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1. Introduction

Middle censoring introduced by Jammalamadaka and Mangalam (2003) occurs in
situations where a data point becomes unobservable if it falls inside a random
censoring interval. In such situations, the exact values are available for some ob-
servations and for some others, random censoring intervals are observed. We may
find several such situations in survival studies and reliability applications. For
example in biomedical studies, the patients under observation may be withdrawn
from the study for a short period of time and the exact lifetimes of those patients
may not be available if the event happens during this period. In reliability appli-
cations, the failure of equipment could occur during a period of time, which is not
possible to observe. In such contexts we only observe a censorship indicator and
the interval of censorship.

As was pointed out by Jammalamadaka and Mangalam (2003), left censored
data and right censored data can be considered as special cases of this more gen-
eral middle censoring, by suitable choices of the interval. Also such a censoring
scheme is not complementary to the usual double censoring discussed in Klein and
Moeschberger (2005) and Sun (2006). Jammalamadaka and Mangalam (2003)
pointed out various applications of middle censoring and developed a nonpara-
metric maximum likelihood estimator(NPMLE), which is the maximum likelihood
estimator of the distribution function, where no specific parametric assumptions
are made on the parent population. They have proved that an NPMLE is always a
Self Consistent Estimator (SCE) (see Tarpey and Flury (1996)). Jammalamadaka
and Iyer (2004) proposed a variant of this self consistent estimator for which the
weak convergence was established. In the parametric context, Iyer et al. (2008)
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studied middle censoring for the exponential distribution. Mangalam et al. (2008)
developed a necessary and sufficient condition for the equivalence of self-consistent
estimators and NPMLEs. Jammalamadaka and Mangalam (2009) discussed it for
the von Mises model in the context of directional data. Shen (2010) proposed
an inverse-probability-weighted estimator for the distribution function for data
arising from such a censoring scheme, while Davarzani and Parsian (2011) dis-
cussed it in the discrete case for the geometric distribution. Shen (2011) showed
that the nonparametric maximum likelihood estimator (NPMLE) of distribution
function can be obtained by using Turnbull’s EM algorithm (Turnbull, 1976) or
self-consistent estimating equation (Jammalamadaka and Mangalam, 2003) with
an initial estimator which puts mass only on the innermost intervals. Sankaran
and Prasad (2014) disussed a Weibull regression model for a middle censored life-
time data. Jammalamadaka and Leong (2015) analysed discrete middle censored
data in the presence of covariates while Abuzaid et al. (2015) discussed robustness
middle censoring scheme in parametric survival models.

In survival studies, covariates or explanatory variable are usually used to rep-
resent heterogeneity in a population. The main objective in such situations is
to understand and exploit the relationship between the lifetime and covariates.
Regression models are commonly employed to study such relationship. The most
widely used semi-parametric regression model is the well known proportional haz-
ards model by David (1972). For a comprehensive review on properties and infer-
ence procedures of the proportional hazards model, one may refer to Kalbfleisch
and Prentice (2011) and Lawless (2011). The analysis of middle censored data
in the presence of covariates has not yet been developed, which is the goal of the
present work. Accordingly we study the regression problem for middle censored
lifetime data in which the hazard rate function may depend on some covariates.

In Section 2 we present the model and state the inference procedure for the
problem. Section 3 provides a simulation study to assess the finite sample prop-
erties of the estimators, while Section 4 describes an application of the proposed
model to a real life problem. Section 5 concludes the paper with a summary.

2. Model and Inference Procedure

Let T be a non-negative random variable representing lifetime of a study sub-
ject with an unknown cumulative distribution function F0(·). Let (U, V ) be a
random vector which represents the censoring interval having bivariate cumula-
tive distribution function G(·, ·). Assume that (U, V ) is independent of T , with
P (U < V ) = 1. Let Z be a p × 1 vector of covariates. The covariates may be
continuous or they may be indicator variables. Assume that lifetime T is middle
censored by the random interval (U, V ). Thus one can observe the vector (X, δ, Z),
where

X =

{
T if δ = I(X = T ) = 1 (uncensored case),

(U, V ) if δ = I(X = T ) = 0 (censored case).

Let us assume that there are n individuals under study and for the i’th individual
we observe

(
Xi, δi, Zi

)
, for i = 1, 2, ..., n.

When we have incomplete data due to censoring, the idea of self-consistency
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plays a pivotal role in the estimation of the unknown population distribution func-
tion F0. If we estimate F0 via the Expectation-Maximisation algorithm (Dempster
et al., 1977), as described by Tsai and Crowley (1985), the resulting estimating
equation takes the form F̂0(t) = EF̂0

[En(t)|observed data], where F̂ (·) is the re-
quired estimate and En(·) is the empirical distribution function. This equation
is known as Self-Consistency Equation (SCE) and was first introduced by Efron
(1967) where he used this to describe a class of estimators of F0 for the case of
right censored data. Note that this equation is an implicit equation and hence
the unknown quantity to be estimated appears on both sides of the estimating
equation. Jammalamadaka and Mangalam (2003) have shown that the NPMLE
of F0 is always a Self Consistent Estimator(SCE) which takes the form:

F̂0(t) =
1

n

n∑
i=1

{
δiI(Xi ≤ t) + (1− δi)I(Vi ≤ t)+

(1− δi)I(t ∈ (Ui, Vi))
F̂0(t)− F̂0(Ui)

F̂0(Vi)− F̂0(Ui)

}
.

(1)

With Cox proportional hazards assumption, the survival function of T at t condi-
tional on Z = z is given by

S (t|z) = (S0(t))
exp(θ′z)

, (2)

where S0(t) is baseline survival function and θ = (θ1, θ2, ..., θp)
′ is a p × 1 vector

of regression coefficients. Differentiating (2) with respect to t we get the density
function of T given Z = z as

f(t|z) = f0(t) exp(θ
′z) (S0(t))

exp(θ′z)−1
,

where f0(t) is the baseline density of T . Our objective is to estimate θ and S0(t)
under middle censored observation scheme.
The likelihood corresponding to the observed data is given by

L(θ) ∝
n∏

i=1

f(ti|zi)δi
[
(S0(ui))

exp(θ′zi) − (S0(vi))
exp(θ′zi)

]1−δi
.

Without loss of generality, assume that the first n1 observations are exact lifetimes,
and the remaining n2 are censored intervals, with n1 + n2 = n.
Now the likelihood, excluding the normalizing constant is:

L(θ) =

n1∏
i=1

f(ti|zi) ·
n1+n2∏
i=n1+1

(
(S0(ui))

exp(θ′zi) − (S0(vi))
exp(θ′zi)

)
, (3)
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and the log-likelihood is given by

l(θ) =

n1∑
i=1

[log f0(ti) + θ′zi + exp(θ′zi) logS0(ti)]+

n1+n2∑
i=n1+1

log
(
(S0(ui))

exp(θ′zi) − (S0(vi))
exp(θ′zi)

)
. (4)

The first order partial derivative with respect to θr, for r = 1, 2, .., p, is given by

∂

∂θr
l(θ) =

n1∑
i=1

(zir(1 + exp(θ′zi) logS0(ti)))+

n1+n2∑
i=n1+1

{
zir exp(θ

′zi)
(
(S0(ui))

exp(θ′zi) − (S0(vi))
exp(θ′zi)

)−1

(
(S0(ui))

exp(θ′zi) logS0(ui)− (S0(vi))
exp(θ′zi) logS0(vi)

)}
, (5)

where zir is the r’th component in the covariate vector corresponding to i’th indi-
vidual. We observe that (5) does not involve the baseline density f0(t). We now
give an algorithm for estimating the parameters θ and S0(t)):
Step 1. Set the vector θ = 0.

Step 2. At the first iteration, find the SCE S
(1)
0 (t) of S0(t) using (1) and substi-

tute this in (5) and solve ∂l(θ)/∂θr = 0, r = 1, 2, ..., p to get the estimator θ(1) of
θ.
Step 3. Find t̃i

(1)
= S

(1)−1

0

[
S
(1)
0 (ti)

exp(θ(1)′zi)
]
and similarly find ũ

(1)
i and ṽ

(1)
i as

our updated observations at first iteration.

Step 4. At the j’th iteration (j > 1), use t̃i
(j−1)

, i = 1, 2, ..., n1 and (ũ
(j−1)
i , ṽ

(j−1)
i ),

i = n1 + 1, ..., n as our data points in (1) and obtain S
(j)
0 (t). Substitute S

(j)
0 (t) in

(5) and solve ∂l(θ)/∂θr = 0, r = 1, 2, ..., p to obatain the j’th iterated update θ(j)

of θ.
Step 5. Repeat Step 4 until convergence is met, say when ∥θ(k)−θ(k+1)∥ < 0.0001

and sup
t

{
|S(k)

0 (t)− S
(k+1)
0 (t)|

}
< 0.001, for some k.

Note that Step 3. in the algorithm is justified because if ai = (S
(1)
0 (ti))

exp(θ(1)′zi),
then the ai ’s have a uniform distribution over [0, 1]. Therefore to scale these back

to baseline distribution we need to find t̃i = inf {t : S(1)
0 (t) ≤ ai}. Thus the correct

choice is t̃i = S
(1)−1

0 (ai) = S
(1)−1

0

(
S
(1)
0 (ti)

exp(θ(1)′zi)
)
.

Now consider a situation where the support of U and V is contained in the sup-
port of T . Then clearly S0(·) will stay away from 1 and 0 on the support of U
and V . But if the least observation happens to be an observation on U say uk, to
maintain the monotonicity property, Ŝ0n(uk) = 1. This leads to the inconsistency
of the estimator at that end point. The same is true with the other end also. This
motivates an additional restriction resulting in a bounded MLE (BMLE) of the
parameter θ and S0(t):
A1: There exist 0 < α0 < α1 < ∞ and 0 < m0 < M0 < 1 such that P (α0 ≤ U <
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V ≤ α1) = 1 and m0 < S0(α1) < S0(α0) < M0.
We will incorporate this restriction with our estimator and define our parameter
space be (Θ,Φ), where Θ ⊆ Rp be a parameter space of θ and Φ be defined by

Φ = {S0 : [α0, α1] → [m0,M0] andS0 is decreasing } .

Let us name the estimator thus obtained for θ as θ̂n and that for S0(t) as Ŝ0n(t).
The following conditions are necessary to establish the consistency property.
A2: Conditional on Z, T is independent of (U, V ).
A3: The joint distribution of (U, V, Z) does not depend on the true parameter
(θ, S0(t)).
A4: Z is bounded. That is there exist some finite M > 0 such that P{∥Z∥ ≤
M} = 1, where ∥ · ∥ is the usual metric on Rp.
A5: Distribution of Z is not concentrated on any proper affine subspace of Rp.

Theorem 1. Suppose that Θ ∈ Rp is bounded and assumptions (A1) to (A5)

hold. Then estimator (θ̂n, Ŝ0n) is consistent for the true parameter (θ0, S00)in the
sense that if we define a metric d : Θ× Φ → R, by

d ((θ1, S01), (θ2, S02)) =∥θ1 − θ2∥+
∫

|S01(t)− S02(t)|dF0(t)+[∫ (
(S01(u)− S02(u))

2 + (S01(v)− S02(v))
2
)
dG(u, v)

] 1
2

(6)

then d
(
(θ̂n, Ŝ0n), (θ0, S00)

)
→ 0 almost surely (a.s.).

Proof. In the following discussion we denote Yi = (Xi, δi). Let the probabil-
ity function of Y = (X, δ) be given by

p(y; θ, S0) =

n∏
i=1

f(ti|zi)δi [(S0(ui))
exp(θ′zi) − (S0(vi))

exp(θ′zi)]1−δig(ui, vi|zi)q(zi),

(7)
where g is the joint density of (U, V ), conditional on Z and q is the density of Z.
Using (A2) and (A3), the log-likelihood function scaled by 1/n for the sample
(yi, zi), i = 1, 2, ..., n up to terms not depending on (θ0, S00) is

l(θ, S0) =
1

n

n∑
i=1

{
δi log f0(ti|zi) + (1− δi) log [(S0(ui))

exp(θ′zi) − (S0(vi))
exp(θ′zi)]

}
.

(8)

We write pn(y) = p(y; θ̂n, Ŝ0n) and p0(y) = p(y; θ0, S00) where (θ̂n, Ŝ0n) is the
MLE that maximizes the likelihood function over Θ × Φ and (θ0, S00) ∈ Θ × Φ.
Therefore

n∑
i=1

log pn(Yi) ≥
n∑

i=1

log p0(Yi)
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and hence
n∑

i=1

log
pn(Yi)

p0(Yi)
≥ 0.

By the concavity of the function x 7→ logx, for any 0 < α < 1,

1

n

n∑
i=1

log

(
(1− α) + α

pn(Yi)

p0(Yi)

)
≥ 0. (9)

The left hand side can be written as∫
log

(
(1− α) + α

pn(Yi)

p0(Yi)

)
d(Pn − P)(Y ) +

∫
log

(
(1− α) + α

pn(Yi)

p0(Yi)

)
dP(Y ),

(10)
where Pn is the empirical measure of Y and P is the joint probability measure of
Y .
Let us assume that the sample space Ω consists of all infinite sequences Y1, Y2, ...,
along with the usual sigma field generated by the product topology on

∏∞
1 (R3 ×

{0, 1}) and the product measure P. For p defined in (7) let us define a class

of functions P =
{
p(y, θ, S0), (θ, S0) ∈ (Θ × Ψ)

}
and a class of functions H ={

log(1 − α + αp/p0) : p ∈ P
}
, where p0 = p(y, θ0, S00). Then it follows from

Huang and Wellner (1995) that H is a Donsker class. With this and Glivenko-
Cantelli theorem there exists a set Ω0 ∈ Ω with P(Ω0) = 1 such that for every
ω ∈ Ω0, the first term of (10) converges to zero. Now fix a point ω ∈ Ω0 and

write θ̂n = θ̂n(ω) and Ŝ0n(·) = Ŝ0n(·, ω). By our assumption Θ is bounded, and

hence for any subsequence of θ̂n, we can find a subsequence converging to θ∗ ∈ Θ
′
,

the closure of Θ. Also by Helly’s selection theorem, for any subsequence of Ŝ0n,
we can find a further subsequence converging to some decreasing function S0∗.
Choose the convergent subsequence of θ̂n and the convergent subsequence of Ŝ0n

so that they have the same indices, and without loss of generality, assume that θ̂n
converges to θ∗ and that Ŝ0n converges to S0∗(·).

Let p∗(y) = p(y, θ∗, S0∗). By the bounded convergence theorem, the second
term of (10) converges to∫

log

(
(1− α) + α

p∗(y)

p0(y)

)
dP(y)

and by (9) this is nonnegative. But by Jensen’s inequality, it must be non-positive.
Therefore it must be zero and it follows that

p∗(y) = p0(y) P− almost surely.

This implies
S0∗(t) = S00(t) F0 − almost surely.

Therefore by bounded convergence theorem,∫
|Ŝ0n(t)− S00(t)|dF0(t) → 0 (11)
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and also

(S0∗(u))
exp(θ′

∗z) = (S00(u))
exp(θ′

0z)and(S0∗(v))
exp(θ′

∗z) = (S00(v))
exp(θ′

0z) P−almost surely.

This together with (A5) imply that there exist z1 ̸= z2 such that for some
c ∈ [α0, α1],

(S0∗(c))
exp(θ′

∗z1) = (S00(c))
exp(θ′

0z1)and(S0∗(c))
exp(θ′

∗z2) = (S00(c))
exp(θ′

0z2).

Since S0∗(c) ≥ m0 > 0 and S00(c) ≥ m0 > 0, this implies

(θ∗ − θ0)
′(z1 − z2) = 0.

Again by (A5), the collection of such z1 and z2 has positive probability and there
exist at least p such pairs that constitute a full rank p× p matrix, it follows that
θ∗ = θ0, This in turn implies that

S0∗(u) = S00(u) and S0∗(v) = S00(v) G− almost surely.

Therefore by bounded convergence theorem,∫ (
(Ŝ0n(u)− S00(u))

2 + (Ŝ0n(v)− S00(v))
2
)
dG(u, v) → 0. (12)

Equations (11) and (12) together with θ∗ = θ0 hold for all ω ∈ Ω0 with P(Ω0) = 1.
This completes the proof. 2

Remark 2. A likelihood ratio test can be carried out to test the significance of
regression coefficients. The null hypothesis H0 : θ = 0 can be tested against H1 :

θ ̸= 0, where 0 is the null vector of same order, with the test statistic −2 log L(0)

L(θ̂)

which is a χ2
(p−1) variate. The test results in rejecting the null hypothesis for small

P-values.

3. Simulation Studies

A simulation study is carried out to assess the finite sample properties of the esti-
mators. We consider the exponential distribution with mean λ−1 as the distribu-
tion of lifetime variable T . Also we choose independent exponential distributions
with fixed means λ−1

1 and λ−1
2 , which themselves are independent of T , as the dis-

tributions for the censoring random variates U and V −U respectively, so that the
distribution of V is gamma. We only consider a single covariate z in the present
study which is generated from uniform distribution over [0, 10] and let θ be the
corresponding regression coefficient. Under the proportional hazards assumption,
the survival function of T given z is given by

S(t|z) = exp
(
− λ exp(θz)t

)
. (13)

A large number of observations are generated on T for fixed values of λ and θ. Now
corresponding to each and every observation on T , a random censoring interval is
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TABLE 1
Empirical bias and MSE of the estimator of θ.

n = 500 n = 750

λ θ Bias MSE ECP Bias MSE ECP
0.1 0.25 1.73e-2 9.62e-4 0.961 3.88e-3 7.52e-4 0.969
0.8 0.01 1.60e-3 7.16e-3 0.948 7.80e-4 1.09e-3 0.964
1.0 0.50 -1.26e-2 9.12e-4 0.935 -2.00e-4 1.01e-4 0.951
1.0 -0.50 3.56e-2 1.89e-3 0.969 2.73e-2 8.14e-4 0.977
1.5 0.80 -8.52e-3 4.11e-5 0.970 -6.94e-3 1.28e-5 0.982
3.0 -0.90 1.81e-2 5.19e-4 0.968 -3.06e-3 4.36e-5 0.979
5.0 -0.01 6.98e-3 9.71e-5 0.944 4.17e-3 6.38e-5 0.962

generated with (U, V ) and if we find T /∈ (U, V ) then T is selected in the sample,
otherwise we choose the interval as the observation. As we generate large number
of observations we can now choose a sample of required size n such that it contains
about 25% censoring intervals. This process, now, can be repeated with various
choices of λ and θ. The estimation procedure given in Section 2 can be employed to
obtain the estimates of S0(t) and θ and using 1000 iterations. The empirical bias
and mean squared error(MSE) are computed and given in Table 1. The Wald 95%
confidence intervals of regression parameter are computed by using the empirical
percentiles of the estimated regression coefficients. The proportion of times the
true parameter value lies in such intervals is called empirical coverage probabilities
(ECP) which is found out and is reported in Table 1.

Clearly both bias and MSE are small and as the sample size n increases they
decrease, as one would expect and the empirical coverage probabilities are found
fairly large, closer to one. Also for each set of parameter values and with sample
size 750 we shall find out a cubic polynomial estimate of the form S0(t) = c0 +
c1t + c2t

2 + c3t
3 with each of its coefficients being the average of corresponding

coefficients obtained for all the iterations, for the baseline survival function and are
compared in Figure 1, where continuous curve represents the true baseline survival
function and dotted curve represents corresponding estimate. We see that both
the estimated curve and actual curve are very close to each case.
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4. Data Analysis

In this section we apply our model to a real life data set. We consider the data
on survival times (in years) for 149 diabetic patients followed for 17 years studied
by Lee et al. (1988) and the data is given in Lee and Wang (2003), pages 58-63.
The original data consists of 8 potential prognostic variables, but for illustrative
purpose we take only two among them namely age denoted by z1 and coronary
heart disease(CHD) denoted by z2 as the covariates with respective regression
coefficients θ1 and θ2. Censoring is made by the method follows. A random cen-
soring interval (U, V ), where U and V − U are independent exponential variates
with means λ−1

1 = 20 and λ−1
2 = 12.5 is generated first. Then an individual from

among 149 patients is selected at random and if lifetime of the patient happens
to fall in the generated censoring interval, that lifetime is assumed to have middle
censored and that interval is considered as the corresponding observation. Other-
wise the lifetime is maintained. This process is repeated until around 25% of the
observations are censored. The data resulted consists of 36 censored observations.
We apply the model given in Section 2 and find that the estimate of the baseline
survival function is Ŝ0(t) = 7.886 × 10−7t3 − 0.002272 t2 − 0.22181 t + 0.880574

and the estimates of the regression coefficients are obtained to be θ̂1 = 0.004418
and θ̂2 = 0.1096. i.e., the covariates have a positive effect on the lifetime. To test
the significance of the covariate effect we consider the null hypothesis H0 : θ = 0,
where θ = (θ1, θ2) and 0 is null vector of same order, and we use the likelihood ra-
tio test described in Remark 2. The P-value of 0.0382 indicates that the covariate
effects are significant. To check the validity of proportional hazards assumption,
we shall plot −log (−log (S(t|z))) against log t for the two covariates separately and
the plots are given in Figure 2. We find that the two step functions are parallel
and thus the proportionality assumption is justified.
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Figure 1 – Plots of baseline survival curve and its estimate.
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5. Conclusion

The present study discussed the semi-parametric regression problem for the anal-
ysis of middle censored data. A maximization procedure for finding the NPMLE
is developed and its consistency established. The model is applied to a real data
set. Simulation studies show that the inference procedure is efficient. Although we
have considered a cubic curve for approximating S0(t) in our example, the degree
and nature of the curve, of course, depends on the data set and the censoring
distribution. More studies in this direction will be carried out in a separate work.
Asymptotic normality of θ̂ and weak convergence of Ŝ0(t) do not appear to be
easy to establish, although one can perhaps extend the ideas used in Huang and
Wellner (1995).
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Summary

Middle censoring introduced by Jammalamadaka and Mangalam (2003), refers to data
arising in situations where the exact lifetime becomes unobservable if it falls within a
random censoring interval, otherwise it is observable. In the present paper we propose
a semi-parametric regression model for such lifetime data, arising from an unknown
population and subject to middle censoring. We provide an algorithm to find the non-
parametric maximum likelihood estimator (NPMLE) for regression parameters and the
survival function. The consistency of the estimators are established. We report simula-
tion studies to assess the finite sample properties of the estimators. We then analyze a
real life data on survival times for diabetic patients studied by Lee et al. (1988).
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