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1. Introduction

The inverse Weibull distribution (IWD) and its modified versions have been
used frequently in reliability studies due to its flexibility in handling survival
data. The distribution finds wide applications in fields of engineering and non-
engineering sciences, especially in certain areas like ecology, medicine, phar-
macy etc. The distribution was first studied by Keller et al. (1985) while
investigating failures of mechanical components subject to degradation. The
cumulative distribution function (cdf) of the IWD has the following form, for
any x > 0, α > 0 and β > 0.

F1(x) = exp[−(
α

x
)β ]. (1)

Many generalizations of the IWD have been studied by authors like Khan
and Pasha (2009), Jazi et al. (2010), Khan et al. (2008), Jing (2010), de Gusmao
et al. (2011), Shahbaz et al. (2012), Pararai et al. (2014), and Aryal and Elbatal
(2015). Jiang et al. (2001) introduced a multiplicative model of the IWD
distribution using the following cdf,

F ∗

1 (x) = exp
{

−
[

(
α1

x
)β1 + (

α2

x
)β2

]}

, (2)

where x > 0, α1 > 0, α1 > 0, β1 > 0 and β2 > 0. We call the distribution with
cdf Eq. (2) as the “inverseWeibull multiplicative model(IWMM(α1, α2, β1, β2))”.
Kumaraswamy (1980), considered a class of continuous distributions whose cdf
takes the form F2(x) = 1− (1− xa)b, for x > 0, a > 0 and b > 0.
Shahbaz et al. (2012) studied a class of distributions namely “the Kumaraswamy
inverse Weibull distribution(KIWD)” through the following cdf, for x > 0,

F3(x) = 1− [1− exp(−aβx−γ)]b, (3)
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in which a > 0, b > 0, β > 0 and γ > 0. Aryal and Elbatal (2015) obtained a
modified version of the KIWD namely “the Kumaraswamy modified inverse
Weibull distribution (KMIWD)” through the following cdf.

F4(x) = 1−
[

1− exp

(

−a
(

λ

x
+

θ

xβ

))]b

, (4)

where x > 0, β > 0, a > 0, b > 0, λ > 0 and θ > 0.

It is important to note that most of the distributions like the IWMM , the
KIWD, the KMIWD etc. have limited shapes for its hazard rate function
and does not incorporate the decreasing or non-increasing hazard rate which
is frequently observed in data sets arising from areas of medicine, engineering
etc. In order to rectify this drawback, through this paper we develop a class of
distributions which we name as “the extended Kumaraswamy inverse Weibull
distribution (EKIWD)”. Further the EKIWD contains several important
classes of distributions as cited in Table 2.1 of this paper, and as such the
proposed model supports a wide variety of shapes in terms of its probability
density function plots as well as hazard rate function plots. This flexible na-
ture of the proposed class of distributions can be expected to have extensive
utility in modelling data sets from various fields of scientific research and has
motivated us to investigate many useful properties of the distribution. We have
illustrated this merit of the EKIWD over other existing models in section 6
by considering three types of real life data sets. Out of these, the first two data
sets have increasing hazard rate while the last data set has a decreasing hazard
rate function. Moreover it can be observed from Table 8.1. that the EKIWD
shows relatively better fit to both the types of data, which is an evidence of
its flexibility in modelling data sets from various fields of medical, industrial
and scientific research. The significance of the additional parameter is tested
based on the three data sets using the likelihood-ratio test procedure and it
can be seen from Table 8.2 that the new parameter is significant. The paper
is organized as follows. In section 2, we present the definition and important
properties of the EKIWD along with a list of its important special cases. In
section 3, distribution and moments of the order statistics of EKIWD are
obtained and in section 4 certain reliability aspects are discussed. Section 5
contains the maximum likelihood estimation of the parameters of the distri-
bution along with the Fisher information matrix. In section 6 the usefulness
of the model and the significance of the additional parameter is illustrated us-
ing three real life data sets and in section 7 the asymptotic behaviour of the
EKIWD is examined with the help of simulated data sets.

Now we present the following series representations, that are needed in the
sequel.

∞
∑

k=0

∞
∑

j=0

B(j, k) =
∞
∑

k=0

k
∑

j=0

B(j, k − j) (5)

xn =
n
∑

k=0

S(n, k)x(k), (6)
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where S(n, k)is the Stirling numbers of the second kind and for any x ∈ ℜ =
(−∞,∞), x(k) = x(x − 1) . . . (x− k + 1), for k ≥ 1 with x(0) = x. Also,

(1 + x)a =

∞
∑

j=0

(a+ 1− j)j
xj

j!
, (7)

for any a ∈ ℜ and (x)k = x(x+ 1) . . . (x+ k − 1) for k ≥ 1 with (x)0 = 1. For
any c ∈ ℜ and for any jand k positive integers,

(c− j)j = (−1)j(1− c)j , (8)

(c)(j−k) =
(−1)k(c)j
(1 − c− j)k

(9)

and

(c− j)k =
(1 − c)j(c)k
(1 − c− k)j

. (10)

2. The Extended Kumaraswamy inverse Weibull distribution

In this section we present the definition of the EKIWD and discuss some of
its distributional properties.

Definition 1. A continuous random variable X is said to have an extended
Kumaraswamy inverse Weibull distribution [EKIWD(α, β, ρ, σ, δ)] if its cdf is
of the following form, for x ≥ 0, α > 0, β > 0, δ > 0, ρ ≥ 0 and σ ≥ 0 such
that (ρ, σ) 6= (0, 0).

G(x) = 1− [1− ψ(θ)]δ , (11)

where

ψ(θ) = ψ(α, β, ρ, σ) = exp
[

−
( ρ

xα
+

σ

xβ

)]

. (12)

Some important special cases of EKIWD(α, β, ρ, σ, δ) corresponding to par-
ticular choices of its parameters are listed in Table 1.

Theorem 2. For x > 0, the probability density function (pdf) g(x), the sur-
vival function S(x), and the hazard rate function h(x) of EKIWD(α, β, ρ, σ, δ)
are given by

g(x) = δ

(

αρ

xα+1
+

βσ

xβ+1

)

ψ(θ) [1− ψ(θ)]δ−1 , (13)

S(x) = [1− ψ(θ)]δ (14)

and

h(x) = δ

(

αρ

xα+1
+

βσ

xβ+1

)

ψ(θ) [1− ψ(θ)]
−1
, (15)

where ψ(θ) is as defined in Eq. (12).
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Figure 1 – Plots of pdf of EKIWD(α, β, ρ, σ, δ) for particular values of its parameters.

Figure 2 – Plots of the hazard rate function of EKIWD(α, β, ρ, σ, δ) for particular
values of its parameters.
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TABLE 1

Special Cases of EKIWD(α,β, ρ, σ, δ)

Sl. Name of the distribution belonging to EKIWD Particular choices
No: of parameters

1 Kumaraswamy modified inverse Weibull ρ = aλ, σ = aθ, α = 1
(KMIWD(a, δ, β, θ, λ)) Aryal and Elbatal (2015)

2 Proportional inverse Weibull(PIWD(α, β, γ)) ρ = γβ−α, σ = 0, δ = 1
Oluyede and Yang (2014)

3 Kumaraswamy proportional inverse Weibull ρ = γλαβ , σ = 0 or
(KPIWD(α, β, γ, λ, δ)) Oluyede and Yang (2014) ρ = 0, σ = γλαβ

4 Exponentiated modified inverted Weibull ρ = aλ, σ = aθ, α, δ = 1
(EMIWD(a, β, λ, θ)) Aryal and Elbatal (2015)

5 Inverse generalised Weibull(IGWD(δ, β, λ)) ρ = 0, σ = λβ or
Jain et al. (2014) ρ = λβ , σ = 0

6 Generalized inverse generalised Weibull ρ = 0, σ = γλβ or
(GIGWD(δ, β, γ, λ)) Jain et al. (2014) ρ = γλβ , σ = 0

7 Kumaraswamy generalised inverse Weibull ρ = 0, σ = λa−β

(KGEWD(a, β, λ, δ)) Yang (2012)
8 Kumaraswamy inverse Weibull (KIWD(a, δ, β, θ,)) ρ = 0, σ = aθ

Shahbaz et al. (2012)
9 Modified inverse Weibull (MIWD(β, ρ, λ)) α = 1, δ = 1

Khan and King (2012)
10 Generalised inverse Weibull (GIWD(α, β, δ)) ρ = 0, σ = γαβ, δ = 1

de Gusmao et al. (2011)
11 Inverse Weibull Khan et al. (2008) ρ = 0, δ = 1 or σ = 0, δ = 1
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Proof. The proof is straightforward and hence omitted.
We present the plots of pdf and hazard rate function of the EKIWD for

particular values of its parameters in Figure 1 and Figure 2 respectively.
Next, we obtain a series expansion of the cdf of EKIWD through the following
theorem.

Theorem 3. The cdf G(x) of the EKIWD(α, β, ρ, σ, δ) can be represented
as

G(x) = 1−
∞
∑

k=0

(δ + 1− k)k
(−1)k

k!
F ∗

1 (x; k), (16)

where F ∗

1 (x; k) is the cdf of the IWMM(kρ, kσ, α, β) as given in Eq. (2).

Proof. The proof follows from Eq. (7) and Eq. (11).
On differentiating Eq. (16) with respect to x, we obtain the pdf of EKIWD

through the following corollary.

Corollary 4. The pdf g(x) of EKIWD(α, β, ρ, σ, δ) is

g(x) =

∞
∑

k=0

(δ + 1− k)k
(−1)k+1

k!
f∗

1 (x; k), (17)

where f∗

1 (x; k) is the pdf of the IWMM(kρ, kσ, α, β).

Certain structural properties of the EKIWD are presented through the fol-
lowing theorems.

Theorem 5. For any α > 0, β > 0, ρ ≥ 0, σ ≥ 0 and δ > 0, the
random variable X follows EKIWD(α, β, ρ, σ, δ) with pdf Eq. (13) if and

only if Y1 =
( ρ

Xα
+

σ

Xβ

)

follows a particular form of exponentiated Weibull

distribution(EWD) by Pal et al. (2006) with pdf

g(y1) = δ exp (−y) [1− exp (−y))]δ . (18)

Proof is straight forward and hence omitted.

Theorem 6. For any α > 0, β > 0, ρ ≥ 0, σ ≥ 0 and δ > 0, the random
variable X follows EKIWD(α, β, ρ, σ, δ) with pdf Eq. (13) if and only if Y2 =
bX, for b ≥ 0 follows EKIWD(α, β, ρbα, σbβ , δ).

Proof is straight forward and hence omitted.

Theorem 7. For any c > 0, α > 0, β > 0, ρ ≥ 0, σ ≥ 0 and δ > 0, a
random variable X follows EKIWD(α, β, ρ, σ, δ) with pdf Eq. (13) if and only

if Y3 = Xc, follows EKIWD(α∗, β∗, ρ, σ, δ) with α∗ =
α

c
and β∗ =

β

c
.

Proof is straight forward and hence omitted.
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Theorem 8. If X be any continuous random variable with cdf F (x) > 0,
for every x ∈ ℜ+ = (0,∞) and if

E
{

ln
(

1− exp[−(
ρ

Xα
+

σ

Xβ
)]
)

/X > y
}

= ln

(

1− exp[−(
ρ

yα
+

σ

yβ
)]

)

− 1

δ
,

then X has the EKIWD(α, β, ρ, σ, δ).

Proof. The proof follows from Theorem 8 (Rinne (2008), p 262) with

h(x) = ln
{

1− exp[−(
ρ

xα
+

σ

xβ
)]
}

and d =
−1

δ
, since E(h(X)) =

−1

δ
, h(0) =

0 and lim
x→∞

h(x) = −∞, so that

F (x) = 1− exp

[

−1

d
h(x)

]

,

= 1−
{

1− exp [−(ρxα + σxβ)]
}δ
, (19)

for x ∈ ℜ+, which is the cdf of EKIWD.
The raw moments of the EKIWD can be calculated numerically using

statistical soft-wares like MATHEMATICA and MATHCAD. The following
theorem gives a theoretical expression for the rth raw moment of the EKIWD.

Theorem 9. The rth raw moment µrof the EKIWD(α, β, ρ, σ, δ) is given
by

µr = δ

∞
∑

k=0

k
∑

j=0

j
∑

m=0

[

σj(1− δ − j)k
(δ)j

m!

k!

(

k

j

)(

k − j + 1

m

)

× S(j,m) (αρΨrα + βσΨrβ)] , (20)

where
Ψrc = [(k − j + 1)ρ][−(c+mβ−r)α−1] Γ[(c+mβ − r)α−1] (21)

with c = α or c = β.

Proof of the theorem is given in Appendix-A.

Corollary 10. The Mean of the EKIWD(α, β, ρ, σ, δ) is given by

µ1 = δ

∞
∑

k=0

k
∑

j=0

j
∑

m=0

[

σj (1− δ − j)k
(δ)j

m!

k!

(

k

j

)(

k − j + 1

.m

)

× S(j,m) (αρΨ1α + βσΨ1β)] , (22)

where Ψrc is as defined in Eq. (21).

Corollary 11. When α = β = η, the rth raw moment of the

EKIWD(η, η, ρ, σ, δ)is

µr = δ

∞
∑

k=0

k
∑

j=0

j
∑

m=0

{

(1− δ − j)k
(δ)j

m!

k!

(

k

j

)(

k − j + 1

m

)

S(j,m)ρ[η
−1(r−mη)]−1

× σj(ρ+ σ)(k − j + 1)[η
−1(r−mη)]−1Γ[(η−1(mη − r)) − 1]

}

. (23)
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We obtain the characteristic function of the EKIWD through the following
theorem and its proof is included in Appendix - A.

Theorem 12. For t ∈ ℜ and i =
√
−1, the characteristic function of

EKIWD(α, β, ρ, σ, δ) is given by

Φx(t) = δ

∞
∑

k=0

(−1)k

k!
(δ − k)k [ξ(t;α, β, ρ, σ) + ξ(t;β, α, σ, ρ)] , (24)

where

ξ(t; a, b, c, d) =

=

∞
∑

j=0

j
∑

m=0

{

(−1)j

(j −m)! m!
(d+ kd)j−mc(it)m

Γ
[

a−1[b(j −m)−m] + 1
]

(c+ kc)[a−1[b(j−m)−m]+1]

}

.

The plots of mean, variance, skewness and kurtosis of the EKIWD(α, β, ρ, σ, δ)
for particular values of its parameters are presented in Figure 3.

Figure 3 – Mean, variance, skewness and kurtosis for the EKIWD(2, β, 2, 2, 2, δ) for
particular values of δ.

Some aspects regarding the quantiles and mode of the EKIWD are pre-
sented through the following theorems. We have computed mode for various
distinct values of α and β by using MATHEMATICA software and it is
observed that mode decreases as β increases for fixed α and vice versa.

Theorem 13. The quantile function of EKIWD(α, β, ρ, σ, δ) is the solu-
tion of the equation:

ρqβu + σqαu + qα+β
u ln

[

1− (1 − u)δ
−1
]

= 0. (25)



Extended Kumaraswamy Inverse Weibull Distribution 257

The proof immediately follows from the definition of quantile function, x =
qu = G−1(u).

Corollary 14. When α = β = η, the quantile function of

EKIWD(η, η, ρ, σ, δ)becomes

qu =

[ −(ρ+ σ)

ln[1 − (1− u)]δ−1

]η−1

. (26)

Theorem 15. The mode of EKIWD(α, β, ρ, σ, δ) is the solution of the
following equation.

α(α + 1)ρxβ + β(β + 1)σxα − 2αβρσ = 0. (27)

The proof is given in Appendix - A.

Corollary 16. When α = β = η, the mode of EKIWD(η, η, ρ, σ, δ) is

Mode =

[

2ρση

(ρ+ σ)(1 + η)

]η−1

(28)

and as η → ∞, the mode tends to unity.

3. Order Statistics and Moments of Order Statistics

Let Xi:n be the ith order statistic based on a random sample X1, X2, . . . ,
Xn of size n from EKIWD(α, β, ρ, σ, δ), with pdf g(x) = g(x; δ) as given in
Eq. (13) and let µr = µr(δ) be the rth raw moment as given in Eq. (20). In
this section we obtain the distribution and moments of the ith order statistic
of EKIWD(α, β, ρ, σ, δ).

Theorem 17. For x > 0, the pdf of the ith order statistics is given by

gi:n(x) =

i−1
∑

k=0

νn:i:k g(x; δ
∗), (29)

where

νn:i:k =

(

n
i

)(

i
k

)

(−1)k(i− k)

(n+ k + 1− i)

and δ∗ = δ(n+ k + 1− i).

Proof. Consider a random sample of size n from an EKIWD(α, β, ρ, σ, δ).
The pdf of the ith order statistic Xi:n can be defined as

gi:n(x) =
n!

(i − 1)! (n− i)!
[G(x)]i−1 [1−G(x)]n−ig(x). (30)

By using Eq. (11) and Eq. (13) we have the following from Eq. (30).
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gi:n(x) = δ
n!

(i− 1)! (n− i)!

(

αρ

xα+1
+

βσ

xβ+1

)

exp
[

−
( ρ

xα
+

σ

xβ

)]

×
{

1− exp
[

−
( ρ

xα
+

σ

xβ

)]}δ(n−i+1)−1

{

1−
[

1− exp
[

−
( ρ

xα
+

σ

xβ

)]]δ
}i−1

=

i−1
∑

k=0

(−1)k(i− k)
(

n
i

)(

i
k

)

(n+ k − i+ 1)
δ(n+ k − i+ 1)

(

αρ

xα+1
+

βσ

xβ+1

)

× exp
[

−
( ρ

xα
+

σ

xβ

)]

.
[

1− exp
[

−
( ρ

xα
+

σ

xβ

)]]δ(n+k−i+1)−1

,

by using binomial theorem. Thus, on simplification we have

gi:n(x) =
i−1
∑

k=0

(−1)k (i− k)
(

n
i

)(

i
k

)

(n+ k − i+ 1)
g(x; δ∗),

which reduces to Eq. (29).
As a consequence of Theorem 17, we have the following corollaries.

Corollary 18. For x > 0, the pdf of the largest order statistic Xn:n =
max( X1, X2, . . ., Xn) is

gn:n(x) =
n−1
∑

k=0

(

n

k + 1

)

(−1)kg(x; δ∗1), (31)

where δ∗1 = δ(k + 1).

Corollary 19. For x > 0, the pdf of the smallest order statistic X1:n =
min( X1, X2, . . ., Xn) is

g1:n(x) = g(x; δ∗2), (32)

where δ∗2 = nδ.

Corollary 20. For x > 0, pdf of the median Xm+1:n, where n=2m+1, is
the following; in which δ∗3 = δ(m+ k + 1).

g(m+1:n)(x) =

m
∑

k=0

(−1)k(2m+ 1)
(

2m
m

)(

m
k

)

m+ k + 1
g(x; δ∗3). (33)

The following theorem gives a characterization of the EKIWD based on order
statistics.

Theorem 21. The smallest order statistic X1:n follows the
EKIWD(α, β, ρ, σ, nδ) if and only if X1 follows EKIWD(α, β, ρ, σ, δ).
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Proof. By definition, the cdf of X1:n is

G1:n(x) = 1− [1−G(x)]n, (34)

where G(x) is as defined in Eq. (11).
IfX1 followsEKIWD(α, β, ρ, σ, δ), clearlyX1:n followsEKIWD(α, β, ρ, σ, nδ)
by Corollary 3.1.2.
Conversely, if X1:n has the distribution EKIWD(α, β, ρ, σ, nδ), its cdf is

G1:n(x) = 1−
{

1− exp
[

−
( ρ

xα
+

σ

xβ

)]}nδ

. (35)

Now, the proof follows immediately from the comparison of Eq. (34) and
Eq. (35).

Theorem 22. For r > 0, the rth raw moment of the ith order statistic Xi:n

of EKIWD(α, β, ρ, σ, δ) is the following, in which, νn:i:k and δ∗ are as defined
in Eq. (29).

µr:i:n(x) =
i−1
∑

k=0

νn:i:k µr(δ
∗). (36)

Proof follows from Theorems 9 and 17.

4. Certain Reliability Concepts

Stress-strength reliability measure is defined as the probability that a randomly
selected device functions successfully. In this scenario, if X1 is a random vari-
able representing the stress that a device is subjected to, and X2 is the strength
that varies from device to device, then the stress-strength reliability measure
is defined as R = P (X1 < X2). Through the following theorem, we obtain an
expression for R in case of EKIWD(α, β, ρ, σ, δ) for known values of α, β, ρ
and σ.

Theorem 23. For i=1,2, let Xi be a random variable following

EKIWD(α, β, ρ, σ, δi) with pdf g(.) as defined in Eq. (13). Then R =
δ1

δ1 + δ2

Proof.

R =

∞
∫

0





x2
∫

0

g1(x1)dx1



 g2(x2)dx2

=1−
∞
∫

0

δ2

(

αρ

xα+1
2

+
βσ

xβ+1
2

)

. exp

(

ρ

xα2
+

σ

xβ2

)

.

[

1− exp

(

ρ

xα2
+

σ

xβ2

)]δ1+δ2−1

dx2 =
δ1

δ1 + δ2
,

(37)
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which shows that R depends only on the values of the parameter δ.
An expression for the mean residual life function of EKIWD(α, β, ρ, σ, δ)

is obtained through the following theorem.

Theorem 24. The mean residual life function M(.) of the
EKIWD(α, β, ρ, σ, δ) is the following for x > 0 and iα+ β(j − i) 6= 1.

M(x) =

1

S(x)

∞
∑

k=0

k
∑

j=0

j
∑

i=0

{

(−1)k(1 + δ + j − k)(k−j)(k − j)jρiσ(j−i)x1−iα−β(j−i)

i! (j − i)! (k − j)![iα+ β(j − i)− 1]

}

.

(38)

Proof. By definition,

M(x) =
1

S(x)

∫

∞

x

S(t)dt (39)

=
1

S(x)

∞
∑

k=0

∞
∑

j=0

[

(−1)j+k (1 + δ − k)kk
j

k! j!

∫

∞

x

( ρ

tα
+
σ

tβ

)j

dt

]

,

in the light of Eq. (7) and Eq. (14). Now applying binomial theorem to get

M(x) =

1

S(x)

∞
∑

k=0

∞
∑

j=0

j
∑

i=0

[

(−1)j+k
(1 + δ − k)kk

j
(

j
i

)

ρiσ(j−i)

k! j!

∫

∞

x

t−(iα+β(j−i))dt

]

,

which on simplification gives Eq. (38), by Eq. (5).

5. Estimation

Here we discuss the maximum likelihood estimation of the parameters of

EKIWD(α, β, ρ, σ, δ)

based on a random sample X1, X2, . . . , Xn taken from the distribution. The
log-likelihood function for the vector of parameters Θ = (α, β, ρ, σ, δ) is given
by

L(Θ) =

n
∑

i=1

{

ln(δ) + ln

(

αρ

xα+1
i

+
βσ

xβ+1
i

)

−
(

ρ

xαi
+

σ

xβi

)

+(δ − 1) ln

[

1− exp

(

ρ

xαi
+

σ

xβi

)]}

. (40)

On differentiating the log-likelihood function Eq. (40) with respect to the
parameters α, β, ρ, σ and δ respectively, and equating to zero, we obtain the
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following likelihood equations.

n
∑

i=1

[

ui ln(xi) +
ui
ǫi
(1− α lnxi)−

δ − 1

wi − 1
ui ln (xi)

]

= 0, (41)

n
∑

i=1

[

vi ln(xi) +
vi
ǫi
(1− β ln(xi))−

δ − 1

wi − 1
vi ln (xi)

]

= 0, (42)

n
∑

i=1

[

ρ−1ui

(

δ − 1

wi − 1
+
α

ǫi
− 1

)]

= 0, (43)

n
∑

i=1

[

σ−1vi

(

δ − 1

wi − 1
+
β

ǫi
− 1

)]

= 0 (44)

and
n
∑

i=1

{

δ−1 + ln [1− exp (−wi)]
}

= 0, (45)

in which ui = ρx−α
i , vi = σx−β

i , wi = exp(ui + vi) and ǫi = αui + βvi .
The observed Fisher information matrix is derived as IΘ = ((Iij)), where the
elements of IΘ are as obtained in Appendix B.

6. Applications

In this section the utility of EKIWD(α, β, ρ, σ, δ) is demonstrated with the
help of the following three data sets, of which the second data set is of biomed-
ical origin while the other two are from industrial background. The first two
data sets are examples of data with increasing hazard rate function and the
third data set has a decreasing hazard rate function.
Data Set 1: Data on testing the tensile fatigue characterizations of a polyester
/viscose yarn to study the problem of warp breakage during weaving, consisting
of 100 yarn samples at 2.3 percent strain level . This data was initially studied
by Quesenberry and Kent (1982).
Data Set 2: Data on survival of 40 patients suffering from Lukemmia, from
the Ministry of Health Hospitals in Saudi Arabia taken from Abouammoh et al.
(1994).
Data Set 3: Data on the failure times of the air conditioning system of
an airplane consisting of 30 observations considered by Linhart and Zucchini
(1986). We have obtained maximum likelihood estimators of the parameters of
EKIWD(α, β, ρ, σ, δ) by using R software in the case of the above three data
sets. For comparison we have considered the fitting of the following models -
the KMIWD, the IWMM , the EMIWD, the MIWD and the GIWD. We
have computed certain information criteria such as AIC (Akaike information
criterion), BIC (Bayean information criterion), AICC (second order Akaike in-
formation criterion) and CAIC (consistent Akaike information criterion) in case
of each fitted models. The numerical results obtained are presented in Table
2. Further, for graphical comparison, we have obtained cumulative probability
plots and the Weibull probability plots corresponding to each model as given
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in Figure 4 and Figure 5. From Table 2, Figure 4 and Figure 5, it can be
observed that EKIWD(α, β, ρ, σ, δ) gives relatively better fit to each of the
data sets compared to existing models in both the cases of increasing and de-
creasing hazard rate. To test the significance of the additional parameter α
of EKIWD(α, β, ρ, σ, δ), we have adopted the following generalised likelihood
ratio test procedure. The hypothesis to be tested is H0 : α = 1 against the
alternative hypothesis H1 : α 6= 1. The test statistic used is

Λ = −2 {L0(Θ)− L1(Θ)} ,

where Θ = (α, β, ρ, σ, δ), L0(Θ) is the log-likelihood function of the EKIWD
under the null hypothesis H0 and L1(Θ) is the log-likelihood function of the
EKIWD under the alternative hypothesis H1. Adopting the above test pro-
cedure, we have tested the significance of the parameter α in case of Data sets
1, 2 and 3 and the numerical results thus obtained is listed in Table 3. From
Table 3 it can be seen that the parameter α is significant in case of all three
data sets and hence the EKIWD(α, β, ρ, σ, δ) can be considered as a better
model compared to other sub-models considered in the paper.

7. Simulation

For examining the performance of the maximum likelihood estimators (MLEs)
of the parameters of EKIWD(α, β, ρ, σ, δ), we carry out a simulation study by
generating observations with the help of MATHEMATICA for the following
two sets of parameters: (1) α = 2, β = 2, ρ = 0.1, σ = 0.1, δ = 2 and (2)
α = 0.1, β = 0.1, ρ = 0.1, σ = 0.1, δ = 2.5, corresponding to the two distinct
shapes of the hazard rate function as seen in Figure 2. According to Efron
(1991), a maximum of 200 bootstrap samples are required to obtain a good
estimate of the variance of an estimator. Hence we have considered 200 boot-
strap samples of sizes 25, 100, 500 and 1000 for comparing the performances of
the different MLEs mainly with respect to their mean values and mean squared
errors (MSEs). The average bias of estimates and average MSEs over 200 repli-
cations are calculated for different cases and the results are given in Table 4
and Table 5. From the results obtained, it can be observed that as sample
size increases mean value of the estimators approach the original value of the
respective parameters and MSEs of the estimators are in decreasing order.



Extended Kumaraswamy Inverse Weibull Distribution 263

Figure 4 – Cumulative probability plots of EKIWD, KMIWD, EMIWD, MIWD,
GIWD and IWMM corresponding to data sets 1, 2 and 3.
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Figure 5 – Weibull probability plots of EKIWD, KMIWD, EMIWD, MIWD,
GIWD and IWMM corresponding to data sets 1, 2 and 3.
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TABLE 2
Fitting EKIWD(α,β, ρ, σ, δ) to data sets 1, 2 and 3.

Model
Estimates of the parameters Log-

AIC BIC AICc CAIClikelihood

Data Set 1

EKIWD α= 0.2206 β=0.2206 ρ= 21.875 σ= 1.213 δ=1005 -619.74 1249.48 1262.5 1250.12 1267.5
KMIWD a=170.13 b=1.78 λ= 1.015 θ=7.368 α= 6.122 -640.35 1290.7 1303.73 1291.34 1308.72
GIWD β=47.052 λ=3.447 θ=1.098 -645.751 1297.5 1305.32 1250.12 1308.32
MIWD α= 1.103 θ=150.491 λ= 23.868 -652.5 1325.21 169.55 1316.17 1330.21
EMIWD α= 19.109 θ=40.343 λ= 1.535 a=78.578 -653.293 1315 1326.80 1317.76 1331.80
IWMM α1= 59.877 α2=62.215 β1= 1.098 β2=1.098 -655.75 1319.50 1329.92 1319.92 1333.92

Data Set 2

EKIWD α= 0.221 β= 0.221 ρ= 33.570 σ=14.211 δ= 20050 -299.46 608.91 617.36 610.68 622.36
KMIWD a=35.506 b=2.71 λ= 37.579 θ= 2.213 α= 3.35 -312.51 635.01 645.23 636.19 650.23
GIWD β=21.264 λ= 52.901 θ=1.199 -317.08 640.17 645.23 640.83 648.23
MIWD α= 1.066 θ= 959.85 λ= 65.961 -317.74 641.49 646.56 642.16 649.56
EMIWD α= 1.1621 θ= 41.634 λ= 8.677 a=30.282 -317.53 643.06 649.81 644.2 653.81
IWMM α1= 379.965 α2=378.874 β1= 1.198 β2=1.198 -317.08 642.17 643.31 648.92 652.92

Data Set 3

EKIWD α= 0.19465 β= 0.19291 ρ= 7.66120 σ= 1.13121 δ=63.069 -151.37 312.74 319.75 315.24 324.75
KMIWD a=1.19974 b=0.62404 λ= 6.255 θ=0.7694 α= 204.193 -154.8 319.6 326.61 322.1 331.61
GIWD β=8.213 λ=0.7974 θ=4.398 0.7239 -155.2 316.22 320.42 317.14 323.42
MIWD α= 70.701 θ=0.8335 λ=10.870 -158.04 322.08 326.28 323.00 329.28
EMIWD α= 258.403 θ=0.0536 λ=0.6353 a=17.168 -156.86 321.72 323.32 327.32 331.32
IWMM α1= 7.387 α2=3.978 β1= 0.723 β2=0.723 -155.11 318.23 323.83 319.83 327.83
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TABLE 3
The values of log-likelihood functions and p values corresponding to the data set for

testing H0 : α = 1 against the alternative hypothesis H1 : α 6= 1.

Source Likelihood value Likelihood value Λ df P value
under H1(EKIWD) (under H0)

Data Set 1 -619.74 -640.355 40.23 1 ¡ 0.0001
Data Set 2 -299.46 -312.51 26.10 1 ¡ 0.0001
Data Set 3 –151.37 -154.8 6.86 1 0.0088

TABLE 4
Average bias and mean squared errors(within brackets) of MLEs of the parameters
of EKIWD based on simulated data sets corresponding to α = 2, β = 2, ρ = 0.1,

σ = 0.1, δ = 2

Sample Size α β ρ σ δ

25 -0.5030 0.0948 -0.0127 -0.2281 -5.0194
(2.53E-03) (8.987E-05) (1.625E-06) (5.201E-04) (2.519E-01)

100 -0.3122 0.0808 -0.0126 0.0188 -0.5137
(9.747-04) (6.525E-05) (1.576E-06) (3.542E-06) (2.638E-03)

500 -0.2714 0.0211 0.0023 0.0166 -0.3997
(7.365E-04) (4.440E-06) (5.111E-08) (2.7701E-06) (1.5974E-03)

1000 0.0560 0.0201 -0.0007 -0.0075 -0.1095
(3.140E-05) (4.0523E-06) (5.269E-09) (5.628E-07) (1.1986E-04)

TABLE 5
Average bias and mean squared errors(within brackets) of MLEs of the parameters
of EKIWD based on simulated data sets corresponding to α = 0.1, β = 0.1, ρ = 0.1,

σ = 0.1, δ = 2.5

Sample Size α β ρ σ δ

25 0.0000 -0.0060 -0.0060 0.3845 -0.2148
(0) (4.568E-06) (4.509E-06) (1.847E-02) (5.769E-03)

100 0.0000 0.0019 0.0008 -0.2049 0.0723
(0) (2.467E-07 (4.422E-08) (2.798E-03) (3.486E-03)

500 0.0000 0.0004 0.0004 -0.0678 0.0631
(0) (1.025E-08) (1.146E-08) (3.280E-04) (2.846E-04)

1000 0.0000 0.0002 0.0001 -0.0376 0.0358
(0) (6.550E-08) (6.326E-08) (1.764E-04) (1.604E-04)
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Appendix A

1. Proof of Theorem 7: The rth raw moment of the EKIWD(α, β, ρ, σ, δ)
is

µr = δ

∞
∫

0

xr
(

αρ

xα+1
+

βσ

xβ+1

)

exp
[

−
( ρ

xα
+

σ

xβ

)]

.
[

1− exp
[

−
( ρ

xα
+

σ

xβ

)]]δ−1

= δ
∞
∑

k=0

(−1)k(δ − k)k
k!







αρ

∞
∫

0

exp
[

−(k + 1)
( ρ

xα
+

σ

xβ

)]

xr−α−1dx

+βσ

∞
∫

0

exp
[

−(k + 1)
( ρ

xα
+

σ

xβ

)]

xr−β−1dx







,

by Eq. (7). Now on expanding the exponential term exp
[

−(k + 1)
σ

xβ

]

in

the above integrals , we obtain

µr = δ
∞
∑

k=0

∞
∑

j=0

(−1)j+k(δ − k)k(k + 1)jσj

k!j!







αρ

∞
∫

0

exp
[

−(k + 1)
( ρ

xα

)]

xr−α−jβ−1dx

+βσ

∞
∫

0

exp
[

−(k + 1)
( ρ

xα

)]

xr−β−jβ−1dx







= δ

∞
∑

k=0

k
∑

j=0

j
∑

m=0

(−1)km!

k!

(

k

j

)(

k − j + 1

m

)

(δ − k + j)(k−j)S(j,m)σj (αρIrα + βσIrβ) ,

by using Eq. (5) and Eq. (6), in which for c = α or c = β,

Irc =

∞
∫

0

[

exp−((k − j + 1)ρ)x−α)
]

xr−c−jβ−1dx.

By applying results Eq. (8) to Eq. (10), it can be further simplified into

µr = δ

∞
∑

k=0

k
∑

j=0

j
∑

m=0

[

σj (1− δ − j)k
(δ)j

m!

k!

(

k

j

)(

k − j + 1

m

)

S(j,m) (αρIrα + βσIrβ)

]

.

Evaluating the integrals Irα and Irβ, using the substitution u = x−α, we
obtain Eq. (20).

2. Proof of Theorem 8: By definition, the characteristic function of EKIWD(α, β, ρ, σ, δ)
is

Φx(t) = δ

∞
∑

k=0

(−1)k(δ − k)k
k!

∞
∫

0

{

exp (itx)

(

αρ

xα+1
+

βσ

xβ+1

)

× exp
[

−(k + 1)
( ρ

xα
+

σ

xβ

)]}

dx,
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in the light of Eq. (7) and Eq. (13). Splitting the integrals, we have,

Φx(t) = δ

∞
∑

k=0

(−1)k(δ − k)k
k!

[J(α, β, ρ, σ) + J(β, α, σ, ρ)] ,

where

J(α, β, γ, δ) =

∞
∫

0

αγx−(α+1) exp (itx) exp
[

−(k + 1)γx−α
]

exp
[

−(k + 1)δx−β
]

dx. (A.1)

On expanding the exponential term exp
[

−(k + 1)δx−β
]

in (A.1) and integrat-
ing by using the substitution u = x−α we get Eq. (24) in the light of Eq. (5).

3. Proof of Theorem 9: The pdf of EKIWD(α, β, ρ, σ, δ) can be writ-
ten as

g(x) = h(x) exp [−H(x)], (A.2)
where H(x) is the cumulative hazard rate function. Modes of
EKIWD(α, β, ρ, σ, δ) are those values of x satisfying f

′

(x) = 0. That is,
[

h
′

(x) − h2(x)
]

exp (−H(x)) = 0, which gives the following in the light of (A.2).

g(x)

[

h
′

(x)

h(x)
− h(x)

]

= 0, which implies

[

h
′

(x)

h(x)
− h(x)

]

= 0. (A.3)

On differentiating h(x) given in Eq. (Eq. (15) with respect to x, we obtain

rh
′

(x) = δh(x)

[

αρ

xα+1
+

βσ

xβ+1
− α(α+ 1)ρxβ−1 + β(β)σxα−1

αρxβ + βσxα
+
h(x)

δ

]

. (A.4)

Now (A.3) and (A.4) together gives

αρ

xα+1
+

βσ

xβ+1
− α(α+ 1)ρxβ−1 + β(β)σxα−1

αρxβ + βσxα
= 0,

which on simplification reduces to Eq. (27).

Appendix B

Elements of the Information Matrix.

The elements of the information matrix I(Θ) are as given below, in which ui,
vi, wi and ǫi (for i = 1, 2, . . . , n ) are as defined in Eq. (41).
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I11 =
d2 ln(L(Θ))

dα2
=

n
∑

i=1

{

−ui(ln(xi))2 +
(δ − 1)ui(ln(xi))

2[wi(1 − ui)− 1]

(wi − 1)2

+
ui
ǫ2i

[βvi ln(xi)(α ln(xi)− 2)− ui]

}

,

I12 =
d2 ln(L(Θ))

dαdβ
=

n
∑

i=1

uivi

[

(1 − δ)(ln(xi))
2wi

(wi − 1)2
− (1− α ln(xi))(1 − β ln(xi))

ǫ2i

]

,

I13 =
d2 ln(L(Θ))

dαdρ
=

n
∑

i=1

{

ui ln(xi)

ρ
+
ui(δ − 1) ln(xi)

ρ (wi − 1)
2 [uiwi − wi + 1]

+
ui
ρǫi

[

1− α

(

ln(xi) +
ui(1− α ln(xi))

ǫi

)]}

,

I14 =
d2 ln(L(Θ))

dαdσ
=

n
∑

i=1

[

(δ − 1)uivi(ln(xi))wi

σ(wi − 1)2
+
βuivi(α ln(xi)− 1)

σǫ2i

]

,

I15 =
d2 ln(L(Θ))

dαdδ
=

n
∑

i=1

ui ln(xi)

1− wi

,

I22 =
d2 ln(L(Θ))

dβ2
=

n
∑

i=1

{

−vi(ln(xi))2 +
(δ − 1)vi(ln(xi))

2[wi(1− vi)− 1]

(wi − 1)2

+
vi
ǫ2i

[αui ln(xi)(β ln(xi)− 2)− vi]

}

,

I23 =
d2 ln(L(Θ))

dβdρ
=

n
∑

i=1

[

(δ − 1)uivi(ln(xi))wi

ρ(wi − 1)2
+
αuivi(β ln(xi)− 1)

ρǫ2i

]

,

I24 =
d2 ln(L(Θ))

dβdσ
=

n
∑

i=1

{

vi ln(xi)

σ
+
vi(δ − 1) ln(xi)

σ (wi − 1)
2 [viwi − wi + 1]

+
vi
σǫi

[

1− β

(

ln(xi) +
vi(1 − β ln(xi))

ǫi

)]}

,

I25 =
d2 ln(L(Θ))

dβdδ
=

n
∑

i=1

vi ln(xi)

1− wi

,

I33 =
d2 ln(L(Θ))

dρ2
=

n
∑

i=1

u2i
ρ2

[

wi(1− δ)

(wi − 1)2
− α2

ǫ2i

]

,
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I34 =
d2 ln(L(Θ))

dρdσ
=

n
∑

i=1

uivi
ρσ

[

wi(1− δ)

(wi − 1)2
− αβ

ǫ2i

]

,

I44 =
d2 ln(L(Θ))

dσ2
=

n
∑

i=1

v2i
σ2

[

wi(1− δ)

(wi − 1)2
− β2

ǫ2i

]

,

I45 = r
d2 ln(L(Θ))

dσdδ
=

n
∑

i=1

vi
σ(wi − 1)

,

and

I55 =
d2 ln(L(Θ))

dδ2
=
−n
δ2
.
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Summary

Here we consider an extended version of the Kumaraswamy modified inverse Weibull
distribution and investigate some of its theoretical properties through deriving expres-
sions for cumulative distribution function, reliability function, hazard rate function,
quantile function, characteristic function, raw moments, median, mode etc. Certain
reliability measures of the distribution are obtained along with the distribution and
moments of its order statistics. The maximum likelihood estimation of the parame-
ters of the distribution is discussed and certain real life data applications are given for
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illustrating the usefulness of the model. Further, with the help of simulated data sets
it is shown that the average bias and mean square errors of the maximum likelihood
estimators are in decreasing order as the sample size increases.

Keywords: Maximum likelihood estimation, Model selection, Moments, Order Statis-
tics, Simulation


