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1. Introduction

Technological advances in engineering has resulted in products having high mean
time to failure (MTTF). However, prolonged time to failure makes the study of
lifetime characteristics difficult. To overcome this, the technique of accelerated
life test (ALT) is used rather than usual life test. ALT is a technique to fasten the
failure of products in order to obtain quick information about life characteristics.
In ALT, products are exposed to higher levels of stress factors like temperature,
pressure, humidity, voltage etc. to get quick failures and the data thus obtained
is properly analyzed to infer the life characteristics under normal use. Based
on stress loading there are three types of ALT’s namely, constant stress ALT
(CSALT), step-stress ALT (SSALT) and progressive stress ALT(PSALT).

In CSALT, only one level of higher stress is used. Sometimes it may be diffi-
cult to run at a higher stress for too long and CSALT may not produce enough
quick failures. In PSALT, a test unit is subjected continuously to increasing
stress. One major drawback of PSALT is that the progressive stress cannot be
controlled accurately enough for long time in order to produce enough number
of failures. In SSALT, a test unit is subjected to a specified level of stress for
a prefixed period of time. If it does not fail during that period of time, then
the stress level is increased for further prefixed period of time. This process is
continued till all test units fail or some termination criteria is met. SSALT with
two levels of stress is known as simple SSALT. SSALT yields quick failures when
compared to CSALT and PSALT. Also it provides reliable estimates for life char-
acteristics. Han and Ng (2014) have described the advantage of using SSALT
over CSALT. For more details about ALT one may refer to Nelson (1990).

SSALT has attracted great attention in reliability literature. SSALT models
the lifetime distribution of a test unit as a function of increased stress levels.
There are three fundamental models for accommodating the effect of increased
stress levels on the lifetime distribution. These are tampered random variable
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model, tampered hazard model and cumulative exposure model. Out of these,
the most common fundamental model is cumulative exposure model, which is
proposed by Sedyakin (1966) and generalized by Bagdonavicius (1978) and Nel-
son (1980). It assumes that remaining life of test unit under a stress level depends
only on the current stress level and the current cumulative fraction failed.

Using cumulative exposure model, Miller and Nelson (1983) studied optimum
plans for simple SSALT for exponential distribution. Bai et al. (1989) extended
the case to type-I censoring. Bai and Hun (1991) derived optimum plans under
competing cause of failure framework under exponential lifetime distribution.
A Bayesian approach to SSALT under exponential distribution is discussed in
Dorp et al. (1996).

From the available literature, it is seen that a lot of work has been done in
the case of exponential distribution because of its mathematical tractability and
having to deal with single parameter. It can be used to model lifetime of product
that fails at a constant rate, regardless of the time it has survived. Although
this property simplifies the analysis, it makes the model inappropriate for the
reliability analysis of products that dont fail at constant rate. In this scenario,
use of sophisticated models that take into account conditions such as increasing
failure rate, is required. One such model is Lindley distribution, introduced
by Lindley (1958), having one parameter. Ghitany et al. (2008) studied its
properties and showed through numerical study that Lindley distribution is a
better fit to lifetime data than exponential distribution. As of now, no work
has been done in ALT models under Lindley distribution. This motivates the
present work to introduce SSALT model and estimate the parameters involved
under Lindley distribution.

In this paper, inference on simple SSALT data from Lindley distribution un-
der type-I censoring with cumulative exposure model is considered. The paper
is organized as follows. Section 2 describes the underlying model with assump-
tions. In section 3, estimation of parameters by maximum likelihood method
is discussed. Numerical illustration based on both simulated data and real life
data is carried out in section 4 using Newton-Raphson algorithm and parametric
bootstrap procedures. Concluding remarks are given in section 5.

2. Model and Assumptions

Let x1 and x2 be two stress levels, with x0 being the stress under normal use.
Consider n identical units that are subjected to simple SSALT with initial stress
level x1. At prefixed time period τ , stress level is changed to x2 and the test
is continued until the censoring time τk. When all units fail before τk, it would
result in complete data. In the proposed model, following assumptions will hold:-

i. For any stress level xi, lifetime of a test unit follows Lindley distribution
with cumulative distribution function (c.d.f)

Fi(t) = 1−
1 + θi + θit

1 + θi
e−θit, t ≥ 0, θi > 0, i = 1, 2. (1)

and with corresponding probability density function (p.d.f)

fi(t) =
θ2i

1 + θi
(1 + t)e−θit, t ≥ 0, θi > 0, i = 1, 2. (2)
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ii. A cumulative exposure model holds. Under cumulative exposure model
assumption, c.d.f of a test unit under simple SSALT is given by

G(t) =

{
F1(t), 0 ≤ t ≤ τ

F2(s+ t− τ), τ ≤ t ≤ ∞
(3)

where s is the solution of the equation

F2(s) = F1(τ) (4)

The corresponding p.d.f is given by

g(t) =

{
f1(t), 0 ≤ t ≤ τ

f2(s+ t− τ), τ ≤ t ≤ ∞
(5)

Under assumptions i and ii, c.d.f of a test unit is obtained as

G(t) =

{
1− 1+θ1+θ1t

1+θ1
e−θ1t, 0 ≤ t ≤ τ

1− (1+θ2+θ2(s+t−τ))
1+θ2

e−θ2(s+t−τ), τ ≤ t ≤ ∞
(6)

and the corresponding p.d.f is given by

g(t) =

{
θ2
1

1+θ1
e−θ1t(1 + t), 0 ≤ t ≤ τ

θ2
2

1+θ2
e−θ2(s+t−τ)(1 + s+ t− τ), τ ≤ t ≤ ∞

(7)

where s is obtained using equations (1) and (4) as

s =
−
[
1 + θ2 +W

(
−(1+θ2)
1+θ1

e−1−θ2−θ1τ (1 + θ1 + θ1τ)
)]

θ2
(8)

Here W (.) denotes the Lambert’s W function. For details about Lambert’s W
function one may refer to Corless et al. (1996) .

3. Maximum likelihood estimation

In this section, likelihood function corresponding to the model given in equation
(7) is formulated based on type-I censoring and estimation of parameters θ1
and θ2 by maximum likelihood (ML) estimation method is discussed. In type-
I censoring scheme, units are tested for a pre-specified period of time known
as censoring time and the corresponding failure time is noted. After censoring
time, unfailed units are removed from the life test and their lifetime is taken
to be that of censoring time. For more details about type-I censoring and the
corresponding likelihood function, one may refer to Meeker and Escobar (1998).

Consider a random sample of n units with lifetime having Lindley distribu-
tion that are subjected to simple SSALT with type-I censoring. Let n1 and n2

denote respectively, the number of failures that occur before and after stress
level change time τ . Let N be the total number of failed units among n units.
Test is terminated when all products fail before the censoring time or when cen-
soring time τk is attained. Let ti:n denote the failure time of i-th failed unit
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i = 1, 2, ..., n. With the above test scheme, the following failure times will be
observed:

0 < t1:n < t2:n < ... < tn1:n ≤ τ < tn1+1:n < ... < tn1+n2:n ≤ τk

The Likelihood function (L) for simple SSALT under cumulative exposure
model with type-I censoring is given by (Meeker and Escobar, 1998)

L =
n!

(n−N)!

[
n1∏

i=1

f1(ti:n)

][
N∏

i=n1+1

f2(s+ ti:n − τ)

]
[1− F2(s+ τk − τ)]

n−N

(9)

Using equations (6) and (7) in equation (9) and taking natural logarithm on
both sides we obtain log-likelihood function as

logL = log
( n!

(n−N)!

)
+

n1∑

i=1

[
2 log θ1 − θ1ti:n + log(1 + ti:n)− log(1 + θ1)

]

+

N∑

i=n1+1

[
2 log θ2 − θ2(ti:n − τ + s) + log(1 + ti:n − τ + s)− log(1 + θ2)

]

+ (n−N)
[
log

(
1 + θ2 + θ2(τk − τ + s)

)
− θ2(τk − τ + s)− log(1 + θ2)

]

(10)

Differentiating equation (10) with respect to θ1 and θ2 and equating to zero, we
get the corresponding log-likelihood equations as

∂ logL

θ1
=

n1∑

i=1

[ 2
θ1

− ti:n −
1

1 + θ1

]
+

N∑

i=n1+1

[
− θ2s

′

θ1 +
s′θ1

1 + ti:n − τ + s

]

+ (n−N)
[ θ2s

′

θ1

1 + θ2 + θ2(τk − τ + s)
− θ2s

′

θ1

]
= 0 (11)

∂ logL

θ2
=

N∑

i=n1

[ 2
θ2

− (θ2 − s′θ2 + ti:n − τ + s) +
1 + ti:n − τ + θ2s

′

θ2
+ s

1 + θ2 + θ2(ti:n)

−
1

1 + θ2

]
+ (n−N)

[1 + τk − τ + θ2s
′θ2 + s

1 + θ2 + θ2(τk − τ + s)
− θ2s

′

θ2

− τk + τ − s−
1

1 + θ2

]
= 0 (12)

where

s′θ1 =
[ W

(
−(1+θ2)
(1+θ1)

(1 + θ1 + θ1τ)e
−(θ1τ+1+θ2)

)
(
1 +W

(
−(1+θ2)
(1+θ1)

(1 + θ1 + θ1τ)e−(θ1τ+1+θ2)
))

1( (1+θ2)
(1+θ1)

(1 + θ1 + θ1τ)e−(θ1τ+1+θ2)
)
θ2

]

×
θ1 (θ2 + 1) τe−(θ1τ+1+θ2) (θ1(τ + 1) + τ + 2)

(θ1 + 1) 2
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and

s′θ2 =− θ2
[ W

(
−(1+θ2)
(1+θ1)

(1 + θ1 + θ1τ)e
−(θ1τ+1+θ2)

)

−(1 + θ2)
(
1 +W

(
−(1+θ2)
(1+θ1)

(1 + θ1 + θ1τ)e−(θ1τ+1+θ2)
))θ2 + 1

]

+W
(−(1 + θ2)

(1 + θ1)
(1 + θ1 + θ1τ)e

−(θ1τ+1+θ2)
)

It can be seen that equations (11) and (12) are non-linear in θ1 and θ2. However,
one may use numerical methods or gradient algorithms to obtain ML estimates
(MLE) θ̂1 and θ̂2 of θ1 and θ2 respectively. Also, an estimate of the covariance

matrix of θ̂1 and θ̂2 can be obtained using

V̂ = F̂−1 (13)

where

F̂ =
(
F̂ij

)
2×2

(14)

with

F̂ij = −

(
∂2 logL

∂θiθj

)
|θ̂i, θ̂j , i, j = 1, 2.

4. Numerical illustration

4.1. Simulated data set

In this section, the performance of ML estimates is evaluated based on simulated
data in terms of mean squared error (MSE) and relative absolute bias (RAB).
Also, parametric bootstrap confidence intervals (CI) are constructed for the
unknown parameters θ1 and θ2. To generate samples from ALT model given in
(6) and to determine ML estimates, we proceed as follows:

1. Generate a random sample of size n from Uniform (0,1) distribution, and
arrange them in ascending order to obtain order statistics (U1:n, ..., Un:n).

2. For given values of stress change time and parameters τ , θ1 and θ2, find
n1 such that

Un1:n ≤ 1−
1 + θ1 + θ1τ

1 + θ1
e−θ1τ ≤ Un1+1:n

3. For given censoring time τk, find n2 such that

Un2:n−n1 ≤ 1−
1 + θ2 + θ2(s+ τk − τ)

1 + θ2
e−θ2(s+τk−τ) ≤ Un2+1:n−n1

4. The ordered observations t1:n ≤ ... ≤ tn1:n ≤ tn1+1:n ≤ ... ≤ tn1+n2:n ≤ τk
are obtained as follows:

ti:n =





−[W((Ui:n−1)(1+θ1)e
−(1+θ1))+1+θ1]

θ1
, i = 1, 2, ..., n1

−[W((Ui:n−1)(1+θ2)e
−(1+θ2))+1+θ2]

θ2
− s+ τ, i = n1 + 1, ..., N
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Figure 1 – Boxplots of θ̂1 and θ̂2 for 1000 simulations

5. Using the values of n1,n2,τ ,τk and the ordered observations obtained in
step 4, ML estimates of θ1 and θ2 is obtained by solving equations (11)
and (12) using Newton-Raphson algorithm. Newton-Raphson algorithm is
implemented by using maxLik package in R.

In this simulation study, values for θ1 and θ2 are taken as 0.5 and 0.9 respec-
tively. Samples of sizes n = 25, 50 and 100 with stress level change times, τ=1,
1.2, 1.4 and censoring times τk=1.4, 1.6 and 1.8 are generated. For each case, the

number of Monte Carlo (MC) runs is taken as 1000. Let θ̂ik be the MLE of θi,
i = 1, 2 based on k-th MC run, k = 1, 2, ..., 1000. The average ML estimates and
respective MSEs and RABs are computed as follows and the results obtained
are presented in Table 1.

θ̂i =
1

r

r∑

k=1

θ̂ik, i = 1, 2 (15)

MSE(θ̂i) =
1

r

r∑

k=1

(
θ̂ik − θi

)2

, i = 1, 2 (16)

RAB(θ̂i) =
|θ̂i − θi|

θi
, i = 1, 2 (17)

From Table 1, it is observed that as sample size n increases, MSE and RAB of
ML estimates tend to zero. Further, as stress level change time increases, number
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TABLE 1

MLEs of θ1 and θ2 with corresponding MSEs and RABs for different values of n, τ and τk based on 1000 simulations.

τ 1 1.2 1.4

τk 1.4 1.6 1.8 1.4 1.6 1.8 1.6 1.8

n = 25

θ̂1 0.4944 0.5038 0.4910 0.4989 0.5028 0.5022 0.4949 0.5060

θ̂2 0.9082 0.9102 0.8984 1.0174 0.8974 0.9168 1.0505 0.9157

MSE
(
θ̂1

)
0.0201 0.0235 0.0224 0.0179 0.0178 0.0211 0.0164 0.0153

MSE
(
θ̂2

)
0.1292 0.0985 0.0743 0.2286 0.1379 0.1072 0.2589 0.1509

RAB
(
θ̂1

)
0.0112 0.0076 0.0179 0.0020 0.0055 0.0043 0.0103 0.0120

RAB
(
θ̂2

)
0.0091 0.0113 0.0017 0.1304 0.0029 0.0187 0.1672 0.0174

n = 50

θ̂1 0.4933 0.5041 0.5001 0.4999 0.4997 0.4946 0.4974 0.4993

θ̂2 0.9092 0.9084 0.8982 0.8921 0.8912 0.8919 0.9159 0.8850

MSE
(
θ̂1

)
0.0110 0.0113 0.0109 0.0100 0.0094 0.0091 0.0079 0.0079

MSE
(
θ̂2

)
0.0703 0.0494 0.0372 0.1281 0.0691 0.0519 0.1392 0.0828

RAB
(
θ̂1

)
0.0135 0.0082 0.0003 0.0003 0.0005 0.0109 0.0051 0.0013

RAB
(
θ̂2

)
0.0103 0.0094 0.0021 0.0088 0.0098 0.0091 0.0176 0.0167

n = 100

θ̂1 0.5019 0.5039 0.4976 0.4998 0.5009 0.4989 0.5037 0.5005

θ̂2 0.9040 0.9016 0.9003 0.8854 0.8960 0.9001 0.8923 0.9049

MSE
(
θ̂1

)
0.0056 0.0054 0.0056 0.0045 0.0043 0.0046 0.0037 0.0037

MSE
(
θ̂2

)
0.0332 0.0230 0.0191 0.0745 0.0363 0.0267 0.0830 0.0419

RAB
(
θ̂1

)
0.0038 0.0079 0.0047 0.0003 0.0018 0.0022 0.0075 0.0010

RAB
(
θ̂2

)
0.0045 0.0018 0.0004 0.0161 0.0044 0.0001 0.0085 0.0054
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Figure 2 – Histograms of θ̂1 and θ̂2 for 1000 simulations
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failures in lower stress level increases, resulting in lesser MSE and RAB for MLEs
of θ1. Similarly, as duration between stress level change time and censoring time
increases, number of failures in higher stress level increases, resulting in lesser
MSE and RAB for MLEs of θ2. Also, from Figures 1 and 2, it is observed that
estimates of θ1 and θ2 do not vary much from their original values for 1000
simulations.

Since exact distribution for MLEs of θ1 and θ2 cannot be found, it is not
possible to construct exact CIs for θ1 and θ2. However, confidence intervals can
be constructed using bootstrap approach. Towards this, parametric bootstrap
confidence intervals namely, percentile bootstrap CI (PBCI) and bootstrap-t CI
(BTCI) are considered. For an elaborate discussion on bootstrap CI, one may
refer to Efron and Tibshirani (1993). The following steps are used to generate
r∗ bootstrap samples:

1. Using equation (15), obtain θ̂i , i = 1, 2.

2. Generate a random sample of size n∗ from Uniform (0,1) distribution, and
arrange them in ascending order to obtain order statistics (U∗

1:n, ..., U
∗

n:n).

3. For given value of stress change time τ , find n∗

1 such that

Un∗

1 :n
∗ ≤ 1−

1 + θ̂1 + θ̂1τ

1 + θ̂1
e−θ̂1τ ≤ Un∗

1+1:n∗

4. For given censoring time τk, find n
∗

2 such that

Un∗

2 :n
∗−n∗

1
≤ 1−

1 + θ̂2 + θ̂2(s+ τk − τ)

1 + θ̂2
e−θ̂2(s+τk−τ ≤ Un∗

2+1:n∗−n∗

1

5. The ordered observations t∗1:n∗ ≤ ... ≤ t∗n∗

1 :n
∗ ≤ t∗n∗

1+1:n∗ ≤ ... ≤ t∗n∗

1+n∗

2 :n
∗

≤ τk are calculated as follows:

t∗i:n∗ =





−

[
W

(
(Ui:n∗−1)(1+θ̂1)e

−(1+θ̂1)
)
+1+θ̂1

]

θ̂1
, i = 1, 2, ..., n∗

1

−

[
W

(
(Ui:n∗−1)(1+θ̂2)e

−(1+θ̂2)
)
+1+θ̂2

]

θ̂2
− s+ τ, i = n∗

1 + 1, ..., n∗

1 + n∗

2

6. Using the values n∗

1, n
∗

2,τ and τk and the ordered observations obtained in
step 5, bootstrap MLEs of θ1 and θ2 namely, θ∗1 and θ∗2 are obtained by
solving equations (11) and (12) using Newton-Raphson algorithm.

7. Repeat steps 2 to 6 r∗ times to obtain r∗ bootstrap samples

(
θ∗

[1]

i , θ∗
[2]

i , ..., θ∗
[r∗]

i

)
, i = 1, 2.

Bootstrap-t confidence interval

The steps involved in constructing Bootstrap-t CIs for θi, i = 1, 2 are as
follows:
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1. Find the ordered statistics
(
ψ
[1]
i , ..., ψ

[r∗]
i

)
, where

ψ
[l]
i =

θ∗
[l]

i − θ̂i

S.E
(
θ̂i

) , i = 1, 2, l = 1, 2, ..., r∗

Here

S.E
(
θ̂i

)
=

√√√√ 1

r2

r∑

k=1

V (θ̂ik) (18)

with V (θ̂ik) obtained based on its estimate from equation (13).

2. For given α ∈ (0, 1), let ẑ∗α/2 and ẑ∗1−α/2 denote the (r∗α/2)-th and

r∗ ((1− α/2))-th largest values in ordered ψ
[l]
i s obtained in step 1.

3. Two-sided 100(1− α)% bootstrap-t CI is

(
θ̂i − ẑ∗1−α/2S.E(θ̂i), θ̂i − ẑ∗α/2S.E(θ̂i)

)
, i = 1, 2.

Percentile bootstrap confidence interval

To obtain percentile bootstrap CI, the following steps are used

1. Arrange bootstrap estimates in ascending order to obtain

(
θ∗

[1]

i , θ∗
[2]

i , ..., θ∗
[r∗]

i

)
, i = 1, 2.

2. Let θ∗i(α/2) and θ
∗

i(1−α/2) be the (r∗α/2)-th and (r∗(1− α/2))-th values in
the ordered arrangement obtained in above step.

3. Two-sided 100(1− α)% percentile bootstrap CI is obtained as

(
θ∗i(α/2), θ

∗

i(1−α/2)

)
.

For ease of computation, the values of n and n∗ in the present study are taken
to be equal. Number of bootstrap replications, r∗ is taken as 500. The limits of
BTCI and PBCI obtained for various values of τ taking α = 0.05 are given in
Table 2, Table 3 and Table 4.

From Tables 2 to 4, it is seen that the width of the CIs decreases as sample
size increases.
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TABLE 2

Bootstrap CIs with τ = 1

τk 1.4 1.6 1.8

n = 25

θ̂1 0.4944 0.5038 0.491
BTCI (0.4877,0.5077) (0.4963,0.5132) (0.4839, 0.5042)
Width 0.02 0.0169 0.0203
PBCI (0.1883,0.7585) (0.2728,0.8008) (0.1881,0.7766)
Width 0.5702 0.528 0.5885

θ̂2 0.9082 0.9102 0.8984
BTCI (0.8886,0.9387) (0.8942,0.9364) (0.8843,0.9197)
Width 0.0501 0.0422 0.0354
PBCI (0.2665,1.7142) (0.3457,1.5745) (0.3946,1.4814)
Width 1.4477 1.2288 1.0868

n = 50

θ̂1 0.4933 0.5041 0.5001
BTCI (0.4876,0.5012) (0.4981, 0.5113) (0.4949,0.5084)
Width 0.0136 0.0132 0.0135
PBCI (0.2878,0.7042) (0.3176,0.7293) (0.2872,0.6889)
Width 0.4164 0.4117 0.4017

θ̂2 0.9092 0.9085 0.8982
BTCI (0.8963, 0.9264) (0.8969,0.9235) (0.8868,0.9123)
Width 0.0301 0.0266 0.0255
PBCI (0.4911,1.4139) (0.5155,1.3607) (0.5260,1.3154)
Width 0.9228 0.8452 0.7894

n = 100

θ̂1 0.5019 0.504 0.4976
BTCI (0.4978,0.5068) (0.5002,0.5089) (0.4933,0.5023)
Width 0.009 0.0087 0.009
PBCI (0.3640,0.6483) (0.3664,0.6357) (0.3651,0.6495)
Width 0.2843 0.2693 0.2844

θ̂2 0.9041 0.9016 0.9003
BTCI (0.8940,0.9182) (0.8938,0.9136) (0.8932, 0.9099)
Width 0.0242 0.0198 0.0167
PBCI (0.5467,1.2729) (0.5795,1.1799) (0.6419,1.1590)
Width 0.7262 0.6004 0.5171
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TABLE 3

Bootstrap CIs with τ = 1.2

τk 1.4 1.6 1.8

n = 25

θ̂1 0.499 0.5028 0.5022
BTCI (0.4916,0.5097) (0.4962, 0.5135) (0.4954,0.5130)
Width 0.0181 0.0173 0.0176
PBCI (0.2438,0.7952) (0.2464,0.7672) (0.2448,0.7802)
Width 0.5514 0.5208 0.5354

θ̂2 1.0174 0.8974 0.9168
BTCI (0.9924,1.0400) (0.8778,0.9285) (0.8987,0.9436)
Width 0.0476 0.0507 0.0449
PBCI (0.4915,2.1132) (0.2660,1.7012) (0.3438,1.6801)
Width 1.6217 1.4352 1.3363

n = 50

θ̂1 0.4999 0.4997 0.4946
BTCI (0.4952,0.5066) (0.4944,0.5062) (0.4896,0.5014)
Width 0.0114 0.0118 0.0118
PBCI (0.3212,0.6716) (0.3274,0.6982) (0.3152,0.6773)
Width 0.3504 0.3708 0.3621

θ̂2 0.8921 0.8912 0.8918
BTCI (0.8734,0.9220) (0.8759, 0.9124) (0.8787,0.9093)
Width 0.0486 0.0365 0.0306
PBCI (0.2641,1.6359) (0.3889,1.4617) (0.4467,1.3957)
Width 1.3718 1.0728 0.949

n = 100

θ̂1 0.4998 0.5009 0.4989
BTCI (0.4961,0.5051) (0.4971,0.5053) (0.4953,0.5037)
Width 0.009 0.0082 0.0084
PBCI (0.3541,0.6315) (0.3775, 0.6372) (0.3665,0.6259)
Width 0.2774 0.2597 0.2594

θ̂2 0.8855 0.896 0.9001
BTCI (0.8715,0.9064) (0.8852,0.9110) (0.8912,0.9104)
Width 0.0349 0.0258 0.0192
PBCI (0.3827,1.4314) (0.5060,1.3028) (0.6192,1.2148)
Width 1.0487 0.7968 0.5956
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TABLE 4

Bootstrap CIs with τ = 1.4

τk 1.6 1.8

n = 25

θ̂1 0.4949 0.506
BTCI (0.4882,0.5061) (0.4995,0.5155)
Width 0.0179 0.016
PBCI (0.2285,0.7596) (0.2765,0.7647)
Width 0.5311 0.4882

θ̂2 1.0505 0.9157
BTCI (1.0207,1.0754) (0.8973,0.9487)
Width 0.0547 0.0514
PBCI (0.4914,2.3491) (0.2658,1.6965)
Width 1.8577 1.4307

n = 50

θ̂1 0.4974 0.4993
BTCI (0.4923,0.5044) (0.4943,0.5057)
Width 0.0121 0.0114
PBCI (0.3169,0.6939) (0.3322,0.6891)
Width 0.377 0.3569

θ̂2 0.9159 0.885
BTCI (0.8974,0.9481) (0.8724,0.9069)
Width 0.0507 0.0345
PBCI (0.2653,1.6858) (0.3853,1.3576)
Width 1.4205 0.9723

n = 100

θ̂1 0.5038 0.5005
BTCI (0.5003,0.5083) (0.4968,0.5045)
Width 0.008 0.0077
PBCI (0.3757,0.6244) (0.3870,0.6321)
Width 0.2487 0.2451

θ̂2 0.8924 0.9049
BTCI (0.8784,0.9133) (0.8950,0.9196)
Width 0.0349 0.0246
PBCI (0.3897, 1.4115) (0.5191,1.2636)
Width 1.0218 0.7445
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TABLE 5

MLEs and Bootstrap CIs for real life data

Parameter MLE BTCI Width PBCI Width

θ1 0.2684 (0.1984, 0.3640) 0.1656 (0.1848,0.3543) 0.1695
θ2 2.3070 ( 1.778, 2.843 ) 1.065 ( 1.802, 2.852 ) 1.05

4.2. Real life data set

In this section, a real life data from Han and Kundu (2015) is used to illustrate
the proposed model. Data set consists of lifetimes (measured in hundred hours)
of 31 failed solar lightning devices out of 35 devices subjected to a simple step
stress test with temperature as stress. In this experiment, temparature was
changed from 293K to 353K at stress change time (τ) 5 and the experiment was
stopped at censoring time (τk) 6. It is assumed that at each temperature level,
lifetime of the device follows Lindley distribution. From the data, it is observed
that n1 = 16 and n2 = 15. The model parameters are estimated by solving
equations (11) and (12). Bootstrap CIs are also found and results obtained are
presented in the Table 5.

5. Concluding remarks

A simple step stress model with Lindley lifetime under type-I censoring scheme
is introduced in this paper. Under the assumption of cumulative exposure
model, point estimation of parameters by the method of maximum likelihood
is discussed. Parametric bootstrap confidence intervals for unknown parame-
ters are constructed using bootstrap-t CI approach and percentile bootstrap CI
approach. The proposed model is illustrated with both real life and simulated
data sets. From simulation study, it is found that as sample size increases, MSEs
decrease and RABs tend to zero for both the model parameters. It is also found
that precision of MLEs and CIs depends on duration between stress level change
time and censoring time. As duration between stress level change time and cen-
soring time increases, number of failures in higher stress level increases. This
results in smaller MSE and RAB for MLEs and shorter CIs.
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Summary

This article introduces simple step-stress accelerated life time model with Lindley life-

time under type-I censoring. The corresponding likelihood function is developed and

parameter estimation by maximum likelihood approach is discussed. Also, parametric

bootstrap confidence intervals are constructed for the unknown parameters. Further,

performance of the estimates of the proposed model is evaluated through simulation

study as well as real life data set.
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