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1. Introduction

In the context of equilibrium thermodynamics, physicists originally developed
the notion of entropy, which was later extended through the development of sta-
tistical mechanics. Shannon (1948) introduced a generalization of Boltzmann-
Gibbs entropy and later it was known as Shannon entropy or Shannon informa-
tion measure. Shannon entropy represents an absolute limit on the best possible
lossless compression of any communication. More generally the concept of en-
tropy is a measure of uncertainty associated with a random variable. For a
continuous random variable X with probability density function (pdf) f , the
Shannon entropy is defined by

H(X) = −
∞∫

−∞

f(x) log f(x) dx. (1)

In continuous case, H(X) is also referred to as the differential entropy. It
is known that H(X) measures the uniformity of f . When H(X1) > H(X2),
for any two random variables with pdf f1 and f2 respectively, then we conclude
that it is more difficult to predict outcomes of X1, as compared with predicting
outcomes of X2 (see, Zarezadeh and Asadi, 2010).

Sharma and Mittal (1975) introduced a two parameter entropy measure
Hα,β(X) of a random variable X with pdf f as a generalization of the Shannon
entropy measure and it is given by

Hα,β(X) =
1

1 − β


 ∞∫
−∞

{f(x)}α dx


1−β
1−α

− 1

 , (2)

with α, β > 0, α ̸= 1 ̸= β and α ̸= β. It is clear to be note that if we take limit
β → 1 in (2) then Sharma-Mittal entropy becomes Rényi entropy (1961) which
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is given by

Hα,1(X) =
1

1 − α
log

∫
{f(x)}α dx. (3)

If we take limit as β → α, in (2), then the resulting expression is Tsallis entropy
(1988) and is given by

Hα,α(X) =
1

1 − α


∞∫

−∞

{f(x)}α dx − 1

 . (4)

In the limiting case when both parameters approach 1, we recover the ordinary
Shannon entropy (1948) as given in (1).

One may observe several applications of Sharma-Mittal entropy from the
available literature. Frank and Daffertshofer (2000) have established the relation
between anomalous diffusion process and Sharma-Mittal entropy. Masi (2005)
explained how this entropy measure unifies Rényi and Tsallis entropies. For
more details on the applications of this entropy see, Aktürk et al. (2008) and
Koszto lowicz and Lewandowska (2012). Nielsen and Nock (2012) obtained a
closed form formula for the Sharma-Mittal entropy of any distribution belonging
to the exponential family of distributions.

Let {Xi, i ≥ 1}, be a sequence of independent and identically distributed
(iid) continuous random variables with common cumulative distribution function
(cdf) F (x) and pdf f(x). An observation Xj will be called an upper record value
if its value is greater than that of all previously realized observations. Thus Xj

is an upper record value if Xj > Xi for all i < j . If we construct the sequence
of upper record values of the sequence {Xi, i ≥ 1} then the nth member of this
sequence is denoted by XU(n). If we write fXU(n)

(x) to denote the pdf of XU(n),
then from Arnold et al. (1998) we have

fXU(n)
(x) =

[− log(1 − F (x))]n−1

(n− 1)!
f(x). (5)

An analogous definition can be given for lower record values as well. If we write
XL(n) to denote the nth lower record value and fXL(n)

(x) to denote its pdf then
we have

fXL(n)
(x) =

[− log(F (x))]n−1

(n− 1)!
f(x). (6)

Chandler (1952) first introduced the probabilistic study of record statistics.
Record values arise naturally in problems such as industrial stress testing, me-
teorological analysis, hydrology, sporting, stock markets, athletic events and
seismology. For more details on applications of record values see, Arnold et al.
(1998), Nevzorov (2001) and the references there in.

Anderson et al. (2004) have attributed some connection between record statis-
tics and the strain released in quakes. Majumdar and Ziff (2008) have enlisted
the detailed involvement of record theory in its multiple applications in spin
glasses, adaptive process, evolutionary models of biological population and so
on. See also Sibani and Henrik (2009) for some record dynamics arising in some
physical systems.

Recently much attention is focused with a generalized version of record values
which are called generalized(k)record values (kth records) in which if we put
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k = 1, then they became classical records. For some recent treatment on these
generalized record values see, Madadi and Tata (2014), Paul and Thomas (2013,
2015a), Minimol and Thomas (2013, 2014) and Thomas and Paul (2014).

Of late several articles have been published on various information measures
associated with record values. Baratpour et al. (2007) studied some informa-
tion properties of records based on Shannon entropy. Abbasnejad and Arghami
(2011) studied the Rényi entropy properties of records and compared the same
information with that of the iid observations. Baratpour et al. (2007), Ah-
madi and Fashandi (2012) and Paul and Thomas (2013, 2015b) have obtained
some characterization results based on Shannon, Rényi and Tsallis entropies of
record values. Shannon information in k-records was studied by Madadi and
Tata (2014).

The rest of this paper is organized as follows. In section 2 we express the
Sharma-Mittal entropy of nth upper record arising from an arbitrary distribution
in terms of Sharma-Mittal entropy of nth upper record arising from standard
exponential distribution. Section 3 provides bounds for Sharma-Mittal entropy
of records. In section 4, we characterize exponential distribution by maximizing
Sharma-Mittal entropy of record values arising from a specified class of dis-
tributions. Section 5 contains expressions for some measures associated with
Sharma-Mittal entropy on records and concomitants of records. In subsection
5.1, it is shown that the Sharma-Mittal divergence information between record
value and the parent distribution is distribution free. Section 5.2 contains the
representation of Sharma-Mittal entropy of concomitants of record values aris-
ing from Farlie-Gumbel-Morgenstern family of bivariate distributions. In section
5.3 we provide an expression for the residual Sharma-Mittal entropy of nth up-
per record arising from an arbitrary distribution in terms of the corresponding
expressions for the nth upper record arising from standard uniform distribution.

2. Sharma-Mittal Entropy of Record Values

In this section, we describe some properties of Sharma-Mittal entropy of record
values. In the following theorem, we express Sharma-Mittal entropy of nth
upper record arising from an arbitrary distribution in terms of Sharma-Mittal
entropy of nth upper record arising from standard exponential distribution. In
the theorem and in the remaining part of this paper we use the notation G(a, b)
to denote the well known gamma distribution with pdf

ga,b(x) =
ab

Γ(b)
e−axxb−1, a > 0, b > 0, x > 0.

Theorem 1. Let {Xi, i ≥ 1} be a sequence of iid continuous random vari-
ables from a distribution with cdf F (x), pdf f(x) and quantile function F−1(.).
Let {XU(n)} be the associated sequence of upper record values. Then the Sharma-
Mittal entropy of XU(n) can be expressed as

Hα,β(XU(n)) =
1

1 − β

{(
Γ((n− 1)α + 1)

{Γ(n)}α
Eg1,(n−1)α+1[{

f
(
F−1(1 − e−U )

)}α−1
]) 1−β

1−α − 1

}
, (7)
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where Ega,b
(.) denotes the expected value of Gamma distribution with parameter

a = 1 and b = (n− 1)α+ 1 and U is a random variable, with G(1, (n− 1)α+ 1)
distribution.

Proof. The Sharma-Mittal entropy of nth record value is given by

Hα, β(XU(n)) =
1

1 − β


(∫ ∞

−∞

[
{− log(1 − F (x))}n−1

(n− 1)!
f(x)

]α
dx

) 1−β
1−α

− 1

 .

On putting u = − log[1−F (x)], x =
[
F−1(1 − e−u)

]
and du = f(x)

1−F (x)dx we get

Hα,β(XU(n)) =
1

1 − β


(∫ ∞

0

e−uu(n−1)α

[(n− 1)!]α
{
f
(
F−1(1 − e−U )

)}α−1
du

) 1−β
1−α

− 1


=

1

1 − β


Γ((n− 1)α + 1)

{Γ(n)}α

∞∫
0

e−uu(n−1)α

Γ((n− 1)α + 1)

×
{
f
(
F−1(1 − e−U )

)}α−1
du
) 1−β

1−α − 1

}
(8)

=
1

1 − β

{(
Γ((n− 1)α + 1)

{Γ(n)}α
Eg1,(n−1)α+1[{

f
(
F−1(1 − e−U )

)}α−1
]) 1−β

1−α − 1

}
. (9)

Now we state the following theorem without proof as the proof is just similar to
the proof of theorem 1.

Theorem 2. Let {Xi, i ≥ 1} be a sequence of iid continuous random vari-
ables with common cdf F(x), pdf f(x) and quantile function F−1(.). Let {XL(n)}
be the associated sequence of lower record values. Then the Sharma-Mittal en-
tropy of XL(n) can be expressed as

Hα, β(XL(n)) =
1

1 − β

{(
Γ((n− 1)α + 1)

{Γ(n)}α
Eg1,(n−1)α+1[{

f{F−1(e−U )}
}α−1

]) 1−β
1−α − 1

}
, (10)

where U is a random variable with G(1, (n− 1)α + 1) distribution.

The following is a corollary to theorem 1.

Corollary 3. Let {Xi, i ≥ 1} be a sequence of iid continuous random vari-
ables arising from standard exponential distribution. Let {X∗

U(n)} be the associ-
ated sequence of upper record values. Then the Sharma-Mittal entropy of XU(n)

can be expressed as

Hα, β(X∗
U(n)) =

1

1 − β

{(
Γ((n− 1)α + 1)

{Γ(n)}αα(n−1)α+1

) 1−β
1−α

− 1

}
. (11)
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The following theorem follows from theorems 1 and 2 as a consequence of corol-
lary 3.

Theorem 4. Let {Xi, i ≥ 1} be a sequence of iid continuous random vari-
ables having a common cdf F (x), pdf f(x) and quantile function F−1(.). Let
{XU(n)} and {XL(n)} be the associated sequences of upper and lower record val-
ues respectively. Then the Sharma-Mittal entropy of XU(n) and XL(n) can be
expressed as

Hα, β(XU(n)) =

{(
Hα, β(X∗

U(n)) +
1

1 − β

)(
α(n−1)α+1Eg1,(n−1)α+1

×
[{

f
(
F−1(1 − e−U )

)}α−1
]) 1−β

1−α − 1

1 − β

}
(12)

Hα, β(XL(n)) =

{(
Hα, β(X∗

U(n)) +
1

1 − β

)(
α(n−1)α+1Eg1,(n−1)α+1

×
[{

f
(
F−1(e−U )

)}α−1
]) 1−β

1−α − 1

1 − β

}
, (13)

where X∗
U(n) denotes the nth upper record value arising from the standard expo-

nential distribution and U is a random variable, with G(1, (n− 1)α + 1) distri-
bution.

3. Bounds for Sharma-Mittal Entropy of Record Values

Baratpour et al. (2007) and Abbasnejad and Arghami (2011) have obtained
bounds for Shannon entropy of records and Rényi entropy of records respectively.
In this section, we use the relation (7) for deriving some bounds on Sharma-
Mittal entropy of upper record values.

Theorem 5. If X has pdf f(x) and the Sharma-Mittal entropy Hα,β(XU(n))
of XU(n) arising from f(x) is such that Hα,β(XU(n)) < ∞ then we have

(a) for all α > 1 and 0 < β < 1,

Hα,β(XU(n)) ≤
(
Hα,β(X∗

U(n)) + 1
1−β

) (
α(n−1)α+1BnSα(f)

) 1−β
1−α − 1

1−β ,

and

(b) for 0 < α < 1 and β > 1,

Hα,β(XU(n)) ≥
(
Hα,β(X∗

U(n)) + 1
1−β

) (
α(n−1)α+1BnSα(f)

) 1−β
1−α − 1

1−β ,

where,

(i) X∗
U(n) denotes the nth upper record value arising from the standard expo-

nential distribution

(ii) Bn = e−((n−1)α){(n−1)α}(n−1)α

Γ((n−1)α+1) and

(iii) Sα(f) =
∞∫

−∞
λF (x) {f(x)}α−1

dx, where λF (x) is the hazard function of X.
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Proof. The Sharma-Mittal entropy of nth upper record value is given by

Hα,β(XU(n)) =

(
Hα,β(X∗

U(n)) +
1

1 − β

)(
α(n−1)α+1Eg1,(n−1)α+1[{

f
(
F−1(1 − e−U )

)}α−1
]) 1−β

1−α − 1

1 − β

=

(
Hα, β(X∗

U(n)) +
1

1 − β

)α(n−1)α+1

∞∫
0

e−uu(n−1)α

Γ((n− 1)α + 1)

×
{
f
(
F−1(1 − e−U )

)}α−1
du
) 1−β

1−α − 1

1 − β
,

where g1,(n−1)α+1 is the pdf corresponding to the G(1, (n−1)α+1) distribution.
Since the mode of the distribution with pdf g1,(n−1)α+1 is mn = (n − 1)α we
have

g1,(n−1)α+1(mn) =
e−(n−1)α[(n− 1)α](n−1)α

Γ((n− 1)α + 1)
= Bn.

Hence we have g1,(n−1)α+1(u) ≤ Bn. Now for α > 1 and 0 < β < 1 the entropy
is

Hα,β(XU(n)) =

(
Hα,β(X∗

U(n)) +
1

1 − β

)α(n−1)α+1

∞∫
0

g1,(n−1)α+1(u)

×
{
f
(
F−1(1 − e−U )

)}α−1
du
) 1−β

1−α − 1

1 − β

≤
(
Hα, β(X∗

U(n)) +
1

1 − β

)

×

α(n−1)α+1Bn

∞∫
0

{
f
(
F−1(1 − e−U )

)}α−1
du


1−β
1−α

− 1

1 − β

=

(
Hα,β(X∗

U(n)) +
1

1 − β

)

×

α(n−1)α+1Bn

∞∫
−∞

λF (y) {f(y)}α−1
dy


1−β
1−α

− 1

1 − β

=

(
Hα,β(X∗

U(n)) +
1

1 − β

)(
α(n−1)α+1BnSα(f)

) 1−β
1−α − 1

1 − β
.

For 0 < α < 1 and β > 1 the proof is similar.

4. Characterization Property by the Sharma-Mittal Entropy of
Records

In this section, we derive exponential distribution as the distribution that max-
imizes the Sharma-Mittal entropy of record values under some information con-
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straints. Let C be a class of all distributions with cdf F (x) over the support set
R+ with F (0) = 0 such that

(i) λF (x, θ) = a(θ)b(x)

(ii) b(x) ≤ M, where M is a positive real constant with b(x) = B
′
(x) such that

b(x) and a(θ) are non-negative functions of x and θ receptively.

Now we prove the following theorem.

Theorem 6. Under the conditions described above Sharma-Mittal entropy
Hα, β(XU(n)) arising from the distribution F (x) is maximum in C, if and only

if F (x; θ) = 1 − e−Ma(θ)x.

Proof. Let XU(n) be the nth upper record value arising from the cdf F (x; θ)
∈ C. Then by (7) we have

Hα,β(XU(n)) =

(
Hα,β(X∗

U(n)) +
1

1 − β

)
×
(
α(n−1)α+1Eg1,(n−1)α+1

[{
f
(
F−1(1 − e−U )

)}α−1
]) 1−β

1−α

− 1

1 − β

=

(
Hα, β(X∗

U(n)) +
1

1 − β

)α(n−1)α+1

∞∫
0

e−uu(n−1)α

Γ((n− 1)α + 1)

×
{
f
(
F−1(1 − e−U )

)}α−1
du
) 1−β

1−α − 1

1 − β

=

(
Hα,β(X∗

U(n)) +
1

1 − β

)α(n−1)α+1

∞∫
0

e−uu(n−1)α

Γ((n− 1)α + 1)

×
{
a(θ)b

[
B−1

{
u

a(θ)

}]
e−a(θ)BB−1{ u

a(θ)}
}α−1

du

) 1−β
1−α

− 1

1 − β

=

(
Hα,β(X∗

U(n)) +
1

1 − β

)α(n−1)α+1

∞∫
0

e−uαu(n−1)α

Γ((n− 1)α + 1)

× [a(θ)]
α−1

bα−1

[
B−1

{
u

a(θ)

}]
du

) 1−β
1−α

− 1

1 − β
. (14)

Noting that b(x) ≤ M we have

Hα,β(XU(n)) ≤
(
Hα,β(X∗

U(n)) +
1

1 − β

)(
[a(θ)]

α−1
Mα−1α(n−1)α+1

×
∞∫
0

e−uαu(n−1)α

Γ((n− 1)α + 1)
du


1−β
1−α

− 1

1 − β

≤
(
Hα,β(X∗

U(n)) +
1

1 − β

){
[a(θ)]

α−1
Mα−1

} 1−β
1−α − 1

1 − β
. (15)
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Then clearly

Hα,β(XU(n)) ≤
1

1 − β

(
Γ((n− 1)α + 1)

{Γ(n)}αα(n−1)α+1
{[a(θ)]M}α−1

) 1−β
1−α

− 1

1 − β

≤ 1

1 − β

{(
Γ((n− 1)α + 1)

{Γ(n)}αα(n−1)α+1
{[a(θ)]M}α−1

) 1−β
1−α

− 1

}
. (16)

This proves the necessary part of the theorem.
On the other hand, suppose the nth upper record value arising from F (x; θ) =

1 − e−Ma(θ)x has maximum Sharma-Mittal entropy in class C. Then we have

Hα,β(XU(n)) =
1

1 − β

{(
Γ((n− 1)α + 1)

{Γ(n)}αα(n−1)α+1
{[a(θ)]M}α−1

) 1−β
1−α

− 1

}
. (17)

It is clear to be note that the maximum entropy of nth upper record value XU(n)

arising from any arbitrary distribution under conditions (i) and (ii) will holds the
inequality (16). As (17) is the expression in the right side of (16), it then follows
that exponential distribution attains the maximum Sharma-Mittal entropy in
the class C.

5. Some Properties of Sharma-Mittal Entropy on record Values

In this section we provide exact expressions for the Sharma-Mittal divergence
measure on record values. Further in this section we derive expressions for
Sharma-Mittal entropy of concomitants of both upper and lower record values
arising from Farlie-Gumbel-Morgenstern family. In the last part of this section
we derive an expression for residual Sharma-Mittal entropy of record values
arising from an arbitrary distribution.

5.1. Sharma-Mittal Divergence Measure on Record Values

Divergent measures deals with the distance between two probability distributions
or the dissimilarity between two distributions. In recent years these measures
play key role in theoretical and applied statistical inference and data processing
problems, such as estimation, classification, comparison etc. Sharma and Mittal
in 1977 introduced a two parameter divergent measure viz. Shrma-Mittal diver-
gence measure denoted by Dα, β(f : g), between two distributions f(x) and g(x)
and is defined by

Dα, β(f : g) =
1

β − 1


 ∞∫
−∞

(
f(x)

g(x)

)α−1

f(x)dx


1−β
1−α

− 1

 ,

∀α > 0, α ̸= 1 ̸= β. (18)

Aktürk et al. (2007) shown that, most of the widely used divergence measures
such as Rényi, Tsallis, Bhattacharya and Kullback-Liabler divergences are spe-
cial cases of Sharma-Mittal divergence measure.
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In this section we study the Sharma-Mittal divergence between the proba-
bility distribution of nth upper record value and the parent distribution from
which it arises.

Theorem 7. The Sharma-Mittal divergence between the nth upper record
and the parent distribution is given by the following representation

Dα, β(fU(n), f) =
1

β − 1

{(
Γ((n− 1)α + 1)

(Γ(n))α

) 1−β
1−α

− 1

}
. (19)

Proof. The Sharma-Mittal information between the nth upper record and
the parent distribution is given by

Dα,β(fU(n), f) =
1

β − 1


(∫ ∞

−∞

[
{− log[1 − F (x)]}n−1

]α
((n− 1)!)α

f(x)dx

) 1−β
1−α

− 1

 .

On putting u = − log[1 − F (x)], we get x =
[
F−1(1 − e−u)

]
, du = f(x)

1−F (x)dx

and hence we have

Dα, β(fU(n), f) =
1

β − 1


(∫ ∞

0

e−uu(n−1)α

((n− 1)!)α
dx

) 1−β
1−α

− 1

 (20)

=
1

β − 1

{(
Γ((n− 1)α + 1)

(Γ(n))α

) 1−β
1−α

− 1

}
.

Hence the theorem.

Note 1. The Sharma-Mittal divergence between the nth upper record and
the parent distribution can also be represented as

Dα, β(fU(n), f) = α
((n−1)α+1)(1−β)

1−α

{
1

β − 1
−Hα, β(X∗

U(n))

}
− 1

β − 1
(21)

where, X∗
U(n) denotes the nth upper record value arising from the standard ex-

ponential distribution.

Remark 8. The Sharma-Mittal information between the nth record value
XU(n) and the parent distribution as given by 19 and 21 establishes that this
information is a distribution free information measure.

5.2. Sharma-Mittal Entropy of Concomitants of Records from Farlie-Gumbel-
Morgenstern (FGM) family of Distributions

Let X and Y be two random variables with cdf’s given by FX(x) and FY (y)
respectively with corresponding pdf’s fX(x) and fY (y) and jointly distributed
with cdf F (x, y) given by, (see, Johnson et al., 2002).

F (x, y) = FX(x)FY (y) {1 + γ(1 − FX(x))(1 − FY (y))} , −1 ≤ γ ≤ 1, (22)
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where γ is known as association parameter. Then the family of distributions hav-
ing the above form of cdf’s is called Farlie-Gumbel-Morgenstern (FGM) family
of distributions. It is obvious that (22) includes the case of independence as well
when γ = 0. The joint pdf corresponding to the cdf defined in (22) is given by,

f(x, y) = fX(x)fY (y) {1 + γ(1 − 2FX(x))(1 − 2FY (y))} , −1 ≤ γ ≤ 1. (23)

For a sequence (Xi, Yi), i = 1, 2, . . . of iid random variables, if we construct
the sequence {XU(n)} of upper record values from the sequence {Xi}, then the
Y value associated with the XU(n) is called the concomitant of the nth upper
record value and is denoted by YU [n]. Similarly the concomitant of nth lower
record value XL(n) may be denoted by YL[n]. Then the pdf of YU [n] is denoted
by fYU[n]

and is given by (for details see, Arnold et al., 1998,p. 274)

fYU[n]
(y) =

∫
fY |X(y|x) fXU(n)

(x) dx = fY (y) {1 − γn(1 − 2FY (y))} , (24)

where γn = (1 − 1
2n )γ. Using (2) and (24) we can represent the Sharma-Mittal

entropy of concomitant of nth record value as follows:

Hα,β(YU [n]) =
1

1 − β

{(∫ ∞

−∞
(fY (y) {1 − γn(1 − 2FY (y))})αdy

) 1−β
1−α

− 1

}

=
1

1 − β

{(∫ ∞

−∞
{fY (y)}α ({1 − γn(1 − 2FY (y))})αdy

) 1−β
1−α

− 1

}
.

On putting FY (y) = u, y = F−1
y (u) and fy(y)dy = du, we get

Hα,β(YU [n]) =
1

1 − β


(∫ 1

0

{
fY (F−1

y (u))
}α−1 {1 − γn(1 − 2u)}α du

) 1−β
1−α

− 1


=

1

1 − β

{(
EU

[{
fY (F−1

y (U))
}α−1 {1 − γn(1 − 2U)}α

]) 1−β
1−α − 1

}
,

where U is a uniformly distributed random variable over (0, 1). Similarly the
Sharma-Mittal entropy of concomitant of nth lower record can be represented
by

Hα,β(YL[n]) =
1

1 − β

{(
EU

[{
fY (F−1

y (1 − U))
}α−1 {1 + γn(1 − 2U)}α

]) 1−β
1−α − 1

}
.

5.3. The Residual Sharma-Mittal Entropy of Record Values

Suppose X represents the life time of a unit with pdf f(.), then Hα, β(X) as
defined in (2) is useful for measuring the associated uncertainty. If a component
is known to have survived up to an age t, then information about the remaining
life time is an important characteristic required for analysis of data arising from
areas such as reliability, survival studies, economics, business etc. However for
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the analysis of uncertainty about remaining life time of the unit, we will consider
residual Sharma-Mittal entropy and is defined by

Hα, β(X; t) =
1

1 − β


 ∞∫

t

{
f(x)

F̄ (t)

}α

dx


1−β
1−α

− 1

 , (25)

where Hα, β(X; t) measures the expected uncertainty contained in the condi-
tional density of X − t given X > t and F̄ (t) = 1 − F (t). In this section we
derive a closed form representation for the residual Sharma-Mittal entropy of
record values in terms of residual Sharma-Mittal entropy of uniform distribution
over [0, 1]. The survival function of the nth upper record value can be written
as F̄XU(n)

(x), and is given by

F̄XU(n)
(x) =

n−1∑
j=0

[− log F̄ (x)]j

j!
F̄ (x) =

Γ(n;− log F̄ (x))

Γ(n)
, (26)

where Γ(a;x) denotes the incomplete Gamma function and is defined by

Γ(a;x) =

∫ ∞

x

e−uua−1du, a, x > 0.

Lemma 9. Let ZU(n) denote the nth upper record value from a sequence of
observations from U(0, 1). Then

Hα, β(ZU(n); t) =
1

1 − β

{(
Γ((n− 1)α + 1;− log(1 − t))

{Γ(n;− log(1 − t))}α

) 1−β
1−α

− 1

}
(27)

Proof. By considering (5), (25) and (26), the residual Sharma-Mittal en-
tropy of ZU(n) is given by

Hα, β(ZU(n); t) =
1

1 − β


 ∞∫

t

[− log(1 − x)](n−1)α

{Γ(n;− log(1 − t))}α
dx


1−β
1−α

− 1

 .

On putting − log(1 − x) = u, x = 1 − e−u and dx = e−udu.

Hα,β(ZU(n); t) =
1

1 − β


(∫ ∞

− log(1−t)

u(n−1)αe−u

{Γ(n;− log(1 − t))}α
du

) 1−β
1−α

− 1


=

1

1 − β

{(
Γ((n− 1)α + 1;− log(1 − t))

{Γ(n;− log(1 − t))}α

) 1−β
1−α

− 1

}
. (28)

Hence the lemma.

If we define Γt(a;λ) as the pdf of truncated Gamma distribution G(α;λ) as
below

Γt(a;λ) =
λa

Γ(a; t)
xa−1e−λx, x > t > 0,

where a > 0 and λ > 0, then we have the following theorem.
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Theorem 10. The residual Sharma-Mittal entropy of XU(n) arising from
an arbitrary distribution can be written in terms of the residual Sharma-Mittal
entropy of ZU(n) as follows

Hα,β(XU(n); t) =

{
Hα,β(ZU(n); t) +

1

1 − β

}
×
(
EV

[{
f
(
F−1(1 − e−V )

)}α−1
]) 1−β

1−α − 1

1 − β
(29)

where V ∼ Γ− log(1−F (t))((n− 1)α + 1;− log(1 − F (t))).

Proof. The residual Sharma-Mittal entropy of XU(n) is given by

Hα,β(XU(n); t) =
1

1 − β


 ∞∫

t

[− log(1 − F (x))](n−1)α

{Γ(n;− log(1 − F (t)))}α
dx


1−β
1−α

− 1

 .

On putting v = − log[1−F (x)], x =
[
F−1(1 − e−v)

]
and dv = f(x)

1−F (x)dx we get

Hα,β(XU(n); t) =
1

1 − β

{(∫ ∞

− log(1−F (t))

v(n−1)αe−v

{Γ(n;− log(1 − F (t)))}α

×
{
f
(
F−1(1 − e−v)

)}α−1
dv
) 1−β

1−α − 1

}
=

1

1 − β

{(
Γ((n− 1)α + 1;− log(1 − F (t)))

{Γ(n;− log(1 − F (t)))}α

×
∫ ∞

− log(1−F (t))

v(n−1)αe−v

Γ((n− 1)α + 1;− log(1 − F (t)))

×
{
f
(
F−1(1 − e−v)

)}α−1
dv
) 1−β

1−α − 1

}
=

{
Hα, β(ZU(n); t) +

1

1 − β

}(
EV

[{
f
(
F−1(1 − e−v)

)}α−1
]) 1−β

1−α − 1

1 − β
.

Hence the theorem.
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Summary

In this paper we derive Sharma-Mittal entropy of record values and analyse some
of its important properties. We establish some bounds for the Sharma-Mittal en-
tropy of record values. We generate a characterization result based on the properties
of Sharma-Mittal entropy of record values for exponential distribution. We further
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establish some distribution free properties of Sharma-Mittal divergence information
between distribution of a record value and the parent distribution. We extend the
concept of Sharma-Mittal entropy to the concomitants of record values arising from a
Farlie-Gumbel-Morgenstern (FGM) bivariate distribution. Also we consider residual
Sharma-Mittal Entropy and used it to describe some properties of record values.

Keywords: Record values; Sharma-Mittal entropy; Maximum entropy principle; Char-
acterization; Concomitants of record values; Residual Sharma-Mittal entropy.


