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1. Introduction

In the early 2000s scholars started to discuss and criticize the use of the p-value
in applied research in fields like Psychology, Ecology, and, more in general, in
life sciences and experimental contexts. This criticism came from prestigious
journals, such as Epidemiology in 2001, Ecology in 2014, and Basic and Applied
Social Psychology in 2015. In particular, it was questioned the validity of the use
of p-values (as well as significance testing and confidence interval procedures) in
applied disciplines.

Also the American Statistical Association (ASA) took an official stance at
this regard, and in 2016 it was published a statement as the Editorial of the
journal The American Statistician (Wasserstein and Lazar, 2016). This state-
ment is composed by a main text, and opinions and observations included as
supplementary material.

As it will emerge in the following paragraphs, part of these discussions led
to a reappraisal of the very notion of p-value, as originally proposed by Fisher
starting from the 1920s, and subsequently by Neyman and E. Pearson.

This paper is organized as follows. In section 2 we will introduce and com-
ment the ASA statements on the p-value. In section 3 we will consider possible
alternatives to p-values, introducing the Bayes Factor, which is a classical in-
strument in Bayesian inference. In section 4 we will summarize a new approach
recently put forward in the literature (Bayarri et al., 2016) that seems particu-
larly interesting in solving some of the problems related to the classical notion
of p-value. Finally, section 5 is dedicated to draw some conclusions.
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2. The ASA statement

The ASA statement is made up by 6 main points, summarizing the properties
and shortcomings of the notion of p-value, which are also due to misinterpreta-
tions and misuses. Other misconceptions had been already put forward in the
literature (e.g., Goodman (2008); Greenland et al. (2016)).

The ASA proposed a very general definition of p-value, in terms of “the
probability under a specified statistical model that a statistical summary of the
data would be equal to or more extreme than its observed value”, and put forth
the following points and comments (reported below in italics, together with other
comments).

1. P-values can indicate how incompatible the data are with a specified sta-
tistical model.

A p-value provides one approach to summarizing the incompatibility between a
particular set of data and a proposed model for the data. The smaller the p-value,
the greater the statistical incompatibility of the data with the null hypothesis, if
the underlying assumptions used to calculate the p-value hold. This incompat-
ibility can be interpreted as casting doubt on or providing evidence against the
null hypothesis or the underlying assumptions.

2. P-values do not measure the probability that the studied hypothesis is
true, or the probability that the data were produced by random chance
alone.

P-value is a statement about data in relation to a specified hypothetical ex-
planation, and is not a statement about the explanation itself.

In more formal terms, point 2 implies that if p is the probability that the
test statistic D is higher or equal than d0 (the observed value) when the null
hypothesis H0 is true, then p cannot directly indicate the probability associated
with H0.

3. Scientific conclusions and business or policy decisions should not be based
only on whether a p-value passes a specific threshold.

Practices that reduce data analysis or scientific inference to mechanical “bright-
line” rules (such as “p < 0.05”) for justifying scientific claims or conclusions can
lead to erroneous beliefs and poor decision making. Pragmatic considerations of-
ten require binary, “yes-no” decisions, but this does not mean that p-values alone
can ensure that a decision is correct or incorrect.

Indeed, the very notion of p < 0.05 does not imply that the null hypothesis
is false, but that data are unusual in the light of the hypothesis and with the
assumptions underlying this hypothesis, or that data are not consistent with
these assumptions.

4. Proper inference requires full reporting and transparency.

Conducting multiple analyses of the data and reporting only those with cer-
tain p-values (typically those passing a significance threshold) renders the re-
ported p-values essentially uninterpretable. Cherrypicking promising findings,
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also known by such terms as data dredging, significance chasing, significance
questing, selective inference, and “p-hacking” leads to a spurious excess of sta-
tistically significant results in the published literature and should be vigorously
avoided.

In particular, the practice of p-hacking (Motulsky, 2015), which consists in
analyzing and re-analyzing data with the sole purpose of obtaining a signif-
icant p-value, dramatically impoverishes the statistical analysis in favor of a
mere research of significance, which is a well-established practice among scien-
tific journals that conceive statistical significance as a necessary condition for
the publication of a paper: “Obtaining a p-value that indicates that statistical
significance is often requirements for publishing in a top journal” (Vidgen and
Yasseri, 2016)

5. A p-value, or statistical significance, does not measure the size of an effect
or the importance of a result.

Smaller p-values do not necessarily imply the presence of larger or more
important effects, and larger p-values do not imply a lack of importance or even
lack of effect. Any effect, no matter how tiny, can produce a small p-value if
the sample size or measurement precision is high enough, and large effects may
produce unimpressive p-values if the sample size is small or measurements are
imprecise.

To provide an example with respect to the previous point, let’s consider a
trial in which a new treatment is compared with a placebo. This can be realized
by observing the number of successes in a sequence of independent binomial trial
for each treatment: Y0 ∼ Bin(n0, ω), and Y1 ∼ Bin(n1, ω+ θ). We consider the
null hypothesis on the shifting parameter θ: H0 : θ = θ0 and the test statistic:∣∣∣∣Y1

n1
− Y0

n0
− θ0

∣∣∣∣
measuring the distance between the difference of proportions and the corre-
sponding difference of probabilities specified by H0. For large sample sizes, a
straightforward Normal approximation allows the tail probability above to be
easily computed as

p(θ0) = 2

1− Φ

 | y1

n1
− y0

n0
− θ0|√

y0(n0−y0)
n3
0

+ y1(n1−y1)
n3
1


where Φ denotes the standard Normal cumulative distribution function, y0 and
y1 are the observed values and p(θ0) represents an asymptotic p-value for testing
H0. If the null hypothesis is θ = 0, and the observed values are y0

n0
= 0.50 and

y1

n1
= 0.64, with n0 = n1 = 100, the p-value is p(0) = 0.043. With the same null

hypothesis, if y0

n0
= 0.50 and y1

n1
= 0.5045, with n0 = n1 = 100, 000, we would

still obtain p(0) = 0.043. However, if we use as a measure of effect the difference
between proportions, it emerges a different result in the two different scenarios,
which is not highlighted by the p-values. In addition, if we employ a classical
effect size measure (Cohen, 1988):

h = |φ1 − φ2|
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with φi = 2arcsin
√
p̂i, being p̂i (i = 1, 2) the sample proportion, we would have

h1 = 0.284 in the first case, and h2 = 0.009 in the second case.

6. By itself, a p-value does not provide a good measure of evidence regarding
a model or hypothesis.

Researchers should recognize that a p-value without context or other evidence
provides limited information. For example, a p-value near 0.05 taken by itself
offers only weak evidence against the null hypothesis. Likewise, a relatively large
p-value does not imply evidence in favor of the null hypothesis; many other
hypotheses may be equally or more consistent with the observed data. For these
reasons, data analysis should not end with the calculation of a p-value when other
approaches are appropriate and feasible.

For instance, if we consider a Normal random variable with location parame-
ter θ, and we draw a random sample from this variable, obtaining a sample mean
x̂ = 2, the θ value with maximum degree of compatibility with the observed value
is in correspondence with the observed sample mean.

In the ASA statement, together with the previous six points referred to
p-values, it is also mentioned a list of possible alternative procedures, i.e., “con-
fidence, credibility, or prediction intervals; Bayesian methods; alternative mea-
sures of evidence, such as likelihood ratios or Bayes Factors and other approaches
such as decision-theoretic modeling and false discovery rates”. Other authors
have recommended “strong descriptive statistics, including effect sizes” (Trafi-
mow and Marks, 2015) or “practices, including estimation based on effect sizes,
confidence intervals, and meta-analysis” (Cumming, 2013).

3. The Bayes factor

The proposal that will be presented in section 4 keeps into account both the
frequentist p-value and the Bayesian approach. The Bayes Factor (B) represents
indeed a compromise between the frequentist and the Bayesian perspectives
(Goodman, 1999), although some authors have conceived the B in the light of
the likelihood approach (Johnson, 2016) and other researchers as a measure of
evidence in the frequentist field (Bayarri et al., 2016). Accordingly, the B can
be defined in a totally general manner as:

B =
P (Data|H0)

P (Data|H1)
(1)

In case the null hypothesis and the alternative hypothesis are both composite,
1 is a likelihood ratio in which the numerator and the denominator are weighted
by the respective prior. In case of a simple null hypothesis and composite alter-
native hypothesis, i.e.,

H0 : θ = θ0 H1 : θ ̸= θ0 (2)

the B is:

B =
L(x|θ0)
m(x)

(3)

where
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m(x) =

∫
θ ̸=θ0

L(x|θ)π(θ)dθ (4)

and π(θ) indicates the prior distribution with respect to H1. In case both the
hypotheses are simple, 3 is a likelihood ratio. In case the distribution under
study is Normal with known variance, under hypotheses 2 it can be shown that
the minimum of 3 is:

B = e−1/2z2
p/2 (5)

where zp/2 is the order p/2 quantile of the standard Normal (Goodman, 1999).
Moreover, if the p-value is proper (Bayarri et al., 2016), i.e.,:

P (p ≤ α|H0) = α

to the p-value is associated, under the null hypothesis, a continuous uniform
distribution function, defined in the interval (0, 1), so that the null hypothesis
in 2 can be substituted with H0 : φ(p) = 1 (0 < p < 1). As to the alternative
hypothesis in 2, it has been suggested to set a Beta distribution with parameter
(ω, 1) so that H1 can be written as H1 : φ(p) = ωpω−1 (0 < p < 1). Such Beta
distribution is decreasing in p in the (0, 1) interval, hence to high values of the
test statistic are associated low values of p under the alternative. So, 2 can be
written as:

H0 : p ∼ U(0, 1) H1 : p ∼ Beta(ω, 1) (0 < ω < 1)

The parameter ω can be modeled with a prior π
′
(ω), and 3 can be written as:

B =
φ(p|H0)∫ 1

0
φ(p|H1)π

′(ω)dω
=

1∫ 1

0
ωpω−1π′(ω)dω

(6)

It has been shown (Sellke et al., 2001) that 6 takes its minimum at −ep log p for
p < 1

e and for every π
′
(ω). In the light of 1 and 3 it follows:

B ≥ −ep log p (7)

It is very important to consider inequality 7 for inferential purposes: in fact, in
case there was not a suitable prior π(θ) to calculate the B, at least a minimum
bound can be given. In case this minimum is very low, this should lead to
consider the alternative hypothesis instead of the null hypothesis (the so-called
“surprise effect”, Bayarri and Berger (1999)). It is worth observing that the
minimum 7 is attained in case of bidirectional alternative hypothesis, the reader
can refer to Benjamin and Berger (2016) for a discussion of the unidirectional
case.

It has been also suggested (Colquhoun, 2014) to define 1 as:

B =
P (p ≤ α|H0)

P (p ≤ α|H1)
(8)

with

P (p ≤ α|H1) = 1− β̄ =

∫
[1− β(θ)]π(θ)dθ (9)
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TABLE 1
Values of B in the light of different p-values (Goodman, 2001).

p-value B = e−1/2z2
p/2 B = −ep log p

0.1 0.26 0.62
0.05 0.15 0.406
0.01 0.036 0.125
0.001 0.005 0.016

and, in case of a proper p-value, 8 can be written as:

B =
α

1− β̄
(10)

As we have briefly summarized, the B is not an univocal concept in statistical
theory. Applying definition 3, for instance in case of B = 0.5, one could conclude
that data provide a double support to the alternative with respect to the null
hypothesis.

In case of a Normal distribution, defining the B by 5 with p = 0.05 and
zp/2 = 1.96, it would follow that B = 0.15, a value that has been assessed
as “moderate strength of evidence” (Goodman, 1999). In Table 1 we show the
minimum value for expression 5 and 7 for different p-values. Relevant differences
in terms of minimum point did emerge; for instance, when p = 0.05, data support
the null hypothesis about three times more in case B = −ep log p than assuming
a Normal distribution. Goodman (2001) does not take a definitive position on
which minimum to adopt, however, as it will emerge, to calculate minimum 7 it
is important to consider some precautions.

4. A new proposal

Bayarri et al. (2016) recently put forth a new proposal which is worth reviewing;
in a very challenging paper the authors posit a “simple modification of standard
methods”. In a first stage, the researcher should explain the experimental design
to follow in his/her research. At this regard, the authors introduced the “pre-
experimental” rejection odds (Opre), which is given by the product of the prior
odds for the alternative hypothesis (π1) with respect to the null hypothesis (πo),
i.e., π1

π0
= 1−π0

π0
and a “pre-experimental” rejection rate (Rpre), given by the

ratio 1−β̄
α , reciprocal of 10. Thus,

Opre =
π1

π0
× 1− β̄

α
=

π1

π0
×Rpre (11)

In 11, in the authors’ terms, it is indeed identified the “odds of correct rejection
of the null hypothesis to incorrect rejection”. Thus, fixing for instance α = 0.05
and 1−β̄ = 0.80 and if the odds of the alternative compared to the null is π1

π0
= 1,

i.e., if the two a priori assumptions are equal, then Opre = 16: this value can be
interpreted stating that the correct rejection of the null hypothesis is 16 times
higher with respect to the incorrect rejection. If the odds is π1

π0
= 0.0625, i.e., a

priori the probability associated to the null hypothesis is 0.941, with power again
1 − β̄ = 0.80, it would follow Opre = 1, which means that the correct rejection
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and the incorrect rejection of the null hypothesis have the same probability,
hence giving to the alternative hypothesis a lower support than the previous
case.

It is worth observing that Opre is extremely sensitive to the values of all
the parameters involved, i.e., π1, α, 1 − β̄. At this regard, let’s consider the
two following examples. If, in the previous case (with α = 0.05 and π1

π0
= 1)

the power were 0.2, it would follow Opre = 4, hence the correct rejection rate
would lower considerably. It is not so infrequent to have a power value of 0.2, as
reported by the following authors: “in practice, many published results have a
power far less than 0.8. Values around 0.5 are common, and 0.2 is far from rare”
(Colquhoun, 2014); “we optimistically estimate the median statistical power
of studies in the neuroscience field to be between about 8% and about 31%”
(Button et al., 2013). In many research fields, such as experimental physics or
genomics, it is a common practice to give much support to the null hypothesis
and set the probability level α very low. For instance, following a case study
reported in Bayarri et al. (2016) in the field of genomics, the ratio π1

π0
was 10−5,

hence involving an “almost” certainty on the null hypothesis, the power was
1− β̄ = 0.5 and α = 5× 10−7 with an a priori support for H0: Opre = 10 . We
underline that this value would become Opre = 100 if we fix α = 5× 10−8, as in
several genomics applications. It is clear that the ratio 100:1 is a solid guarantee
to refer, at least a priori, to a new discovery.

We remark that, even though the ratio Rpre does coincide with a B, it is
employed only as a tool for a priori comparisons of rejection (correct or incorrect)
of the null hypothesis.

Finally, the ratio Rpre could be actually employed also in a frequentist sce-
nario, as suggested by the authors. In these terms, the prior π(θ) related to
1 − β̄ should be fixed to a single value θ1 belonging to the space Θ1. In this

case, given Rpre = 1−β̄
α it would be worth fixing the two probabilities so that

Rpre > 1, hence leading to a correct test (in frequentist sense) for the hypothesis
H0 : θ = θ0 vs. H ′

1 : θ = θ1 ̸= θ0.
After the “pre-experimental” phase of research, it would follow a “post-

experimental” phase in which it is introduced a “post-experimental” rejection
odds (Opost), which is given by:

Opost =
π1

π0
×Rpost (12)

where Rpost indicates the B in the form 3 of H1 with respect to H0.
The authors report the following example which is worth considering. Let’s

consider a trial involving a new HIV vaccine; to a first group of 8,197 individuals
(51 of whom HIV-positive) it is prescribed the new vaccine, whereas to a second
group of 8,198 individuals (71 of whom HIV-positive) it is prescribed a placebo.
We use the Normal approximation to test the hypothesis of absence of effect
(H0 : θ = 0) versus the unidirectional hypothesis indicating presence of the
effect (H1 : θ > 0). Fixing a priori α = 0.05 and π1

π0
= 1, it is obtained

1 − β̄ = 0.45. It follows Opre = 9, i.e., the odds for a correct rejection is nine
times higher than an incorrect reject. After the trial, the authors obtained a
z-value z = 2.06, which implies a p-value of 0.02. The authors also propose
three different values for Rpost, which are related to the prior π(θ) and that
can be set in three different ways: (i) using an empirical-based prior, it would
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TABLE 2
Values of Rpost with different alternative hypotheses.

H1 Rpost

θ = 2 0.03
θ = 3 49.40
θ = 4 24.29
θ = 5 4.45

follow Rpost = 4; (ii) using a uniform prior in the interval (0, 2.95), it would

follow Rpost = 5.63; (iii) using a prior π(θ̂), where θ̂ is the maximum likelihood
estimation, it would follow Rpost ≤ 8.35. Since π1

π0
= 1, applying 12 the three

possible values of Opost are given by: Opost = 4, Opost = 5.63, Opost ≤ 8.35, thus
disconfirming the value of Opre = 9, obtained in the “pre-experimental” phase of
research. Using the authors’ words: “the pre-experimental 9 does not accurately
represent what the data says”. As to the maximum obtained as the reciprocal
of 5 we remark that the observed value can be far from that assumed by the
alternative hypothesis. Let’s consider a Normal random variable of parameter
(θ, 1) and the following hypotheses: H0 : θ = 0 vs. H1 : θ = 1. Imagine that a
sample with n = 1 provides the value x = 2.8 thus leading to Rpost = 9.97. In
case of different alternative hypotheses, this value would also vary, as shown in
Table 2.

The maximum value Rpost = 50.40 would be achieved for θ = 2.8 and values
of the alternative hypothesis similar to the observed value lead to higher values
of Rpost.

Bayarri et al. (2016) also put forward a frequentist view of this approach,
which can be obtained using 7, from which it follows:

Rpost ≤
1

−ep log p
(13)

and in this way Rpost would depend upon the data only through the p-value.

For example, considering the values π1

π0
= 1, α = 0.05 and 1− β̄ = 0.8 fixed a

priori and the p-value p = 0.01 obtained after the realization of the experiment,
using 13 it would follow Opost ≤ 8.01, which is very different from Opre = 16.
However, in case a researcher had obtained a p-value p = 0.001, from 13 it would
have followed Rpost ≤ 53.42. Actually this inequality is not informative on the
real value of Rpost and this is a real challenge for this approach.

We remark that inequality 13 should be applied only when the conditions
required by the inequality are satisfied. In fact, if we apply 13 to the previous
example with x = 2.8 it would follow p = 0.0052 and a maximum value of 13.49.
However, as Rpost is given by:

Rpost = e−1/2θ2+2.8θ

at least the hypotheses comprised in the interval 1.18 ≤ θ ≤ 4.43 lead to maxi-
mum values higher than 13.49.
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5. Conclusion

In this paper we have summarized a recent controversy involving the concept
of p-value and its use in applied research. From the one side, several authors
recommended to adopt the p-value, but along with other procedures: “p-values,
confidence intervals, and information theoretic criteria are just different ways of
summarizing the same statistical information” (Murtaugh, 2014); “the p-value is
a very valuable tool, but when possible it should be complemented - not replaced
- by confidence intervals and effect size estimates” (Benjamini, 2016). It is also
worth reporting the comment by Greenland et al. (2016): “we have no doubt that
founders of modern statistical testing would be horrified by commons treatments
of their invention”, which highlights the misuses of p-value in applied research.
From the other side, several authors criticized the use of p-values in applied
research. For instance, Cumming (2013) asserted to “not trust any p-value” and
“whenever possible, avoid using or statistical significance or p-value”; Trafimow
and Marks (2016) claimed: “we reiterate the message from our 2015 editorial.
The ban of p values continue”.

In the second part of this paper we reviewed the proposal by Bayarri et al.
(2016), which seems very modern and promising. Indeed, this proposal adopts
instruments already known in the statistical literature and does “not require
any changes in the statistical tests that are commonly used, and would rely only
on the most basic statistical concepts and tools, such as significance thresholds,
p-values, and statistical power”.

As we have seen, the authors introduced Opre, which is an a priori odds
(see formula 11) and Opost, which is an a posteriori odds (see formula 12). The
innovation proposed by the authors is that of considering the BFin 8 in the
version 11, where the values are to be set in the pre-experimental phase. Thus,
the effect obtained after the realization of the experiment can be verified by
comparing Rpre with Rpost. Actually the framework of this proposal is Bayesian,
but, as we described, the authors also posit a frequentist interpretation.

It is worth observing that criticism on this proposal has been put forth as to
the assumptions that are necessary to attain the maximum 13, which have been
judged as “entirely implausible” (Ioannidis, 2014). In our opinion such criticism
is too extreme, but it is true that the proposal by Bayarri et al. should be further
tested on the field, so that one can verify the real possibility of applying this
framework to empirical problems.

In conclusion, in this article we revised some recent controversy on the use
of p-values in applied research, starting from the analysis of papers published
in Ecology, Epidemiology, and Basic and Applied Social Psychology. Despite of
the criticism, p-values continue to be largely employed in applied research, as
observed by Ioannidis (2014): “p-values continue to be widely used and misused,
but until now there has been a lack of consensus in the scientific community.
Many competing options exist to change the paradigm... The current status
quo is perpetuated”. Even though alternative and valid instruments have been
proposed in the statistical literature, such as those that we reviewed in this paper,
the shift from the “p-value paradigm” to other paradigms seems very slow. In our
opinion the reason from this ineptitude to change has been effectively described
by Goodman (2016): “Exactly how our scientists are supposed to do that?
Where are all the textbook examples? Where are the examples in the published
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literature?”
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Summary

In this paper we consider a controversy on the use and interpretation of p-values in
applied research. In recent years several applied and theoretical journals have started to
discuss on the appropriate use of p-values in research fields such as Psychology, Ecology,
and Medicine. First, the notion of p-value has some intrinsic limitations, which have
been already highlighted in the statistical literature, but are far from being recognized
in applied research. Second, it has emerged the so-called practice of p-hacking, which
consists in analyzing and re-analyzing data until obtaining a significant result in terms
of a p-value less than 0.05. In the light of these problems, we review two alternative
theoretical frameworks, given by the use of Bayes factor and a recent proposal that
leads to evaluate statistical hypotheses in terms of a priori and a posteriori odds ratios.

Keywords: p-value; Neyman-Pearson; Bayes factor; odds ratio; p-hacking.


