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1. Introduction

In many applied sciences such as economics, engineering and finance, amongst
others, modeling and analyzing lifetime data are crucial. Life time distributions
are used to describe, statistically the length of the life of a system. Lindley (1958)
introduced a one-parameter life time distribution, known as Lindley distribution
(1LD), whose probability density function (pdf) is obtained by mixing the den-
sities exponential (θ) and gamma (2, θ) with mixing probabilities θ

1+θ and 1
1+θ

respectively. Thus the pdf of one parameter Lindley distribution is given by

f1(x) =
θ2

1 + θ
(1 + x)e−θx; x > 0, θ > 0. (1)

The corresponding cumulative distribution function (cdf) F1(x) has been obtained
by using the definition,

F1(x) =

x∫
0

f(t)dt

=

x∫
0

θ2

1 + θ
(1 + t)e−θtdt.

Simple algebra provides

F1(x) = 1− θ + 1 + θx

1 + θ
e−θx; x > 0, θ > 0, (2)

where θ is the scale parameter. Although the Lindley distribution has drawn
little attention in the statistical literature over the great popularity of the well
known exponential distribution. Recently some researchers have proposed new
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classes of distributions based on modification of the one parameter Lindley distri-
bution. Ghitany et al. (2008) have studied various properties of this distribution
and showed that (1) provides a better model for some applications than the ex-
ponential distribution. Mazucheli and Achcar (2011) discussed the applications
of Lindley distribution to competing risks life time data. A discrete version of
this distribution has been suggested by Deniz and Ojeda (2011) having its ap-
plications in count data related to insurance. Shanker et al. (2013) introduced a
two-parameter Lindley distribution (2LD) for modeling waiting and survival times
data. Its pdf is given by

f2(x) =
θ2

θ + α
(1 + αx)e−θx; x > 0, θ > 0, α > −θ. (3)

Zakerzadeh and Dolati (2009) obtained a generalized Lindley distribution (GLD)
and discussed various properties having the following pdf

f3(x) =
θ2(θx)α−1(α+ γx)

(γ + θ)Γ(α+ 1)
e−θx; x > 0, α, θ, γ > 0. (4)

Bakouch et al. (2012) obtained an extended Lindley distribution and discussed
some of its properties and applications. Elbatal et al. (2013) introduced a new
generalized Lindley distribution (NGLD) with pdf

f4(x) =
1

1 + θ

[
θα+1xα−1

Γ(α)
+

θβxβ−1

Γ(β)

]
e−θx; x > 0, θ, α > 0. (5)

Ghitany et al. (2012) introduced Marshall-Olkin extended Lindley distribution and
investigate its structural properties. Hassan (2014) have proposed new classes of
distributions by modifying the Lindley distribution and studied several properties
of his proposed generalization. Liyanage and Pararai (2014) introduced a gen-
eralized power Lindley distribution and explore its properties. Bhati and Malik
(2015) developed Lindley exponential distribution. Ashour and Eltehiwy (2015)
developed exponentiated power Lindley distribution and narrated its necessity
compared with other models. Application of the weighted form of new Lindley
distribution are discussed by Asgharzadeh et al. (2016) . Bayes estimates of Lind-
ley distribution under linux loss function are extensively discussed by Metiri et al.
(2016). Shanker et al. (2016) discussed the role of Quasi Lindley distribution for
modeling lifetime data. Nedjar and Zeghdoudi (2016) introduced gamma Lindley
distribution and documented the superiority of their model based on simulation
study. Kadilar and Cakmakyapan (2016) introduced in the literature, the Lindley
family of distributions.

To increase the flexibility for modeling purposes it will be useful to consider
further extensions of this distribution. Hence in this paper our aim is to intro-
duce an extended version of the new generalized Lindley distribution and called it
as extended new generalized Lindley distribution (ENGLD), which offers a more
flexible distribution for modeling lifetime data.

The content of the paper is organized as follows. In section 2 , we introduce
an extended new generalized Lindley distribution and discussed some of its ba-
sic properties. Certain important properties of extended new generalized Lindley
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distribution, such as reliability measures, inequality measures and expression for
Rényi entropy are discussed in section 3 . The estimation of parameters of ex-
tended new generalized Lindley distribution using method of moments and method
of maximum likelihood are given in section 4 . A real life situation is considered
here for comparing the performance of extended new generalized Lindley distri-
bution with other Lindley forms of distributions.

2. Extended new generalized Lindley distribution

In this section, we present definition and some important properties of the ex-
tended new generalized Lindley distribution. Here after we use the short form
ENGLD for extended new generalized Lindley distribution.

DEFINITION 1. A continuous random variable X is said to follow ENGLD
if its pdf f(x) has the following form.

f(x) =

n∑
i=1

pigi(x), (6)

where

gi(x) =
θαi

Γ(αi)
xαi−1e−θx,

for θ > 0, αi > 0 for i = 1, 2, · · · , n. We define the mixing weights pi such that

pi = 1
(n−1)

βγ
θ+βγ for i = 2, 3, · · · , n and p1 = 1 −

n∑
i=2

pi, β > 0, γ > 0. For the

three component mixture ENGLD, p1 = θ
θ+βγ , p2 = βγ

2(θ+βγ) and p3 = βγ
2(θ+βγ) .

Figure 1, represents the graph of the pdf of ENGLD for different set of parameters.

Figure 1 – Plots of the pdf of ENGLD for different values of parameters.

Special cases:
(1). If n = 2, α1 = 1, α2 = 2, β = 1 and γ = 1, then ENGLD becomes one
parameter Lindley distribution (1LD).
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(2). If n = 2, α1 = 1, α2 = 2 and γ = 1, then ENGLD becomes the two parameter
Lindley distribution (2LD).
(3). If n = 2, α1 = α, α2 = α+1 and β = 1, then ENGLD becomes the generalized
Lindley distribution (GLD).
(4). If n = 2, α1 = α, α2 = δ β = 1 and γ = 1 then ENGLD becomes the new
generalized Lindley distribution (NGLD).

RESULT 1. The cdf of ENGLD is related to the cdf of its components by the
relation,

F (x) =
n∑

i=1

pi
Γ(αi)

γ(αi, θx). (7)

Proof. We have

F (x) =

x∫
0

f(t)dt

=

x∫
0

n∑
i=1

pi
θαi

Γ(αi)
tαi−1e−θtdt

=
n∑

i=1

pi
Γ(αi)

x∫
0

θ(tθ)αi−1e−θtdt

=

n∑
i=1

pi
Γ(αi)

γ(αi, θx),

where

γ(s, t) =

t∫
0

xs−1e−xdx,

is called lower incomplete gamma function.

REMARK 1. The survival function of ENGLD is obtained as

F (x) = 1− F (x) = 1−
n∑

i=1

pi
Γ(αi)

γ(αi, θx). (8)

RESULT 2. The density function of ENGLD is log-concave.

Proof. To prove the density function of ENGLD is log-concave, it is enough
to prove that, second derivative of the logarithm of density function is negative.
The first and second derivative of logf(x) are obtained as,

d

dx
logf(x) =

1

x

n∑
i=1

(αi − 1)− nθ
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and
d2

dx2
logf(x) = − 1

x2

n∑
i=1

(αi − 1).

Evidently d2

dx2 logf(x) ≤ 0. This proves the result.
Since the density function is log-concave the MLE of the parameters of ENGLD
are unique under the parametric restrictions (see, Puig (2003) ).

RESULT 3. The moment generating function (mgf) of ENGLD is related to
the mgf of its components by the relation,

MX(t) =
n∑

i=1

pi

(
1− t

θ

)−αi

Proof. By definition of moment generating function, we have

MX(t) = E(etX)

=

∞∫
0

etxf(x)dx

=

∞∫
0

etx
n∑

i=1

pi
θαi

Γ(αi)
xαi−1e−θxdx

=
n∑

i=1

pi
θαi

Γ(αi)

∞∫
0

e−(θ−t)xxαi−1dx

=

n∑
i=1

pi

(
1− t

θ

)−αi

.

RESULT 4. The rth raw moment about origin of ENGLD is related to the rth

raw moment about origin of its components by the relation,

µ′
r =

n∑
i=1

pi
Γ(αi)

Γ(αi + r)

θr
; r = 1, 2, · · · (9)

Proof. By definition, we have

µ′
r =

n∑
i=1

pi
θαi

Γ(αi)

∞∫
0

xαi+r−1e−θxdx

=

n∑
i=1

pi
θαi

Γ(αi)

Γ(αi + r)

θαi+r

=
n∑

i=1

pi
Γ(αi)

Γ(αi + r)

θr
.
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Taking r = 1, 2, 3 and 4 in (9), the first four raw moments about origin are obtained
as,

µ′
1 =

n∑
i=1

piαi

θ
, µ′

2 =
n∑

i=1

pi(αi + 1)αi

θ2
, µ′

3 =
n∑

i=1

pi(αi + 2)(αi + 1)αi

θ3

and

µ′
4 =

n∑
i=1

pi(αi + 3)(αi + 2)(αi + 1)αi

θ4
.

Also,

Variance, µ2 =

n∑
i=1

piα
2
i +

(
1−

n∑
i=1

piαi

)
n∑

i=1

piαi

θ2
.

REMARK 2. The ENGLD is over dispersed for all values of 0 < θ < 1,
αi > 0 for i = 1, 2, · · · , n and 0 < pi < 1 irrespective of values of β and γ. That
is, the variance of the distribution is greater than the mean. In all other cases
mean is greater than the variance, that is the distribution is under dispersed.

3. Certain measures of reliability, inequality and entropy

In this section we derived expressions for certain reliability measures such as hazard
rate function, reversed hazard rate function, cumulative hazard rate function,
vitality function and mean residual life function associated to ENGLD. Also we
have obtained certain inequality measures.

3.1. Hazard rate function

The hazard rate provides the trajectory of risk and is widely used in lifetime stud-
ies. Let X denote a lifetime variable with distribution function F (x) = Pr(X ≤ x)

and probability density function f(x) = dF (x)
dx . Then the hazard rate function is

given by

h(x) =
f(x)

F (x)
,

where F (x) = 1 − F (x) is the survival function of X. That is, h(x)dx represents
the instantaneous chance that an individual will die in the interval (x, x+dx) given
that this individual is alive at age x. Simple algebra provides that the hazard rate
function of the ENGLD is obtained as

h(x) =

n∑
i=1

pi
θαi

Γ(αi)
xαi−1e−θx

1−
n∑

i=1

pi
Γ(αi)

γ(αi, θx)

. (10)
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3.2. Reversed hazard rate function

Reversed hazard rate (RHR) function is an important measure as a tool in the
analysis of the reliability of both natural and man-made systems. Let X be a non-
negative random variable representing life-times of individuals having absolutely
continuous distribution function F (x) and pdf f(x). Then the reversed hazard
rate function is given by

T (x) =
f(x)

F (x)
.

For ENGLD, T (x) is obtained as

T (x) =

n∑
i=1

pi
θαi

Γ(αi)
xαi−1e−θx

n∑
i=1

pi
Γ(αi)

γ(αi, θx)

.

3.3. Cumulative hazard rate function

Cumulative hazard rate function is the total number of failure or deaths over an
interval of time, and it is defined as

H(x) = −logF (x), where F (x) is the survival function.

Clearly H(x) is a non-decreasing function of x satisfying;
(a) H(0) = 0 and (b) lim

x→∞
H(x) = ∞.

Using (8), the H(x) of ENGLD is obtained as

H(x) = −log

[
1−

n∑
i=1

pi
Γ(αi)

γ(αi, θx)

]
.

3.4. Vitality function

If X is a non-negative random variable having an absolutely continuous distri-
bution function F (x) with pdf f(x). The vitality function associated with the
random variable X is defined as

ν(x) = E[X|X > x] (11)

In the reliability context (11) can be interpreted as the average life span of compo-
nents whose age exceeds x. It may be noted that the hazard rate reflects the risk
of sudden death within a life span, where as the vitality function provides a more
direct measure to describe the failure pattern in the sense that it is expressed in
terms of increased average life span.
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RESULT 5. The vitality function of ENGLD, has the following form

ν(x) =

1
θ

n∑
i=1

pi
Γ(αi)

Γ(αi + 1, θx)

1−
n∑

i=1

pi
Γ(αi)

γ(αi, θx)

(12)

Proof. The equation (11) can be written as,

ν(x) =
1

F (x)

∞∫
x

tf(t)dt. (13)

Also, we have

∞∫
x

tf(t)dt =

∞∫
x

t
n∑

i=1

pi
θαi

Γ(αi)
tαi−1e−θtdt

=
n∑

i=1

pi
θαi

Γ(αi)

∞∫
x

e−θttαidt

=
1

θ

n∑
i=1

pi
Γ(αi)

Γ(αi + 1, θx) (14)

using the upper incomplete gamma function

Γ(s, t) =

∞∫
x

xs−1e−xdx.

Substituting (8) and (14) in (13), we get the required result.

3.5. Mean residual life function

Mean residual life function or remaining life expectancy function at age x is defined
to be the expected remaining life given survival to age x. For a continuous random
variable X, with E(X) < ∞, then mean residual life function (MRLF) is defined
as the Borel measurable function

m(x) = E[X − x|X > x]

=
1

F (x)

∞∫
x

F (t)dt.
(15)

MRLF is sometimes considered as a superior measure to describe the failure pat-
tern as compared to hazard rate since the former focuses attention on the average
lifetime over a period of time while the latter on instantaneous failure at a point of
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time. Also MRLF can be expressed in terms of vitality function. That is, equation
(15) can also be written as

m(x) = ν(x)− x.

The mean residual life function, m(x) of ENGLD is obtained as,

m(x) =

1
θ

n∑
i=1

pi
Γ(αi)

Γ(αi + 1, θx)

1−
n∑

i=1

pi
Γ(αi)

γ(αi, θx)

− x (16)

3.6. Inequality measures

Lorenz and Bonferroni curves are income inequality measures that are widely use-
ful and applicable to some other ares including reliability, demography, medicine
and insurance (see, Bonferroni (1930) ). Also Zenga curve introduced by Zenga
(2007) are another widely used inequality measure. In this section, we will derive
Lorenz, Bonferroni and Zenga curves for the ENGLD. The Lorenz curve is defined
by

LF (x) =

x∫
0

tf(t)dt

E(X)
. (17)

Simple algebra provides the Lorenz curve for ENGLD is given by

LF (x) =

n∑
i=1

pi
Γ(αi)

γ(αi + 1, θx)

n∑
i=1

piαi

. (18)

Also, the Bonferroni curve is defined by

BF (x) =

x∫
0

tf(t)dt

E(X)F (x)
. (19)

The Bonferroni curve for ENGLD is obtained as

BF (x) =

n∑
i=1

pi
Γ(αi)

γ(αi + 1, θx)

n∑
i=1

piαi

n∑
i=1

pi
Γ(αi)

γ(αi, θx)

and the Zenga curve is defined by

AF (x) = 1− µ−(x)

µ+(x)
, (20)
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where

µ−(x) =

x∫
0

tf(t)dt

F (X)

=

n∑
i=1

pi
Γ(αi)

γ(αi + 1, θx)

θ
n∑

i=1

pi
Γ(αi)

γ(αi, θx)

.

Also

µ+(x) =

∞∫
x

tf(t)dt

1− F (x)

=

n∑
i=1

pi
Γ(αi)

Γ(αi + 1, θx)

θ

{
1−

n∑
i=1

pi
Γ(αi)

γ(αi, θx)

} .

Substituting the values of µ−(x) and µ+(x) in (20), we get the value of AF (x).
Plots of Lorenz, Bonferroni and Zenga curves corresponding to the distribution
function F (x) are given in Figure 2.

Figure 2 – Plots of Lorenz, Bonferroni and Zenga curves.

3.7. Entropies

In information theory, the study of entropy has gained momentum in the theo-
retical perspective as well as in terms of its applications. Among the number of
entropies available in the literature, one of the most popular entropy measure is
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Rényi entropy (see, Renyi (1961)). If X has the pdf f(x), then Rényi entropy is
defined by

Hϑ(x) =
1

1− ϑ
log

∞∫
0

fϑ(x)dx; ϑ > 0 and ϑ ̸= 1.

Theorem 1. The Rényi entropy function for ENGLD has the following form

Hϑ(x) =
1

1− ϑ
log

n∑
i=1

(
piθ

αi

Γ(αi)

)ϑ
Γ(ϑ(αi − 1) + 1)

(θϑ)(ϑ(αi−1)+1)
. (21)

Proof. Using the definition of Rényi entropy, we have

Hϑ(x) =
1

1− ϑ
log

∞∫
0

(
n∑

i=1

pi
θαi

Γ(αi)
xαi−1e−θx

)ϑ

dx

=
1

1− ϑ
log

n∑
i=1

pϑi θ
ϑαi

(Γ(αi))ϑ

∞∫
0

xϑ(αi−1)e−θϑxdx

=
1

1− ϑ
log

n∑
i=1

(
piθ

αi

Γ(αi)

)ϑ
∞∫
0

xϑ(αi−1)+1−1e−θϑxdx

=
1

1− ϑ
log

n∑
i=1

(
piθ

αi

Γ(αi)

)ϑ
Γ(ϑ(αi − 1) + 1)

(θϑ)(ϑ(αi−1)+1)
.

Hence the proof. Moreover, the Shannon entropy is defined by E[logf(x)]. This
is a special case derived from Rényi entropy. That is when ϑ −→ 1 in (21), it
reduces to Shannon entropy.

4. Estimation

In this section we discuss the estimation of parameters of the ENGLD by method
of moments and method of maximum likelihood. In the method of moment estima-
tion, the first five population moments of ENGLD are equated to the corresponding
sample moments and obtain the following system of equations:

n∑
i=1

piαi

θ
= m′

1

n∑
i=1

pi(αi + 1)αi

θ2
= m′

2

n∑
i=1

pi(αi + 2)(αi + 1)αi

θ3
= m′

3
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n∑
i=1

pi(αi + 3)(αi + 2)(αi + 1)αi

θ4
= m′

4

n∑
i=1

pi(αi + 4)(αi + 3)(αi + 2)(αi + 1)αi

θ5
= m′

5.

Now the moment estimators of the parameters of ENGLD are obtained by solving
the non-linear system of equations numerically by using mathematical softwares
such as MATHCAD, MATHEMATICA, MATHLAB etc.

In method of maximum likelihood estimation (MLE), the parameters of the
ENGLD are estimated by maximizing the following log likelihood function with
respect to the parameters.

logL =
n∑

i=1

log

(
g∑

i=1

pi
θαi

Γ(αi)
xαi−1
i e−θxi

)

=
n∑

i=1

log

(
p1

θα1

Γ(α1)
xα1−1
i e−θxi + p2

θα2

Γ(α2)
xα2−1
i e−θxi

)
.

∂logL

∂α1
= 0 =⇒

n∑
i=1

1(
p1

θα1

Γ(α1)
xα1−1
i e−θxi + p2

θα2

Γ(α2)
xα2−1
i e−θxi

)
× p1e

−θxi
θα1

Γ(α1)
(α1 − 1)x

(α1−2)
i

+ x
(α1−1)
i

Γ(α1)θ
α1)logθ − θα1

∞∫
0

e−xxα1−1logxdx

[Γ(α1)]2

 = 0.

∂logL

∂α2
= 0 =⇒

n∑
i=1

1(
p1

θα1

Γ(α1)
xα1−1
i e−θxi + p2

θα2

Γ(α2)
xα2−1
i e−θxi

)
× p2e

−θxi
θα2

Γ(α2)
(α2 − 1)x

(α2−2)
i

+ x
(α2−1)
i

Γ(α2)θ
α2 logθ − θα2

∞∫
0

e−xxα2−1logxdx

[Γ(α2)]2

 = 0.

∂logL

∂θ
= 0 =⇒

n∑
i=1

1[
θ

θ+βγ
θα1

Γ(α1)
xα1−1
i e−θxi + βγ

θ+βγ
θα2

Γ(α2)
xα2−1
i e−θxi

]
× xα1−1

i

Γ(α1)

[
(θ + βγ)

[
θα1+1e−θxi(−xi) + e−θxi(α1 + 1)θα1

]
− θα1+1e−θxi

(θ + βγ)2

]

+
xα2−1
i βγ

Γ(α2)

[
(θ + βγ)

[
θα2e−θxi(−xi) + e−θxi(α2)θ

α2−1
]
− θα2e−θxi

(θ + βγ)2

]
= 0.
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∂logL

∂β
= 0 =⇒

n∑
i=1

1[
θ

θ+βγ
θα1

Γ(α1)
xα1−1
i e−θxi + βγ

θ+βγ
θα2

Γ(α2)
xα2−1
i e−θxi

]
× θγe−θxi

(θ + βγ)2

[
θα2

Γ(α2)
xα2−1
i − θα1

Γ(α1)
xα1−1
i

]
= 0.

∂logL

∂γ
= 0 =⇒

n∑
i=1

1[
θ

θ+βγ
θα1

Γ(α1)
xα1−1
i e−θxi + βγ

θ+βγ
θα2

Γ(α2)
xα2−1
i e−θxi

]
× θβe−θxi

(θ + βγ)2

[
θα2

Γ(α2)
xα2−1
i − θα1

Γ(α1)
xα1−1
i

]
= 0.

Figure 3 – Plot of the fitted densities of the data.

Now on solving the above system of non-linear equations using mathematical
software like MATHCAD, MATHEMATICA, MATHLAB etc, one can obtain the
maximum likelihood estimators of parameters of ENGLD.

We consider the fitting of ENGLD to real life data sets by the method of
moments and method of maximum likelihood and are presented in Table 1. The
data set considered here is the survival times (in days) of 72 guinea pigs infected
with virulent tubercle bacilli, observed and reported by Bjerkedal et al. (1960).
The data are as follows:

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05,
1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24,
1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76,
1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53,
2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

From Table 1, it is obvious that the ENGLD is the best fitted model to the
given data when compared with the existing models such as 1 LD, 2LD, GLD and
NGLD for both methods of estimation, viz. methods of moments and methods of
maximum likelihood. Figure 3, represents the graph of the fitted densities of the
data.
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TABLE 1
Comparison of fit of ENGLD using different methods of estimation

Count Observed Expected frequency by method of moments Expected frequency by MLE
1 LD 2 LD GLD NGLD ENGLD 1 LD 2 LD GLD NGLD ENGLD

0-0.5 3 15 16 20 4 4 10 8 10 4 4
0.5-1 10 13 14 15 13 12 12 12 15 13 12
1-1.5 23 11 12 11 16 17 14 15 14 18 19
1.5-2 13 9 9 8 14 14 9 9 8 10 11
2-2.5 9 7 7 6 10 9 7 7 7 10 8
2.5-3 6 5 5 4 6 7 9 9 9 9 7
3-4 4 6 5 4 6 6 5 6 4 4 6
4-5 3 3 2 2 2 2 4 5 3 3 4
5-∞ 1 3 2 2 1 1 2 1 2 1 1
Total 72 72 72 72 72 72 72 72 72 72 72
df 4 3 2 2 1 4 3 2 2 1

Estimated values of parameters θ̂=0.868 α̂=1.3 α̂=0.9 α̂=3.62 α̂1=3.8 θ̂=0.90 α̂=1.5 α̂=0.86 α̂=3.60 α̂1=3.78

θ̂=1 γ̂=0.9 β̂=2.8 α̂2=2.5 θ̂=0.95 γ̂=0.91 β̂=2.74 α̂2=2.61

θ̂=1 θ̂=1.86 β̂=1 θ̂=0.90 θ̂=1.88 β̂=1
γ̂=1 γ̂=1

θ̂=1.86 θ̂=1.75

χ2 27.27 24.45 34.17 4.29 3.01 13.64 11.40 16.35 3.87 2.15
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Summary

In this paper, we consider an extended version of new generalized Lindley distribution
(NGLD). We refer to this new generalization as the extended new generalized Lindley
distribution (ENGLD). A comprehensive account of the mathematical properties of the
new distribution including estimation is presented. A real life data set is considered
here to illustrate the relevance of the new model and compared it with other forms of
Lindley models using method of moment estimation and method of maximum likelihood
estimation.
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