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1. Introduction

The heavy-tailed distributions have recently received a lot of attention in the
literature, their role in shaping the base of extreme value and robustness theo-
ries made them so attractive, also their appearance in several fields like finance,
communications and social sciences made them essential in dealing with arising
problems involving extreme events such as value at risk in finance.
In this paper we propose a new heavy tailed distribution which is a generalization
of the double Lomax distribution introduced by Bindu (2011) who applied it on
IQ data, the proposed distribution was characterized by Freimer and Mudholkar
(1989), the generalized double Pareto density coming from the same family of
the proposed distribution was used by Armagan and Dunson (2011) as a heavy
tailed prior in the Bayesian approach, we have derived some general properties
of the generalized double Lomax distribution and then illustrated its usefulness
empirically by fitting it to financial data from the American stock market and
comparing it with the most widely used distributions.
The remaining of this paper is organized as follows: The generalized double
Lomax distribution (GDL) is introduced in the second section along with its
cumulative distribution, quantile, some general properties and MLE of its pa-
rameters. A simulation study is conducted in the third section. GDL is fitted
for Several data sets of daily returns from the American stock market in the
fourth section and we conclude in the fifth section.

2. The GDL Distribution

A continuous random variable is said to follow Generalized Double Lomax dis-
tribution (GDL) if its probability density function is given by:

f(x) =
v

2s(1 + |x−m|
s

)v+1
; s, v > 0 , x,m ∈ R (1)
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2.1. CDF

The Cumulative distribution function is given by:
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2.2. Quantiles

The quantile function is given by:

X =

{

m+ s
[

1− e
− ln(2F )

v

]

if F ∈ [0, 1
2 ]

m+ s
[

e
− ln(2(1−F ))

v − 1
]

if F ∈ [ 12 , 1]

2.3. Central moments

The moments are given by:

E(x−m)r =

∫ ∞

−∞

(x−m)rf(x)dx =
srΓ(r + 1)Γ(v − r)[−1r + 1]

2Γ(v)
; r ∈ Z v > r (2)

2.4. Central tendency measures

The mean (with v > 1), median and mode are all same and equal to m

2.5. Variance

The variance is given by:

V ar[x] =
s22Γ(v − 2)

Γ(v)
; v > 2

2.6. Mean absolute deviations

The mean absolute deviation around both the mean and median is given by:

E(|x−m|) =

∫ ∞

−∞

|x−m|f(x;m, s, v)d(x) =
s

v − 1
v > 1
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2.7. Skewness and kurtosis

Since all odd moments are zeros the skewness is also zero (with v > 3). The
excess kurtosis is given by:

k = µ4

µ2
2 − 3 =

6Γ(v)Γ(v − 4)

Γ2(v − 2)
− 3 ; v > 4

2.8. Entropy

Shannons entropy is defined as follows:

H(x) = −

∫ ∞

−∞

ln[f(x)]f(x)dx = ln

(

2se(
v+1
v

)

v

)

(3)

2.9. Fisher Information

Let θ = (θ1, θ2, θ3) = (m, s, v) then the (i, j)th element of Fisher information
matrix is:

I(θ)i,j = −E[
d2

θiθj
ln(f(x, θ))|θ], i = 1..3 j = 1..3

And the Fisher information matrix is given by:

I(θ) =
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2.10. Maximum Likelihood Estimation

Let (x1, x2, ...., xn) be a random sample which follows the non-standardized gen-
eralized double Lomax distribution then the likelihood function is given by:

L = L(x,m, s, v) =

n
∏

i=1

fi(xi,m, s, v) =
vn

2nsn
∏n

i=1(1 +
|xi −m|

s
)v+1

LL = ln(L) = n ln (v)− n ln(s)− n ln(2) + (−v − 1)

n
∑

i=1

ln(1 +
|xi −m|

s
)

dLL

dv
= 0 ⇒

n

v
−

n
∑

i=1

ln(1 +
|xi −m|

s
) = 0

(4)

v =
n

∑n

i=1 ln(1 +
|xi −m|

s
)
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Figure 1 –: Three GDL densities with identical location and scale parameters
(m and s) but different shape parameters v.

dLL

ds
= 0 ⇒ −

n

s
− (v + 1)

n
∑

i=1

−|xi −m|

s2(1 +
|xi −m|

s
)

= 0

(5)

dLL

dm
= 0 ⇒

n
∑

i=1

sign(xi −m)

(1 +
|xi −m|

s
)

= 0

(6)

The last three equations should be solved numerically to obtain values of m, s,
and v such that the LL is maximum.

3. Simulation

The monte carlo experiment has been performed with 500 iterations and repeated
for different sample sizes from 250 to 50000 to assess the convergence of the MLEs
to the true parameters of (GDL), We consider the values (0,5,10) to be the
true parameters (m,s,v) in the random numbers generating process of inversion
method, The simulation results are displayed in Table 1, the consistency of the
MLE is well pronounced as the bias and standard deviations decrease with larger
sample sizes.
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TABLE 1
MLE for several simulated data

Sample size MLE and Standard Deviation

n m̂ ŝ v̂

250 0.0002 11.5688 22.2102
(0.0327) (15.3233) (28.2523)

500 -0.0007 8.7381 16.8797
(0.0217) (11.2936) (20.7081)

1000 0.0000 6.5309 12.8236
(0.0160) (5.3941) (9.8137)

2000 -0.0005 5.5800 11.0725
(0.0115) (2.3751) (4.3874)

4000 -0.0001 5.2417 10.4311
(0.0083) (1.1860) (2.1453)

6000 -0.0001 5.1291 10.2285
(0.0065) (0.8920) (1.6173)

8000 0.0003 5.1296 10.2399
(0.0056) (0.7285) (1.3308)

10000 -0.0002 5.0935 10.1661
(0.0051) (0.6952) (1.2704)

15000 0.0001 5.0544 10.1058
(0.0040) (0.5083) (0.9307)

25000 -0.0001 5.0188 10.0350
(0.0031) (0.3829) (0.7007)

50000 0.0000 5.0109 10.0215
(0.0022) (0.2655) (0.4833)
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4. Applications

The GDL is fitted to several data sets in this section, the data used in the
study consists of daily returns between November 2006 and 2016 for three stock
indexes from USA (SP500), (Dow 30) and (Nasdaq), and also daily returns with
maximum available period for six equities (SYNT), (MFIN), (HIIQ), (ALBO),
(ATEC) and (SIRI). The maximum likelihood estimation has been applied for
fitting (GDL) preceded by the same for t-student, Generalized error (GED) and
Generalized Hyperbolic Distributions (GHYP), Tables 2, 3, 4 and 5 displays the
MLE results of the mentioned data.

It can be seen from Table 2 that all returns data exhibits heavy tails since
the shape parameter v of t-student is very low (less than 3).

The estimated values of the shape parameter β of the generalized error dis-
tribution in Table 3 which is less than 1 for all returns data also indicate the
heavy-tailedness of the given data.

The Generalized Hyperbolic distribution of 5 parameters has been fitted (Ta-
ble 4) to account for both skewness and kurtosis present in the data with location
parameter µ, scale σ, skewness γ and two shape parameters α and λ.

Table 5 shows the estimated parameters of GDL distribution obtained by
MLE, the values of shape parameter v range between 5 and 10 which are low as
expected since the excess kurtosis of GDL is infinite at v=4 and it approaches
to 3 as v goes to infinity.

Finally, Table 6 represents comparisons between the above four fitted models
in terms of their Akaike and Bayesian information criteria (AIC and BIC), from
this table the AIC selects GDL for all data sets except for SP500 and Nasdaq,
whereas the values of BIC are minimum for all the nine variables selecting GDL
as the best model for fitting the studied data.

TABLE 2
MLE for t-student distribution

Index
n m̂ ŝ v̂

/Equity

S&P500 2516 0.0008 0.0070 2.3313
Dow30 2516 0.0006 0.0069 2.7247
Nasdaq 2516 0.0009 0.0084 2.7663
SYNT 4853 0.0000 0.0166 2.2386
MFIN 5149 -0.0003 0.0150 2.3876
HIIQ 947 -0.0018 0.0209 2.4583
ALBO 2389 -0.0019 0.0273 2.7657
ATEC 2624 -0.0010 0.0263 2.5178
SIRI 2516 -0.0002 0.5608 2.0015
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TABLE 3
MLE for Generalized error distribution

Index
n µ̂ σ̂ β̂

/Equity

S&P500 2516 0.0006 0.0127 0.8099
Dow30 2516 0.0005 0.0118 0.8027
Nasdaq 2516 0.0010 0.0137 0.9074
SYNT 4853 0.0000 0.0338 0.7135
MFIN 5149 0.0000 0.0263 0.8431
HIIQ 947 -0.0016 0.0364 0.8302
ALBO 2389 0.0000 0.0409 0.7186
ATEC 2624 0.0000 0.0426 0.8172
SIRI 2516 0.0000 0.0252 0.9149

TABLE 4
MLE for Generalized Hyperbolic distribution

Index
n λ̂ α̂ µ̂ σ̂ γ̂

/Equity

S&P500 2516 -0.25458 0.30666 0.00114 0.01294 -0.00081
Dow30 2516 -0.06510 0.31030 0.00092 0.01191 -0.00068
Nasdaq 2516 0.06764 0.37950 0.00139 0.01402 -0.00091
SYNT 4853 -0.57003 0.26337 -0.00060 0.03247 0.00159
MFIN 5149 -0.58681 0.29687 -0.00080 0.02787 0.00117
HIIQ 947 0.21687 0.25847 -0.00302 0.03671 0.00310
ALBO 2389 -0.95168 0.33099 -0.00323 0.04638 0.00243
ATEC 2624 -0.96679 0.23401 -0.00144 0.04835 0.00123
SIRI 2516 -0.7134 0.09702 -0.00041 0.0403 0.0015

TABLE 5
MLE for Generalized double Lomax distribution

Index
n m̂ ŝ v̂

/Equity

S&P500 2516 0.0007 0.0530 7.2627
Dow30 2516 0.0006 0.0500 7.3322
Nasdaq 2516 0.0010 0.0824 9.6887
SYNT 4853 0.0000 0.1167 6.7033
MFIN 5149 0.0000 0.1037 6.7835
HIIQ 947 -0.0015 0.1911 8.8233
ALBO 2389 -0.0004 0.1750 6.6390
ATEC 2624 0.0000 0.1500 5.8446
SIRI 2516 0.0000 0.0804 4.9851
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TABLE 6
Comparisons between the fitted distributions

Index Information
t-Student GED GHYP GDL

/Equity Criterion

S&P500
AIC -15514.05 -15522.46 -15542.66 -15538.08
BIC -15496.56 -15504.97 -15513.5 -15520.59

Dow30
AIC -15863.72 -15888.55 -15897.2 -15900.86
BIC -15846.23 -15871.06 -15868.04 -15883.37

Nasdaq
AIC -14943.96 -14948.17 -14966.96 -14955.06
BIC -14926.47 -14930.67 -14937.8 -14937.57

SYNT
AIC -21364.04 -21355.46 -21395.12 -21397.98
BIC -21344.58 -21336 -21362.68 -21378.52

MFIN
AIC -24041.16 -24059.04 -24065.7 -24089.06
BIC -24021.52 -24039.4 -24032.97 -24069.42

HIIQ
AIC -3811.748 -3822.544 -3823.3 -3826.806
BIC -3797.188 -3807.984 -3799.034 -3812.246

ALBO
AIC -8574.862 -8553.606 -8577.218 -8587.539
BIC -8557.526 -8536.27 -8548.325 -8570.203

ATEC
AIC -9410.516 -9435.268 -9412.692 -9443.606
BIC -9392.899 -9417.651 -9383.33 -9425.989

SIRI
AIC -10960.99 -10887.74 -10973.02 -10988.24
BIC -10943.50 -10870.25 -10943.87 -10970.74
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Figure 2 –: Kernel and fitted GDL densities of SP500.
Estimated Kernel density (solid) of the daily returns on the SP 500 index

compared with GDL density using MLE (dashed) .

Figure 3 –: CDF’s of Empirical and fitted GDL of SP500.
Empirical cumulative distribution function (solid) of the daily returns

on the SP 500 index compared with GDL cumulative distribution function
using MLE (dashed)
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Figure 4 –: GDL probability plot.
GDL probability plot of SP 500 Returns. The reference line passes through the

first and third quartiles.
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5. Conclusion

A generalization of the double Lomax distribution has been proposed and some
of its properties have been obtained, the symmetry and flexible heavy-tailedness
of this distribution make it reasonable for modeling data in which small changes
occur less frequently around origin and more likely within the heavy tails.
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Summary

A new probability distribution from the polynomial family has been proposed for mod-

eling heavy-tailed data that are continuous on the whole real line. we have derived some

general properties of this distribution and applied it on several data sets of U.S stock

market daily returns. The introduced model is symmetric and leptokurtic, it outper-

forms the peer distributions used for the given data from perspective of information

criteria suggesting a new potential candidate for modeling data exhibiting heavy tails.

Keywords: Heavy tailed distribution; Polynomial tails; Leptokurtic; Daily returns.


