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1. INTRODUCTION

Ranked set sampling (RSS), a data collection scheme, was first implemented by McIntyre
(1952) (see also McIntyre, 2005), as a good competitor to simple random sampling (SRS)
scheme to estimate the mean of Australian pasture yields in agricultural experimenta-
tion. It is obviously applicable to other situations as well, see for example Philip and Lam
(1997), Murray et al. (2000), and Murff and Sager (2006). For discussions of some other
situations where RSS found applications, see Patil (1995), Barnett and Moore (1997) and
Chen et al. (2004).

RSS can be useful when measurements are expensive or difficult to make but units
from the population can be easily ranked by visual inspection. "In McIntyre’s case, mea-
suring the plots of pasture yields requires mowing and weighing crop yields, which is
time consuming. However, a small number of plots can be even though sufficiently well
ranked by eye without measurement. McIntyre’s goal was to develop a sampling tech-
nique to reduce the number of necessary measurements to be made, maintaining the
unbiasedness of the SRS mean and reducing the variance of the mean estimator by in-
corporating the outside information provided by visual inspection. Therefore, since the
ranking of the plots could be done very cheap, he developed a technique to implement
this advantage" (Rey, 2004).

Suppose the unidimensional study variable X has a probability density function
(pdf) f and cumulative distribution function (cdf) F . Let E(X ) = µ be the expectation
of X and V a r (X ) = σ2 <∞ its variance. RSS methodology consists of the following
stages.

Select→ Rank→ Identify→ Repeat.

1. Select: Select m sets randomly, of size m elements each, from the study popula-
tion.

1 Corresponding Author. E-mail: monjedsamuh@ppu.edu
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2. Rank: Rank the elements of each set in Step 1 with regard to X , by any negligible
cost method or visually with no actual measurements.

3. Identify: Identify the i t h minimum from the i t h set, i = 1,2, . . . , m, for measure-
ment. The acquired sample is called a ranked set sample of set size m.

4. Repeat: Independently repeat Steps 1-3 h cycles, if needed, to acquire an RSS of
size h ×m = n.

It is worth to note that although h × m2 elements are sampled in the first stage, only
h×m of them are considered for measurement. In case of perfect ranking (no error was
made in the ranking mechanism) the measured elements are called the order statistics
and they are not ordered; we denote the i t h order statistic acquired in the j t h cycle by
Y j i =X j (i), i = 1,2, . . . , m, and j = 1,2, . . . , h. This version of RSS is a balanced RSS, in
the sense that in each cycle the number of order statistics is fixed. In case of imperfect
ranking the measured elements are called the judgment order statistics. In this paper,
whenever we reference RSS we mean the balanced perfect RSS.

McIntyre (1952) claimed that the sample mean of RSS is an unbiased estimator of the
population mean µ regardless of errors in ranking judgment. The mathematical theory
of RSS was settled by Takahasi and Wakimoto (1968). They reported that the sample
mean based on RSS is an unbiased estimator of µ, and has smaller variance than the
sample mean of SRS based on m elements. Dell and Clutter (1972) developed the theory
of RSS in the presence of ranking errors (imperfect ranking). Distribution function
estimation in the context of RSS was studied by Stokes and Sager (1988). They showed
that the RSS empirical distribution function is an unbiased estimator of the distribution
function and more efficient than that from a SRS. Stokes (1995) studied the advantages
of RSS in estimating the population parameters when the underlying distribution is
known. MacEachern et al. (2002) developed an unbiased estimator of the population
variance based on a RSS.

In the context of testing hypothesis, Koti and Jogesh Babu (1996) derived the exact
distribution of the sign test statistic based on RSS. They reported that the test is more
powerful than the counterpart sign test statistic of SRS. Liangyong and Xiaofang (2010)
used the sign test based on RSS for testing hypotheses about the quantiles of a population
distribution. Bohn and Wolfe (1992, 1994) suggested the RSS analogue of the classical
two-sample Wilcoxon test and studied its relative properties under perfect and imperfect
judgement. Öztürk (1999) studied the effect of the RSS on two-sample sign test statistic.
Öztürk and Wolfe (2000) presented an optimal RSS allocation scheme for a two-sample
RSS median test. They derived the exact distribution of the two-sample median test
statistic in the context of RSS and tabled it for some sample sizes. Samuh (2012) and
Amro and Samuh (2017) investigated the two-sample permutation test with the context
of RSS and multistage RSS. In this paper, a new testing procedure for the two-sample de-
sign within RSS is introduced and compared with the test statistics proposed by Samuh
(2012).
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The rest of the paper is structured as follows. The independent two-sample model
is introduced in Section 2. The classical independent t -test is reviewed in Section 2.1.
The two-sample permutation test is presented in Section 2.2. Permutation test for two-
sample ranked set samples with three proposed test statistics is discussed in Section 3.
Simulation study that shows the benefits of permutation test of the ranked set two-
sample design is provided in Section 4. Finally, concluding remarks are reported in
Section 5.

2. THE INDEPENDENT TWO-SAMPLE DESIGN

Let us consider the testing problems for one-sided alternative hypotheses as produced by
treatments with non-negative effect sizeδ. Particularly, the fixed additive effects model,
which is written as

X t
i =µ+δ +σE t

i , i = 1, . . . , nt ; X c
i =µ+σE c

i , i = 1, . . . , nc , (1)

where µ is a common location parameter, E k
i (k = t , c) are random error deviates with

location parameter zero and scale parameter one, σ is a scale parameter independent
on experimental units and treatment levels, and δ is the effect size (treatment effect)
which is typically unknown. In practice, for comparing Xt = (X t

1 , . . . ,X t
nt
) to Xc =

(X c
1 , . . . ,X c

nc
), and without loss of generality, µ = 0 is assumed. Therefore, the dataset

can be also written as X(δ) = (Et +δ,Ec ) where δ = (δ1, . . . ,δnt
) (For simplicity, set

δi = δ > 0, for each i = 1, . . . , nt ), Et = (E t
1 , . . . , E t

nt
), and Ec = (E c

1 , . . . , E c
nc
). The

hypothesis of interest is
H0 : δ = 0 against H1 : δ > 0. (2)

2.1. Classic independent two-sample t -test

Suppose in Equation (1) E t
1 , . . . , E t

nt
, E c

1 , . . . , E c
nc

be independent and identically distributed
normal random deviates. Then the likelihood ratio test statistic for testing the null hy-
pothesis in Equation (2) is given by

T =
X̄ t − X̄ c

Sp

Ç

1
nt
+ 1

nc

,

where X̄ k =
∑nk

i=1 X k
i /nk (k = t , c), and S2

p =
∑

k∈{t ,c}
∑nk

i=1(X
k
i − X̄ k )2/(nt + nc − 2)

is the pooled variance.
Under H0, T is distributed as Student’s distribution with ν = nt + nc − 2 degrees of

freedom. And hence, H0 is rejected when T > tαν , where tαν is the upper α critical value,
and α is the level of significance. The statistical power level is given by

W (δ; nt , nc ,α) = 1− Ft (t
α
ν , ν, nc p),
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where Ft is the cumulative distribution of the Student t , ν = nt+nc−2 is the degrees of

freedom, and nc p = δ
�

S2
p (

1
nt
+ 1

nc
)
�−1/2

is the non-centrality parameter. Note that W
is a function ofδ for a given sample sizes (nt , nc ), and preassigned level of significance α.
The power level measures how likely to get a significance result given that the alternative
hypothesis is true.

2.2. Two-sample permutation test

Suppose now in Equation (1) E t
1 , . . . , E t

n1
, E c

1 , . . . , E c
n2

are exchangeable random deviates.
For the considered testing problem in Equation (2) a suitable test statistic should be
chosen such that, without loss of generality, large values of it are considered to be against
H0. For more details about the choice of the test statistic in the permutation framework
see page 84 of Pesarin and Salmaso (2010). One may choose T = X̄ t − X̄ c as a test
statistic. For determining the p-value, an appropriate reference distribution is needed
which is called the permutation distribution. Indeed, the following steps are used to
carry out the permutation test for two-sample design.

1. Randomly assign experimental units to one of the two samples with nt units to
the first sample (treatment group) and nc units to the second sample (control or
placebo group). Then, the observed data sets, Xt and Xc , are obtained and the test
statistic is evaluated, T0 = T (X).

2. Permute the n = nt + nc observations between the two groups. Write down the
set of all possible permutations,X . The cardinality of this support is n!.

3. For each permutation X∗ ∈ X , compute the test statistic, T ∗ = T (X∗). The car-
dinality of related support is n!/nt !nc !.

4. The true p-value is calculated as

λT (X) =
number of T ∗’s≥ T0

� n
nt

� .

5. If a preassigned level of significance, α, has been set, declare the test to be signifi-
cant if the p-value is not larger than this level.

Since it is tedious or even practically impossible to write down and enumerate the
whole members of permutation sample spaceX , conditional Monte Carlo simulation
(Algorithm 1) can be used to approximate the p-value at any desired accuracy.

Note that λ̂T (X) is an unbiased estimate of the true λT (X) and, due to the Glivenko-
Cantelli theorem (Shorack and Wellner, 1986), as B diverges it is strongly consistent.
Moreover, the standard error for λ̂T (X) is

Æ

λT (X) (1−λT (X))/B .
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Algorithm 1 Conditional Monte Carlo (CMC)

1. For the given dataset X, compute the observed test statistic, T0 = T (X).

2. From X take a random permutation X∗ of X, and compute the corresponding
permutation test statistic T ∗ = T (X∗).

3. Independently repeat Step 2 a large number of times, say B , giving B values for
T ∗, say {T ∗b , b = 1, . . . ,B}.

4. The estimated permutation p-value is

λ̂T (X) =
∑B

b=1 I(T
∗
b ≥ T0)

B
,

where I(·) is the indicator function.

Algorithm 2 Power Function of Permutation Test

1. Choose an arbitrary value of the effect δ.

2. Draw one set of n error deviates E from the underlying distribution, and then add
δ to the first nt error deviates to define the data set X(δ) = (Et +δ,Ec ).

3. Use the CMC algorithm to estimate the permutation p-value λ̂T (X(δ)).

4. Independently repeat Steps 2 and 3 a large number of times, say R, giving R esti-
mated p-values, say {λ̂T (Xr (δ)), r = 1, . . . , R}.

5. Finally, the estimated power level is given by

Ŵ (δ; nt , nc ,α,T , P ) =
∑R

r=1 I[λ̂T (Xr (δ))≤ α]
R

,

where T is the chosen test statistic and P is the underlying distribution.

6. To obtain the power function as a function ofδ, Steps 1-5 are repeated for different
values of δ.
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Therefore, a 100(1−α)% approximate confidence interval for λT (X) is

λ̂T (X)±Z α
2

√

√

√

√

λ̂T (X)
�

1− λ̂T (X)
�

B
.

The p-value of the permutation test is conditional upon the observations for each
sample, but the power is the proportion of p-values that are less than or equal α over
repeated sampling from the underlying population. Therefore, the power level can be
estimated by the use of standard Monte Carlo simulation. Algorithm 2 is used for esti-
mating the power.

3. RANKED SET TWO-SAMPLE PERMUTATION TEST

Apparently, RSS methodology produces a data set as follows










Y11 Y12 · · · Y1m
Y21 Y22 · · · Y2m

...
...

. . .
...

Yh1 Yh2 · · · Yh m











,

where Y j i = X j (i), j = 1, . . . , h, i = 1, . . . , m. Let Yt = {Y t
j i} and Yc = {Y c

j i} denote
the treatment and control groups, respectively. Note that the two groups are indepen-
dent. For each group, (Yt ,Yc ), the data are all mutually independent and, in addition,
the data in the same column are identically distributed. Therefore, the exchangeability
assumption holds within columns and hence the permutation test can be applied. So,
to maintain the distribution diversity, the data in the i t h column of Yt has to be per-
muted by the data in the i t h column of Yc for each i in {1,2, . . . , m}. To carry out the
permutation test for this ranked set two-sample design Algorithm 3 is used.

The test statistics considered in this paper are as follows.

1. First, the difference between overall means of the two groups; that is

T1 = Ȳ t − Ȳ c , (3)

where Ȳ k =
∑nk

i=1

∑h
j=1 Y k

j i/h m (k = t , c) (Assuming balanced design, nt = nc =
mh).

2. Second, the sum of the studentized statistics for all columns of the two matrices;
that is

T2 =
m
∑

i=1

�

Ȳ t
i − Ȳ c

i

σ̂i

�

, (4)

where σ̂2
i =

∑

k∈{t ,c}
∑h

j=1(Y
k
j i − Ȳ k

i )
2/(2mh − 2), and Ȳ k

i =
∑h

j=1 Y k
j i/h.
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Algorithm 3 Ranked set two-sample permutation test

1. For the ranked set two-sample data sets (Yt ,Yc ), compute the test statistic, T0.

2. Form a new matrix Y=Yt
⊎

Yc by concatenating Yt and Yc vertically (Note that
the two matrices have m columns).

3. Randomly permute Y column by column to get Y∗.

4. Split Y∗ into Yt∗ and Yc∗ such that Yt∗ and Yc∗ contain the same number of rows
as in Yt and Yc , respectively.

5. Compute the test statistic T ∗ = T (Y∗) based on Y∗ =Yt∗⊎Yc∗.

6. Independently repeat Steps 3-5 a large number of times, say B , giving B test statis-
tics, say {T ∗b , b = 1, . . . ,B}.

7. The estimated p-value is

λ̂(Y) =
∑B

b=1 I(T
∗
b ≥ T0)

B
.

3. The third proposal is based on partial tests. To this end, the null hypothesis in
Equation (2) is partitioned into m independent sub-hypotheses as follows.

H0i : δ i = 0 against H1i : δ i > 0, i = 1, . . . , m, (5)

where δ i =µ
t
i −µ

c
i , µt

i and µc
i are the population means of the i t h order statistic

in the treatment and control group respectively. Thus, the differences between the
column means of the treatment and control groups are considered as test statistics;
that is,

T3i = Ȳ t
i − Ȳ c

i , i = 1, . . . , m. (6)

Now, Algorithm 1 is used and this leads m independent p-values (λ1, . . . ,λm). Fi-
nally, these p-values have to be combined for testing the overall hypothesis in
Equation (2). The following approaches are considered for combining p-values.

1. The Fisher approach (Fisher, 1934).
It is based on the statistic X 2 = −2

∑m
i=1 logλi . Under the null hypothesis,

X 2 ∼ χ 2
(2m). So, the combined p-value is given by

λF = P (χ 2
(2m) >X 2). (7)
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2. The Liptak approach (Liptak, 1958).
It is based on the statistic L =

∑m
i=1Φ

−1(1 − λi ), where Φ(·) is the stan-
dard normal cumulative distribution function. Under the null hypothesis,
L/
p

m ∼N (0,1). So, the combined p-value is given by

λL = P
�

Z >
L
p

m

�

, (8)

where Z is the standard normal random variable.

3. The logistic approach (Mudholkar and George, 1979). It is based on the logit
statistic

t =C−1
m
∑

i=1

log [(1−λi )/λi ] ,

where C =
p

mπ2(5m+ 2)/3(5m+ 4). Under the null hypothesis, t fol-
lows approximately a Student’s distribution with degrees of freedom 5m+4.
So, the combined p-value is given by

λM = P
�

T(5m+4) > t
�

. (9)

4. SIMULATION STUDY

A simulation study is carried out to assess the significance level and the power of the
proposed test statistics for the two-sample RSS design and to compare it with the usual
two-sample permutation design and the classical two-sample t -test. Different configura-
tions are considered in the simulation study. For each combination of m = {3, 4} and
h = {5, 10}, four different distributions are considered; uniform distribution U (−1,1),
normal distribution N (0,1), skew normal distribution SN (0,1,−5), and exponential
distribution E x p(1). We also performed several other combinations, not reported here,
and the results follow the same behavior. The simulation study is performed based on
R= 5000 datasets. The permutation is based on B = 1000 replications. To examine the
significance level of the tests we set δ = 0, while to investigate the power behavior we
select values of δ in the set {0.2, 0.4, 0.6, 0.8}. The nominal significance level was set to
α= 0.05. The results of the study are reported in Tables 1 and 2.

It is worth to point out that the power levels of the proposed test statistics are ob-
tained for the same generated two-sample RSS. Moreover, balanced designs are consid-
ered in computing the power levels; that is, each sample of the two-sample RSS was with
set size m and number of cycles h. Also, the size of each sample in the two-sample SRS is
h×m. So that power comparisons between the considered test statistics under RSS and
SRS are done by maintaining the same number of experimental units in both schemes
(to insure that the two schemes have the same cost).
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TABLE 1
Empirical significance level and power from the simulation study – Uniform and normal distributions.

Uniform Normal
m h Test stat δ→ 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
3 5 SRS 0.056 0.234 0.584 0.874 0.984 0.056 0.128 0.281 0.495 0.678

T1 0.050 0.361 0.832 0.991 1.000 0.044 0.187 0.436 0.711 0.904
T2 0.053 0.346 0.812 0.987 1.000 0.044 0.181 0.421 0.691 0.891
T3(Fisher) 0.049 0.309 0.769 0.979 0.999 0.040 0.159 0.367 0.637 0.850
T3(Liptak) 0.048 0.342 0.810 0.986 1.000 0.043 0.173 0.410 0.684 0.890
T3(Logit) 0.048 0.332 0.803 0.985 0.999 0.040 0.173 0.402 0.678 0.882

10 SRS 0.051 0.371 0.842 0.990 1.000 0.053 0.181 0.449 0.749 0.917
T1 0.050 0.604 0.982 1.000 1.000 0.052 0.284 0.683 0.938 0.997
T2 0.049 0.602 0.982 1.000 1.000 0.049 0.281 0.682 0.934 0.996
T3(Fisher) 0.050 0.564 0.975 1.000 1.000 0.051 0.260 0.637 0.913 0.993
T3(Liptak) 0.050 0.602 0.982 1.000 1.000 0.049 0.279 0.681 0.936 0.996
T3(Logit) 0.052 0.597 0.982 1.000 1.000 0.050 0.275 0.674 0.930 0.996

4 5 SRS 0.058 0.283 0.683 0.943 0.996 0.055 0.157 0.342 0.586 0.796
T1 0.048 0.514 0.959 1.000 1.000 0.051 0.249 0.599 0.881 0.984
T2 0.047 0.503 0.953 1.000 1.000 0.051 0.237 0.579 0.869 0.980
T3(Fisher) 0.043 0.452 0.934 0.999 1.000 0.048 0.206 0.519 0.830 0.966
T3(Liptak) 0.046 0.504 0.951 1.000 1.000 0.048 0.231 0.578 0.865 0.980
T3(Logit) 0.046 0.497 0.948 1.000 1.000 0.048 0.224 0.560 0.861 0.977

10 SRS 0.045 0.449 0.921 0.999 1.000 0.055 0.228 0.546 0.843 0.972
T1 0.050 0.782 0.999 1.000 1.000 0.053 0.393 0.851 0.992 1.000
T2 0.047 0.791 0.999 1.000 1.000 0.049 0.391 0.848 0.992 1.000
T3(Fisher) 0.048 0.748 0.998 1.000 1.000 0.051 0.362 0.820 0.988 1.000
T3(Liptak) 0.049 0.790 0.999 1.000 1.000 0.050 0.395 0.848 0.993 1.000
T3(Logit) 0.049 0.785 0.999 1.000 1.000 0.051 0.390 0.849 0.993 1.000
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Empirical significance level and power from the simulation study – Skew normal and exponential distributions.

Skew normal Exponential
m h Test Stat δ→ 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
3 5 SRS 0.052 0.214 0.537 0.833 0.958 0.054 0.143 0.316 0.525 0.712

T1 0.054 0.335 0.755 0.964 0.999 0.051 0.197 0.433 0.699 0.857
T2 0.054 0.359 0.796 0.978 1.000 0.048 0.298 0.682 0.916 0.982
T3(Fisher) 0.047 0.321 0.756 0.970 0.999 0.044 0.282 0.663 0.902 0.975
T3(Liptak) 0.048 0.351 0.791 0.975 1.000 0.044 0.283 0.649 0.884 0.967
T3(Logit) 0.047 0.348 0.787 0.974 1.000 0.045 0.287 0.662 0.895 0.974

10 SRS 0.048 0.344 0.802 0.980 1.000 0.051 0.206 0.474 0.756 0.916
T1 0.052 0.514 0.958 1.000 1.000 0.050 0.281 0.662 0.896 0.980
T2 0.056 0.564 0.974 1.000 1.000 0.048 0.451 0.901 0.993 1.000
T3(Fisher) 0.057 0.534 0.967 1.000 1.000 0.046 0.465 0.904 0.992 1.000
T3(Liptak) 0.059 0.563 0.974 1.000 1.000 0.048 0.460 0.899 0.993 1.000
T3(Logit) 0.058 0.561 0.975 1.000 1.000 0.048 0.467 0.907 0.994 1.000

4 5 SRS 0.052 0.256 0.642 0.913 0.988 0.045 0.180 0.385 0.600 0.800
T1 0.058 0.450 0.907 0.999 1.000 0.054 0.243 0.578 0.827 0.947
T2 0.054 0.492 0.942 0.999 1.000 0.052 0.438 0.877 0.986 0.999
T3(Fisher) 0.049 0.434 0.919 0.999 1.000 0.042 0.423 0.860 0.985 0.998
T3(Liptak) 0.050 0.482 0.938 0.999 1.000 0.046 0.425 0.851 0.976 0.998
T3(Logit) 0.049 0.477 0.937 0.999 1.000 0.046 0.434 0.863 0.981 0.999

10 SRS 0.052 0.415 0.881 0.997 1.000 0.053 0.234 0.578 0.852 0.966
T1 0.047 0.697 0.995 1.000 1.000 0.052 0.360 0.791 0.969 0.996
T2 0.049 0.769 0.999 1.000 1.000 0.051 0.655 0.986 1.000 1.000
T3(Fisher) 0.054 0.737 0.997 1.000 1.000 0.049 0.667 0.988 1.000 1.000
T3(Liptak) 0.050 0.772 0.999 1.000 1.000 0.051 0.658 0.986 1.000 1.000
T3(Logit) 0.051 0.767 0.998 1.000 1.000 0.049 0.672 0.988 1.000 1.000
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We noticed from Tables 1 and 2 that the permutation test statistics within RSS con-
trol the type I error probability at the nominal significance level (α = .05). Also, for
fixed m and h, the power levels of the permutation test statistics within RSS are strictly
higher than the power level of the permutation test statistic within SRS for all given δ.
Moreover, the power levels based on RSS increase as δ, m and h increase. Among the
proposed test statistics, T1 is the best for symmetric distributions, while for asymmet-
ric distribution T2 is the best. Among the considered combining functions, the Liptak
combining function is the best for the uniform, normal, and skew normal distributions,
while for the exponential distribution the logit combining function is the best. In addi-
tion, all considered combining functions behave the same in terms of power levels for
large sample size. Finally, under normality assumption, Table 3 reports the exact power
levels for the parametric one-sided two-sample t -test when the sample sizes nc = nt = 15.
Apparently, the power levels of the permutation test under SRS and the parametric t -
test are equivalent, while the power levels of the permutation test statistics based on RSS
are higher than in the parametric t -test.

TABLE 3
The power levels of the parametric one-sided two-sample t -test, the size of each sample is 15, and the

nominal significance level is α= 0.05.

δ 0.0 0.2 0.4 0.6 0.8
Power 0.05 0.133 0.282 0.483 0.689

5. CONCLUSION

In this paper, the permutation test is discussed within the context of RSS. Three test
statistics are suggested and compared with the usual permutation test statistic and the
classical t -test. In summary, our simulation results assert that the power levels of the per-
mutation test statistics using RSS are higher than the power levels of the classical t -test
statistics and the permutation test statistic using SRS. Subsequently, it is recommended
to apply permutation test within the framework of RSS in lieu of SRS.
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SUMMARY

In this paper, ranked set two-sample permutation test of comparing two-independent groups in
terms of some measure of location is presented. Three test statistics are proposed. The statistical
power of these new test statistics are evaluated numerically. The results are compared with the
statistical power of the usual two-sample permutation test under simple random sampling and
with the classical independent two-sample t -test.
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