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SENSITIVITY ESTIMATION FOR PERSONAL INTERVIEW 
SURVEY QUESTIONS 

S. Gupta, J. Shabbir 

1. INTRODUCTION

Social desirability response bias (SDB) is a major problem in survey research 
involving sensitive questions (Edwards, 1957). Randomized response technique 
(RRT), pioneered by (Warner, 1965), is one of several methods to partially over-
come SDB. Other methods involve use of bogus pipeline (BPL) (Jones and Sigall, 
1971) and a SDB scale (Crowne and Marlowe, 1960). A comparison of BPL and 
RRT methods is shown by (Gupta and Thornton, 2003) using survey data. They 
show that a “Partial” RRT is at least as effective in circumventing SDB as BPL, 
while being more friendly and portable. Since SDB is directly correlated with the 
sensitivity level of the question, it is important to assess the sensitivity level since 
this allows one to assign better trained interviewers to collect information on mo-
re sensitive questions. 

Researchers in this area have generally focused on the estimation of the mean 
of the sensitive variable. However, in a survey, different questions may have dif-
ferent sensitivity levels and it may be useful to quantify this sensitivity. (Gupta et
al., 2002) gave a method to estimate sensitivity levels using an optional RRT me-
thod. However, their method does not allow simultaneous estimation of the me-
an of the sensitive variable. In this paper we consider an optional RRT method 
that allows simultaneous estimation of both the average response and the sensi-
tivity level of a sensitive question. The method follows the approach of (Green-
berg et al., 1969). 

Two of the background models are discussed in section 2. The proposed me-
thod and its properties are discussed in section 3. In section 4 we present a nu-
merical example to illustrate the estimation procedure and report some simulation 
results. We also discuss the performance of the proposed method in comparison 
with two other models – the “Full” RRT model of (Eichhorn and Hayre, 1983) 
and the “Partial” RRT model of (Mangat and Singh, 1990). Both of these models 
are considered in (Gupta and Thornton, 2003). We make some concluding re-
marks in section 5. 
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2. THE “FULL” AND “PARTIAL” RRT MODELS

In the “Full” RRT model of (Eichhorn and Hayre, 1983), each subject pro-
vides a scrambled response. This model works as follows. Let X  be a sensitive 

quantitative variable of interest with an unknown mean of xµ  and an unknown 

variance of 2
x . Let there be a deck of flash cards that follows a probability dis-

tribution S, independent of X , with a known mean of ( )s  and a known 

variance of 2
s . The respondent is asked to draw a card from the deck and is re-

quested to report the scrambled response which is the product of the true re-
sponse and the number on the card, and divided by the mean of the scrambling 
variable. Therefore, the reported response Y  is given by  

XS
Y . (1) 

The expected response, therefore, is given by E( ) XY . This suggests estimat-

ing x  by ˆ
x , where ˆ

x Y . The variance of ˆ
x  is given by 

ˆVar( ) Var( )x Y
Var( )Y

n

2
2 2 2

2
( )s

x x x

n
. (2) 

In the “Partial” RRT model, a predetermined proportion of randomly selected 
respondents are asked to provide a true response and the rest provide a scram-
bled response, just as in the “Full” RRT model. (Mangat and Singh, 1990) gave 
their “Partial” RRT model for the binary response (Yes/No) case, but it can be 
easily adapted for the quantitative response case also. If T is the proportion of 
respondents providing a true response, then the reported response is given by 

with probability

with probability (1 )

X T

Y XS
T

The expected response is given by

(1 )
E( ) x s

x

T
Y T ,

x  since s .

This suggests estimating x  by ˆ
x Y . Obviously ˆ

x  is an unbiased estimator 

of x  since Y  is an unbiased estimator of E( )Y . The variance of this estimator 

is given by 
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ˆVar( ) Var( )x Y
Var( )Y

n

2
2 2 2

2
(1 ) ( )s

x x xT

n
. (3) 

It can be checked easily that the variance in (3) is smaller than the variance of the 
estimator in (2). 

3. PROPOSED METHOD

We propose here an “Optional” RRT model where a respondent is allowed to 
report a true response or a scrambled response depending on whether the re-
spondent finds the question sensitive or not. Let X  be the sensitive variable with 

mean x  and variance 2
x . Let W (0 1)W  be the sensitivity level of the un-

derlying sensitive question in the sense that a proportion W  of the respondents 
in a survey consider the question sensitive enough not to feel comfortable an-
swering the question in a face-to-face interview. Unlike the “Full” and the “Par-

tial” RRT models, we would like to estimate both x  and W .

Analogous to (Greenberg et al., 1969), we use two independent samples (with 

replacement) of respondents. Let the sample sizes be 1n  and 2n . Respondents in 
thi  sample ( 1, 2)i are given a randomization device iR ( 1, 2)i , where iR

follows some probability distribution with a mean of i  and variance 2
i . A re-

spondent in sample i ( 1, 2)i  is instructed to answer truthfully if he/she con-

siders the question non-sensitive and to report a scrambled response using ran-

domization device iR  if he/she considers the question sensitive. The inter- 

viewer will not know which way the question is answered. The reported response 

iZ ( 1, 2)i  from ith sample will be 

with probability (1 )

with probability ,
i

i

X W
Z

S X W

where X  is the true response and iS  is scrambling variable value from device 

iR . We assume X , 1S  and 2S  are mutually independent. 

Note that for 1, 2i , we have 

E( ) E( )(1 ) E( )i iZ X W S X W

          (1 )x i xW W

          [ (1 )]i xW W . (4) 

Eliminating W  from the two equations in (4), we get 
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1 2 2 1

2 1

E( )( 1) E( )( 1)
,

( )
x

Z Z
 (5) 

requiring that the two randomization devices be such that 1 2 . This suggests 

estimating x  by 

1 2 2 1

2 1

ˆ
( 1) ( 1)

( )
x

Z Z
, (6) 

where iZ ( 1, 2)i  is the sample mean of reported responses from sample i .

Theorem 1. ˆ
x  is an unbiased estimator of x

Proof: From (5), and from the fact that E( ) E( )i iZ Z  ( 1, 2)i , we get 

1 2 2 1 1 2 2 1

2 1 2 1

ˆ
( 1) ( 1) E( )( 1) E( )( 1)

E( ) E
( ) ( )

x x

Z Z Z Z
. (7) 

Theorem 2. The minimum variance of ˆ
x  is

1 2

2
min 2 12

2 1

ˆ
1

Var( ) [( 1) ( 1) ]
( )

x z z
n

. (8) 

Proof: From (6), we have  

1 2 2 1

2 1

ˆ
( 1) ( 1)

Var( ) Var
( )

x

Z Z

              1 2

2 2

2 2
2 12

1 22 1

1
( 1) ( 1)

( )

z z

n n
. (9) 

Differentiating (9) w. r. t 1n  and 2n , we get 

1

1 2

2

1

2 1

( 1)

( 1) ( 1)

z

z z

n
n , (10) 

2

1 2

1

2

2 1

( 1)

( 1) ( 1)

z

z z

n
n , (11) 
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where 
1Z  and 

2Z  are standard deviations of 1Z  and 2Z  respectively and can 

be estimated through pilot study or past experience etc. The result follows on 

substituting (10) and (11) in (9). In order to estimate W , we eliminate x  from 

equation (4) and get 

2 1

1 2 2 1

E( ) E( )

E( )( 1) E( )( 1)

Z Z
W

Z Z
. (12) 

This suggests estimating W  by 

2 1

1 2 2 1

ˆ
( 1) ( 1)

Z Z
W

Z Z
. (13) 

Theorem 3. The bias of Ŵ is given by 

1 2

2 2

2 2 1 12 2
1 22 1

1ˆBias( ) ( 1){1 ( 1)} ( 1){1 ( 1)}
( )

z z

x

W W W
n n

.

Proof: Define 

1 2 1T̂ Z Z

and

2 1 2 2 1
ˆ ( 1) ( 1)T Z Z ,

then 

1 2
ˆ ˆˆ /W T T . (14) 

Now using second order Taylor’s expansion around 1 2( , )T T  (Mood et al., 1974, 

p. 181), we have 

1 1 1
1 2 22 3

2 2 22

ˆ 1 ˆ ˆ ˆˆE( ) E Cov( , ) Var( )
ˆ
T T T

W T T T
T T TT

. (15) 

Note that 

1 2 1 1
ˆE( ) ( ) xT W T  (say), (16) 

2 2 1 2
ˆE( ) ( ) xT T  (say), (17) 
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1 2

2 2

1

1 2

ˆVar( )
z z

T
n n

, (18) 

1 2

2 2

2 2
2 2 1

1 2

ˆVar( ) ( 1) ( 1)
z z

T
n n

, (19) 

1 2 2 1 1 2 2 1
ˆ ˆCov( , ) Cov[( ), { ( 1) ( 1)}]T T Z Z Z Z

              2 1

2 2

1 2

1 2

( 1) ( 1) ,
z z

n n
 (20) 

where 

1

2 2 2 2 2 2 2
1 1 1( ){1 ( )} { (1 )}z x x xW W W W

and

2

2 2 2 2 2 2 2
2 2 2( ){1 ( )} { (1 )}z x x xW W W W .

The result follows on substituting (19) and (20) in (15).  

Theorem 4. The minimum variance of Ŵ  is given by 

1 2

2
min 2 12 2

2 1

1ˆVar( ) [ {1 ( 1)} {1 ( 1)}]
( )

z z

x

W W W
n

. (21) 

Proof: From (Mood et al., (1974, p. 181), we have 

2

1 1 1 2 1 2
2 2

2 1 21 22

ˆ ˆ ˆ ˆ ˆVar( ) Var( ) 2Cov( , )ˆVar( ) Var
ˆ
T T T T T T

W
T T TT TT

. (22) 

Substituting (18) through (20) in (22), we get 

1 2

2 2
2 2

2 12 2
1 22 1

1ˆVar( ) 1 ( 1) 1 ( 1)
( )

z z

x

W W W
n n

. (23) 

Differentiating (23) w. r. t 1n  and 2n , we get 
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1

1 2

2

1

2 1

{1 ( 1)}
,

{1 ( 1)} {1 ( 1)}

z

z z

n W
n

W W
 (24) 

2

1 2

1

2

2 1

{1 ( 1)}
.

{1 ( 1)} {1 ( 1)}

z

z z

n W
n

W W
 (25) 

Substituting (24) and (25) in (23), we get minimum variance of Ŵ  as given in 
(21). We evaluate the performance of the proposed estimator in the next section. 

4. A NUMERICAL EXAMPLE AND SIMULATIONS

In this section, we first explain the estimation process with the help of a nu-
merical example, and then present a more extensive simulation study. The first 
step in the estimation process is to split the total sample size optimally in two 

sub-samples so as to minimize ˆ ˆVar( ) Var( )x W  instead of minimizing just 

ˆVar( )x  or just ˆVar( )W . This is because we are estimating both the sensitive 

variable mean x  and its sensitivity level W . The optimum values of 1 2( , )n n

for minimizing ˆ ˆVar( ) Var( )x W can easily be calculated just as in equations 

(10), (11), (24) and (25). These optimum values are given by 

1

2 1

2 2 2
2 2

1
2 2 2 2 2 2

1 1 2 2

[ ( 1) {1 ( 1)} ]

[ ( 1) {1 ( 1)} ] [ ( 1) {1 ( 1)} ]

x z

x z x z

n W
n

W W
,

(26)

2

2 1

2 2 2
1 1

2
2 2 2 2 2 2

1 1 2 2

[ ( 1) {1 ( 1)} ]

[ ( 1) {1 ( 1)} ] [ ( 1) {1 ( 1)} ]

x z

x z x z

n W
n

W W
.

(27)

The unknown parameters ( ,x W ) involved in these equations can be estimated 

from a pilot study. 
For the numerical example, we assume that the variable of interest has a Pois-

son distribution with a mean of 4.0 and a sensitivity level of .30. We plan to use a 
total sample size of 500. For the pilot study, we take two independent samples of 
size 100 each according to the “Optional” RRT model proposed here. The 
scrambling variable for the first sample is taken to be a Poisson with a mean of 

1 2 . The scrambling variable for the second sample is taken to be a Poisson 

with a mean of 2 5.  In keeping with the chosen sensitivity level of .30, ran-
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domly selected 30% observations in each sample are scrambled and the rest are 

left as it is. The sample means and variances (
1 2

2 2
1 2, , ,Z ZZ Z ) for these two sam-

ples are 5.50, 9.4520, 17.9776 and 165.6369 respectively. With these sample statis-

tics, estimated values for x  and W  (from (6) and (13)) are 3.8833 and .315 re-

spectively. Using these preliminary estimates and 500n  in (26) and (27), opti-

mum values for the two sample sizes are 1 279n and 2 221n .

We now select two independent samples of size 279 and 221 respectively from 
a Poisson distribution with a mean of 4.0. In both samples, 30% of the observa-
tions are scrambled using the scrambling variables chosen in the pilot study. The 

sample statistics (
1 2

2 2
1 2, , ,Z ZZ Z ) for these two samples are 5.032, 8.167, 20.25 

and 92.2176 respectively. Using these in (6) and (13), we get 3.987x  and 

.262W  as our final estimates. The estimated variances of these estimates, cal-

culated from (9) and (23), are given by ( ) .1754xVar  and ( ) .0068Var W .

For the more extensive simulation study we assume that the sensitive variable 

has a Poisson distribution with 4x . The scrambling variables are also as-

sumed to have Poisson distributions. All simulation results are averaged over 
1000 replications. Table 1 below gives estimated values for various parameters. 

Note that estimation of ,x W  and ˆVar( )x  is very good even for small sample 

size but estimation of ˆVar( )W  can be off for small samples when sensitivity level 

is high. This is because we have used unconstrained estimation of W  in the sense 
that the estimated value is allowed to go outside the usual range (0, 1). Some of 
the simulation runs do give such values when sample size is small and sensitivity 

level is high. Corresponding estimates are denoted as “**”. Also, ˆVar( )W  in (23) 

is accurate only up to second order approximation. Again, this approximation 
may not be very good for small samples. Both of these problems disappear when 
sample size is large. 

Results in Table 2 below compare variances of various estimators for various 

choices of W  and optimum values of sample sizes 1 2( , )n n . Note that the vari-

ances for “Optional” RRT method introduced here are higher as compared to the 
“Full” and the “Partial” RRT methods referenced in Section 1. However, this is a 

bit misleading because we estimate both x  and W  from the same sample un-

like the “Partial” RRT method where W  is assumed to be known, and unlike the 
“Full” RRT method where all subjects provide a scrambled response. 
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TABLE 1 

Simulation results for 1 24, 2, 5x  and various choices of W . Sample sizes 1 2( , )n n

are chosen optimally according to (26) and (27) 

n W Ŵ ˆ
X x

ˆ ˆV( ) ˆV( )x
ˆV̂( )W ˆV( )W

100 0.1 0.118 3.997 0.446 0.439 0.021 0.014 
 0.2 0.241 3.986 0.741 0.731 0.061 0.029 
 0.3 0.378 3.979 1.022 0.998 0.157 0.050 
 0.4 ** 3.970 1.243 1.240 ** 0.076 
 0.5 ** 3.977 1.428 1.457 ** 0.106 
 0.6 ** 3.983 1.615 1.649 ** 0.141 
 0.7 ** 3.971 1.841 1.816 ** 0.180 
 0.8 ** 3.966 2.028 1.957 ** 0.223 
 0.9 ** 3.960 2.042 2.071 ** 0.269 
 1.0 ** 3.966 2.082 2.158 ** 0.316 

500 0.1 0.102 4.004 0.089 0.088 0.003 0.003 
 0.2 0.204 4.005 0.144 0.146 0.007 0.006 
 0.3 0.307 4.006 0.210 0.200 0.011 0.010 
 0.4 0.412 4.010 0.272 0.248 0.018 0.015 
 0.5 0.512 4.015 0.283 0.291 0.023 0.021 
 0.6 0.615 4.024 0.329 0.330 0.032 0.028 
 0.7 0.721 4.023 0.377 0.363 0.042 0.036 
 0.8 0.827 4.017 0.394 0.391 0.054 0.045 
 0.9 0.931 4.021 0.442 0.414 0.073 0.054 
 1.0 1.036 4.015 0.448 0.432 0.082 0.063 

1000 0.1 0.102 4.000 0.043 0.044 0.001 0.001 
 0.2 0.203 4.000 0.078 0.073 0.003 0.003 
 0.3 0.303 4.006 0.102 0.100 0.005 0.005 
 0.4 0.408 4.005 0.135 0.124 0.009 0.008 
 0.5 0.509 4.006 0.156 0.146 0.012 0.011 
 0.6 0.609 4.011 0.158 0.165 0.014 0.014 
 0.7 0.712 4.011 0.186 0.182 0.019 0.018 
 0.8 0.815 4.008 0.203 0.196 0.025 0.022 
 0.9 0.917 4.003 0.210 0.207 0.029 0.027 
 1.0 1.018 3.998 0.201 0.216 0.031 0.032 

**: Unreliable estimates since many simulation runs produced a Ŵ  outside the range (0, 1) 

TABLE 2 

Values of ˆVar( )x for “Full”, “Partial” and “Optional” RRT models for 1 24, 2, 5x  and 

various choices of W . Sample sizes 1 2( , )n n  are chosen optimally according to (26) and (27) 

n  “Full” RRT W  “Partial” RRT “Optional” RRT 

 100 0.140 0.1 0.050 0.439 
   0.2 0.060 0.731 
   0.3 0.070 0.998 
   0.4 0.080 1.240 
   0.5 0.090 1.457 
   0.6 0.100 1.649 
   0.7 0.110 1.816 
   0.8 0.120 1.957 
   0.9 0.130 2.071 
   1.0 0.140 2.158 

 500 0.028 0.1 0.010 0.088 
   0.2 0.012 0.146 
   0.3 0.014 0.200 
   0.4 0.016 0.248 
   0.5 0.018 0.291 
   0.6 0.020 0.330 
   0.7 0.022 0.363 
   0.8 0.024 0.391 
   0.9 0.026 0.414 
   1.0 0.028 0.432 

 1000 0.014 0.1 0.005 0.044 
   0.2 0.006 0.073 
   0.3 0.007 0.100 
   0.4 0.008 0.124 
   0.5 0.009 0.146 
   0.6 0.010 0.165 
   0.7 0.011 0.182 
   0.8 0.012 0.192 
   0.9 0.013 0.207 
   1.0 0.014 0.216 
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5. CONCLUDING REMARKS

The proposed method has the advantage of being able to simultaneously esti-
mate both the average response and the sensitivity level of sensitive survey ques-
tions. While comparing this method with other methods, one should keep in 

mind that the proposed estimator estimates two parameters ( , )x W  unlike the 

“Full” and the “Partial” RRT methods that estimate only x , and hence have 

smaller variance. Also, due to unconstrained estimation of W , some of the esti-
mated values may fall outside the range (0, 1), but this problem disappears for 
larger samples. Estimation of the sensitivity level allows one to assign interview-
ers with specific skills to conduct surveys involving more sensitive questions. 
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RIASSUNTO

Stima sensitiva delle domande personali in un’intervista 

In questo lavoro viene proposto un metodo RRT per stimare il livello di sensitività in 
domande personali a risposta quantitativa. Il metodo è simile a quello usato da Gupta et al.
(2002) ma permette di stimare sia il livello medio della risposta sia il livello di sensitività 
della domanda. Il procedimento di stima viene valutato sia sulla base di una applicazione 
numerica sia attraverso uno studio di simulazione. Viene inoltre confrontata la perfor-
mance dello stimatore con quella dei modelli a risposta randomizzata “completa” e “par-
ziale”.

SUMMARY

Sensitivity estimation for personal interview survey questions 

This paper proposes an optional RRT method to estimate the sensitivity level of per-
sonal interview survey questions with quantitative response. The method is similar to the 
one used by Gupta et al. (2002) but estimates both the average response level and the sen-
sitivity level of the question. A numerical example explains the estimation process and a 
simulation study assesses the effectiveness of the proposed method. We also compare the 
performance of the proposed estimator with the “Full” and “Partial” randomized re-
sponse models. 


