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1. Introduction

Fuzzy logic is based on the possibility to assign the same unit to different groups
with a certain degree of pertinence. For example, a spring morning temperature
may be considered as “warm” at 60% and “cold” at 40% . A fuzzy approach
has been proposed in several fields of statistics, by a huge number of Authors,
including Frühwirth-Schnatter (1992), Zadeh (1995), Arnold (1996), Körner
(2000), Taheri (2003), Buckley (2005), Falsafain et al. (2008), Colubi (2009),
Falsafain, Taheri (2011). A detailed review of methods and contributions dealing
with statistics and fuzziness has been given by Viertl (2011). In this study the
main aim is to propose a fuzzy version of the indices of risk commonly used
within exposure-affection studies.

Suppose to focus the attention on the relationship between a specific fac-
tor of risk (smoke or drinking habits, environmental pollution, electromagnetic
radiations etc.) and a critical event, which could be caused by the factor it-
self. The critical event is usually the affection by a certain kind of disease
(cancer, heart attack, behavioral troubles or other medical or psychological con-
sequences). Supposing to have selected and observed a sample of n statistical
units, a simple and widely used way to represent such observations is a 2x2
contingency table, having four cells, each for any possible event (exposed and
affected, exposed but not affected, affected but not exposed, neither exposed nor
affected). Labeling “Yes” with 1 and “No” with 2, the number of occurrences
of each kind of event can be denoted with nhj(h = 1, 2; j = 1, 2). For every cell
the theoretical independence frequency can be easily computed; for the first cell
the resulting frequency is the following one:

n∗
11 =

(n11 + n12) · (n11 + n21)

n
(1)

while the other theoretical frequencies can be calculated simply by difference,
keeping the marginal frequencies as constant. Comparing the observed cell fre-
quencies with the corresponding theoretical ones, four cell components can be
defined as follows:

chj =
nhj

n∗
hj

, h = 1, 2; j = 1, 2 (2)
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TABLE 1
Contingency table with partial exposure and affection

Major Minor no Row
event event event total

Totally exposed n11 n12 n13 n10

Partially exposed n21 n22 n23 n20

Not exposed n31 n32 n33 n30

Column total n01 n02 n03 n

The main diagonal cell components c11, c22 are directly proportional to the
effect of risk factor, and if their value overtakes one there is an increased risk for
exposed people. Instead, the cell components c12, c21 are inversely proportional
to the factor effect. The most known and widely used indices of risk in such a
context are the Rate Ratio (RR) and the Odds Ratio (OR), whose statistical
properties have been thoroughly analyzed by several Authors, such as Rudas
(1998) and Agresti (2007). Both indices can be directly derived from the cell
frequencies, and they can be also written as a function of cell components:

RR =
n11/(n11 + n12)

n21/(n21 + n22)
=

c11
c21

(3)

OR =
n11/n12

n21/n22
=

c11 · c22
c12 · c21

(4)

Looking at (3) and (4), it is evident that the index RR represents the information
given by the two cells of the first column, while the index OR summarizes the
information of the whole set of four cells. A third index of risk, called Diagonal
Ratio (DR) has been proposed by Brizzi (2002, 2004), resuming the effect of the
main diagonal cells:

DR = c11 · c22 (5)

The three indices DR, RR, OR always lie on the same side with respect to the
value 1: if one of them is larger (equal, smaller) than one, all these three indices
are larger (equal, smaller) than one. In particular, if the three indices are larger
than one, the factor risk may possibly have some effects on the occurrence of
the critical event.

2. Fuzzy indices with partial exposure and affection

Suppose now that is possible to distinguish between a total exposure and a
partial exposure, which is very common to happen when considering the great
majority of factor risks (no smoker, moderate smoker and hard smoker is just a
simple example), and that there are two levels of critical event, which could be
“minor affection” and “major affection”. In this context, the contingency table
becomes a 3x3 table, like the following: Considering, under a very simplified
fuzzy hypothesis, the partially exposed individuals as “50% exposed and 50% not
exposed”, and the minor event as “50% event and 50% no event”, it is possible
to build a new 2x2 contingency table, rescaling the number of observations after
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this fuzzy assignment of categories:

n
′

11 = n11 +
1

2
n12 +

1

2
n21 +

1

4
n22 (6)

n
′

12 = n13 +
1

2
n12 +

1

2
n23 +

1

4
n22 (7)

n
′

21 = n31 +
1

2
n21 +

1

2
n32 +

1

4
n22 (8)

n
′

22 = n33 +
1

2
n23 +

1

2
n32 +

1

4
n22 (9)

Once defined this rescaled 2x2 contingency table, it is possible (and useful) to re-
calculate the above mentioned indices of risk using these “fuzzyfied” frequencies,
thus defining the new indices DR

′
, RR

′
and OR

′
. The result can be interpreted

as usual, but here partial exposures and minor events have been taken into
account, according to this fuzzy assignment of categories.

Evidently, the above described method can be generalized by assigning to
“partial exposure” a certain degree of exposure α(0 < α < 1), not necessarily
equal to 1/2, and assigning to the “minor event” its own degree of importance
β(0 < β < 1). Using these degrees of pertinence,α and β, it is possible to
calculate the following rescaled frequencies:

n
′

11 = n11 + α · n12 + β · n21 + αβ · n22 (10)

n
′

12 = n13 + α · n23 + (1− β) · n12 + α(1− β) · n22 (11)

n
′

21 = n31 + (1− α) · n21 + β · n32 + (1− α)β · n22 (12)

n
′

22 = n33 + (1− α) · n23 + (1− β) · n32 + (1− α)(1− β) · n22 (13)

As well as before, the indices of risk can be applied to the rescaled frequencies
n

′

11, n
′

12, n
′

21, n
′

22; the resulting indices DR
′
, RR

′
and OR

′
have the usual

interpretation but they include the information given by partial results. The
degrees α and β whose values have a primary role in this procedure, have to be
decided by using all the information available for the phenomenon; some expert
opinion, if available, would be a very useful tool for this kind of choice.

3. Simulation study

Evidently, when a new index is proposed, it is essential to investigate its sample
distribution under some particular hypotheses. Here, the sample distribution
of DR

′
, RR

′
and OR

′
has been simulated by the program GAUSS, for some

different sample sizes (from n = 30 to n = 150), under the simplest choice of
degrees of pertinence: α = β = 0.5. The marginal frequencies were fixed this
way:

n10 = 0.2 · n; n20 = 0.3 · n; n30 = 0.5 · n (14)

This simulation has been performed under the hypothesis that risk factor and
critical event are totally independent, and for every unit, regardless of the level
of exposure, there is a probability 0.1 for “major event”, 0.3 for “minor event”
and 0.6 for “no event”. Under the above described constraints, 200,000 samples
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TABLE 2
Sample distribution of the fuzzy risk indices DR

′
, RR

′
, OR

′
for some values of n

Sample Average Std.dev Skewness Kurtosis Median Centile Centile
Index size(n) A(n) SD(n) Sk(n) K(n) Me(n) 2.5 97.5

DR
′
’ 30 1.0092 0.3022 0.351 3.332 0.9971 0.499 1.616

50 1.0082 0.2588 0.286 3.287 0.9980 0.533 1.549
100 1.0044 0.1797 0.197 3.132 0.9990 0.668 1.373
150 1.0028 0.1455 0.147 3.069 0.9992 0.727 1.298

RR
′

30 1.0473 0.4290 1.260 6.189 0.9962 0.434 2.004
50 1.0419 0.3639 1.030 5.749 0.9974 0.469 1.880
100 1.0201 0.2423 0.610 3.901 0.9988 0.608 1.557
150 1.0129 0.1936 0.456 3.475 0.9990 0.673 1.432

OR
′

30 1.1024 0.6128 1.857 9.043 0.9947 0.349 2.564
50 1.0903 0.5156 1.533 7.989 0.9963 0.385 2.352
100 1.0431 0.3326 0.931 4.745 0.9983 0.528 1.818
150 1.0277 0.2630 0.711 3.965 0.9987 0.598 1.622

have been simulated, rescaling the frequencies and calculating the fuzzy indices
of risk for every sample. In Table 2 some essential statistical features of the re-
sulting sample distribution have been reported, for some different sample sizes.
It is quite clear that, for every index, the average tends to one as the sample
size increases, and the standard deviation is inversely proportional to n, as well
as skewness and kurtosis. The median of the sample distribution is very near to
one even for small values of n. It can be noticed that the sample distribution
of the index DR

′
is the less skewed and leptokurtic, thus being the most near

to be normal, and this can be an important property when applying procedures
of statistical inference. Using the results given in Table 2, it is even possible to
define a two-sided statistical test for the null hypothesis H0 of perfect indepen-
dence between risk factor and critical event, with a standard significance level
of 0.05. Indeed, the tail centiles (2.5 and 97.5) can be taken as limit values for
rejecting the null hypothesis.

Some analytical attempts have been done for interpolating the statistics re-
ported in Table 2 as functions of n; in particular, it seems to hold an almost
perfect linearity between n and the natural logarithm of average, standard de-
viation, skewness coefficient, kurtosis and even tail centiles, for every simulated
distribution considered (the resulting values of the Bravais-Pearson correlation
coefficient r are very close to 1). This allows to extend the results to any value
of n between 30 and 150, possibly even outside this interval. These are, specifi-
cally, the interpolating functions for average, standard deviation and tail centiles:

Average: A(n)
DR

′ → lnA(n) = 0.0146− 0.0010
√
n [r = −0.981].

DR
′ → lnA(n) = 0.0751− 0.0053

√
n [r = −0.979].

DR
′ → lnA(n) = 0.1582− 0.0111

√
n [r = −0.980].

Standard deviation: SD(n)
DR

′ → lnSD(n) = −0.5917− 0.1105
√
n [r = −0.998].

DR
′ → lnSD(n) = −0.1850− 0.1207

√
n [r = −0.997].

DR
′ → lnSD(n) = −0.2150− 0.1287

√
n [r = −0.996].
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Lower Centile (2.5): LC(n)
DR

′ → lnLC(n) = −1.0166 + 0.0588
√
n [r = +0.987].

DR
′ → lnLC(n) = −1.2090 + 0.0684

√
n [r = +0.988].

DR
′ → lnLC(n) = −1.5102 + 0.0837

√
n [r = +0.989].

Upper Centile (97.5): UC(n)
DR

′ → lnUC(n) = +0.6642− 0.0337
√
n [r = −0.993].

DR
′ → lnUC(n) = +0.9790− 0.0518

√
n [r = −0.992].

DR
′ → lnUC(n) = +1.3288− 0.0707

√
n [r = −0.992].

4. Generalization of the indices

This method, based on a fuzzy rescaling of the cell frequencies, can be general-
ized to experimental contexts with a number whatsoever of intermediate levels
of exposure between “Totally exposed” (maximum) and “Not exposed” (mini-
mum), and a number whatsoever of intermediate degrees of affection, between
“Completely affected” and “Not affected”. Suppose to have at disposal a com-
plete scale of evaluation, discrete or continuous, allowing to evaluate the level
of exposure αk (0 < αk < 1) of the observed individual (or statistical unit) uk,
and to have another scale of values for quantifying the corresponding degree of
affection βk(0 < βk < 1). After determining the level of exposure and degree of
affection of every observed unit, the sample generates a set of couples of values
(αk, βk), all belonging to the closed interval [0, 1]. It is then possible to define a
2x2 contingency table whose cell values have been rescaled by using such couples:

n
′

11 =

n∑
k=1

αk · βk (15)

n
′

12 =

n∑
k=1

αk · (1− βk) (16)

n
′

21 =

n∑
k=1

(1− αk) · βk (17)

n
′

22 =

n∑
k=1

(1− αk) · (1− βk) (18)

The corresponding theoretical cell frequencies are the following:

n∗
11 =

∑n
k=1 αk ·

∑n
k=1 βk

n
(19)

n∗
12 =

∑n
k=1 αk ·

∑n
k=1(1− βk)

n
(20)

n∗
21 =

∑n
k=1(1− αk) ·

∑n
k=1 βk

n
(21)

n∗
22 =

∑n
k=1(1− αk) ·

∑n
k=1(1− βk)

n
(22)
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TABLE 3
Physical activity and perceived health problems in people over 65

Level of Health problems
activity Minor Minor

Major (more) (one) No Total
None 452 606 234 232 1524
Low 87 353 133 118 691
Moderate 89 515 324 237 1165
Intensive 70 438 353 305 1166

698 1912 1044 892 4546

Dividing each fuzzyfied frequency n
′

hj(h = 1, 2; j = 1, 2) by the corresponding
theoretical frequency n∗

hj , as done in (2) it is possible to calculate the new cell

components c
′

hj :

c
′

hj =
n

′

hj

n∗
hj

, h = 1, 2; j = 1, 2. (23)

The fuzzy indices of risk can be then easily calculated:

DR′ = c
′

11 · c
′

22 (24)

RR′ = c
′

11/c
′

21 (25)

OR′ = (c
′

11 · c
′

22)/(c
′

12 · c
′

21) (26)

5. Application to an italian survey about self-perceived health

The fuzzy indices DR
′
, RR

′
and OR

′
have been applied to the results of an

Italian survey, described in Broccoli et al. (2005) and Cavrini et al. (2005). The
sample is composed by 4,546 people aged over 65, male and female, living in
the Italian province of Bologna. The factor of risk considered in this survey is
the lack of a regular physical activity (four levels, from “no activity” to “intense
activity”), while the effect variable is the self-assessed health status (four degrees,
from “major problems” to “no problem”). The resulting 4x4 contingency table
has been reported in Table 3: Following the generalization just described in
the previous section, it is possible to evaluate the qualitative levels of activity
and the categories of health problems, assigning the degree 1 to “no activity”
(maximum risk exposure) and to “major problem(s)” (maximum affection), and
reducing the degrees as the exposure or affection diminishes. The degrees of
exposure chosen here are: 1 (no activity), 2/3 (low activity), 1/3 (moderate), 0
(intense). On the other side, the degrees of affection have been fixed this way:
1 (one or more major problems), 1/2 (two or more minor problems), 1/4 (just
one minor problem), 0 (no perceived problem). Applying formulas (15) to (18),
Table 2 can be rescaled, getting a new 2x2 contingency table, represented in
Table 4, jointly with the corresponding independence frequencies.
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TABLE 4
Rescaled contingency table for the relationship between physical activity and perceived

health problems [corresponding theoretical independence frequencies]

Lack of Health problems
activity Yes No Total
Yes 1154 [1000] 1219 [1373] 2373
No 761 [915] 1412 [1258] 2173

1915 2631 4546

Applying (23) to the rescaled frequencies, it is possible to calculate the cell
components:

c
′

11 = 1154/1000 = 1.154; c
′

12 = 1219/1373 = 0.888;

c
′

21 = 761/915 = 0.832; c
′

22 = 1412/1258 = 1.122

The cell components indicate that there is an increased risk of health prob-
lems for people lacking of physical activity, since c

′

11 and c
′

22 are larger than one,
while the other components are smaller. Now it is possible to determine the
values of the three fuzzy indices of risk considered:

DR
′
=1.154· 1.122=1.295

RR
′
=1.154 / 0.832=1.387

OR
′
=1.154 / 0.832 = 1.387

All these results confirm that physical activity is linked with a better self-
perceived health. Evidently, it is worth to consider that self-perceived health
status does not necessarily coincide with real health status; this survey was
limited to the self-assessment.

6. Concluding remarks

The statistical procedure outlined in this paper possibly opens some new paths
in exposure-affection evaluation, but it also leaves some open questions. Surely,
a primary problem refers to the assessment of the degrees of pertinence (α and
β values), which are essential for a correct interpretation of the results. Only in
some selected situations it can be possible to define a perfectly univocal scale of
evaluation, and it is most likely to need some expert opinion. It would be useful,
when possible, to consult different experts, each proposing his proper assessment,
and to join the resulting information (some suitable methods have been propose
by Cooke (1991). The determination of the adequate sample size is another
crucial point, especially when defining a wide spectrum of modalities of exposure
and affection, since it is necessary to have a sufficient sample information for
each cell. The effect of sample size on the sample distribution of the indices
has been pointed out by sample simulation. Finally, there is an open problem
regarding the joint interpretation of the three indices DR

′
, RR

′
and OR

′
, since
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each index gives, from a proper point of view, a measure of the relationship
between risk factor and critical event. Therefore, every index is worth of a
specific interpretation, even if the Odds Ratio, whose calculation involves all the
cell components, can probably be considered, also in this fuzzy version, as the
most complete and meaningful among the indices of risk.
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Summary

In this paper a fuzzy version of three indices of risk (Diagonal Ratio, Rate ratio and
Odds ratio), usually applied to exposure-affection studies, has been proposed and de-
veloped, considering the presence of a partial level of exposure and/or affection. These
fuzzy indices are calculated after rescaling the cell frequencies according to fuzzy de-
grees of pertinence of partial modalities. A simulation study has then been performed,
under the hypothesis of absence of effect of the risk factor, and some exploratory statis-
tics have been reported, corresponding to different sample sizes; a transformed linear
interpolation method has been described for extending simulation results. The rescal-
ing method has been generalized, supposing that every observation has its proper level
of exposure and affection. Finally, the fuzzy indices have been applied to an Italian
survey, dealing with the relationship between physical activity and self-perceived health
status of more than 4,500 people over 65, living in the province of Bologna.

Keywords: Exposure-affection study; Indices of risk; Diagonal ratio, Fuzzy logic; Monte
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