scheme 1 for real data set.

s Q1 Median Mean Q3 SD 95% CI
Lower Upper

21 4.352 4.710 5.039 5.335 0.9974 4.0823 7.1579
22 5.013 5.732 6.179 6.765 1.6705 4.1613 9.7376
23 6.226 7.613 8.106 9.293 2.5828 4.2734 13.167

TABLE 9
Sample based summary for one-sample predictive posterior based on Scheme 2 for real data set.

s Q1 Median Mean Q3 SD 96% CI
Lower Upper

21 5.003 5.663 6.091 6.628 1.5953 4.5002 9.0190
22 5.434 6.407 6.933 7.842 2.1252 4.5012 10.9323
23 6.505 7.993 8.770 10.110 3.3039 4.5178 15.0635
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Figure 3 – Histograms, trace plots and scattered diagram of the posterior (Gamma-0) samples of α
and β based on scheme 1.

TABLE 10
Sample based summary for one-sample predictive posterior based on Scheme 3 for real data set.

s Q1 Median Mean Q3 SD 95% CI
Lower Upper

19 2.296 2.492 2.750 2.860 0.9614 2.1601 4.0382
20 2.631 3.020 3.309 3.622 1.0404 2.1777 5.3281
21 3.047 3.617 4.030 4.513 1.4944 2.2722 6.9468
22 3.611 4.369 4.857 5.501 1.8494 2.4379 8.6736
23 4.471 5.559 6.150 7.135 2.4599 2.7360 11.082
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Figure 4 – Estimated reliability and hazard functions for real data set.

TABLE 11
Sample based two-sample predictive posterior characteristics for the complete real data set.

s Q1 Median Mean Q3 SD 95% CI
Lower Upper

5 0.1253 0.1586 0.1719 0.2041 0.0671 0.0693 0.2996
10 0.2607 0.3522 0.4067 0.4864 0.2217 0.1286 0.8456
15 0.6914 1.0300 1.2610 1.5430 0.9101 0.2153 2.8233
20 2.1780 2.9780 3.3190 3.9790 1.6896 0.7028 6.7756
23 4.2640 5.5890 6.1810 7.4200 2.7001 1.8915 11.917
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Figure 5 – One Sample Survival functions for different values of s for real data set.
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Figure 6 – Two Sample Survival functions for different values of s for real data set.

TABLE 12
Sample based two-sample predictive posterior characteristics from scheme 3 for the real data set.

s Q1 Median Mean Q3 SD 95% CI
Lower Upper

5 0.1253 0.1584 0.1704 0.2009 0.0651 0.0704 0.3006
10 0.2659 0.3474 0.4028 0.4748 0.2145 0.1231 0.8306
15 0.6784 0.9935 1.2520 1.4910 0.9865 0.2153 2.8014
20 2.1720 2.9650 3.3780 4.0410 1.8166 0.7920 7.0615
23 4.2990 5.5520 6.1700 7.3550 2.7144 2.1728 12.009
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6. CONCLUSION

The maximum likelihood estimation and Bayesian estimation procedures for flexible
Weibull distribution are developed under the hybrid Type-II censoring schemes. The es-
timation of the parameters as well as reliability characteristics (R(t ), h(t ) and MTF) are
considered under both the paradigms. The long-run performances of the proposed esti-
mators are compared on the bases of simulated samples generated from the distribution
for various hybrid Type-II censoring schemes. Bayes estimators are constructed under
the SELF using independent gamma priors of the parameters. In fact, Bayes estimators
provide the precise estimates of the parameters as they show smaller mean squared errors
than that of MLEs. Furthermore, We also discussed the problem of estimating future
observables and one- and two-sample predictive posteriors of the future order statistics
are derived. The posteriors become quite complicated and can not be reduced to any
explicit forms. Metropolis-Hastings technique is utilised to draw the samples from the
posteriors and sample based summary of predictive posteriors is presented. Finally, we
believe that the methodologies discussed in this paper will be very useful for researchers,
reliability practitioners and scientists in physics and medicine where the analysis of UBT
data under censoring mechanism needs to be performed.
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SUMMARY

In this paper, we proposed Bayes estimators for estimating the parameters, reliability, hazard rate,
mean time to failure from flexible Weibull distribution using Type-II hybrid censored sample.
Bayes estimators have been obtained under squared error loss function assuming independent
gamma prior distributions for the parameters. The maximum likelihood estimators along with
asymptotic distributions have also been discussed. The performances of the estimators have been
compared with respect to the various Type-II hybrid censoring schemes. For approximating the
posteriors, we proposed the use of Markov chain Monte Carlo techniques such as Gibbs sampler
and Metropolis-Hastings algorithm. Further, Bayesian One- and Two-sample prediction problems
have also been considered. A real data set has been analysed for illustration purposes.

Keywords: Flexible Weibull distribution; Type-II hybrid censored sample; Maximum likelihood
estimation; Bayesian estimation; Bayesian prediction.


