STATISTICA, anno L. XIV, n. 4, 2004

ASYMPTOTICS FOR LINEAR APPROXIMATIONS
OF SMOOTH FUNCTIONS OF MEANS

Andrea Pallini

1. INTRODUCTION

The class of smooth functions of means contains several population character-
istics and estimates, providing an important theoretical framework for statistical
inference. The class of smooth functions is known to include the univariate vari-
ance, the difference of means, the ratio of means, the ratio of variances, the cor-
relation coefficient, and the corresponding asymptotically pivotal versions. See
Fuller (1976), chapter 5, Bhattacharya and Ghosh (1978), Hall (1992), chapter 2,
Sen and Singer (1993), chapter 3, and Pallini (2000, 2002).

An accurate linear approximation for smooth functions of means is studied in

allini , With an error of oraer n 1 probabi , as the sample size 7
Pallini (2002), with forder O,(n™”) in probability, as the sample si

diverges. Here, we study a higher-order version of the basic linear approximation
studied in Pallini (2002), yielding an error in approximation of smaller order

0, (n7%), as n diverges. We show that the asymptotic distribution of the basic

and higher-order linear approximations is normal, as 7 diverges. We also study
the corresponding sample versions of the basic and higher-order linear approxi-

mations, which can be used for approximating the sample estimate of a smooth

-7/2

function of means, with etrors of order O, (”—5/ >y and O ,(n '), respectively,

as 7 diverges.

In particular, in section 2, we propose a higher-order version of the linear ap-
proximation of smooth functions of means proposed in Pallini (2002), by using a
specific definition of difference of derivatives. We study a common asymptotics
for the basic and its higher-order linear version, as » diverges. We show that
these linear approximations are asymptotically normal, as #» diverges. Finally, in
section 3, we discuss the details of a simulation study on the ratio of means ex-
ample, in order to see the computational issues and show the effectiveness of
these linear approximations.
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2. LINEAR APPROXIMATIONS

2.1. Notation

Let N={X,...,X } be a random sample of » independent and identically

distributed (1.i.d.) observations drawn from a finite-dimensional ¢ -variate ran-

dom variable X, with distribution F' and finite vector of means u = E[X,].
We denote by @ a real-valued population characteristic of interest. More

precisely, @ is defined as €= g(u), where g:U —R' is a smooth function,
U c R?, fulfilling the conditions of Appendix 4.1. A natural estimator of @ is

6= 2(X), where x= l’l_le:1 X, i1s the vector of ¢ sample means.

2.2. The basic linear approximation

In Pallini (2002), it is shown that
87+ 10— g()= 2 g0 Y + )= g()} + 0, (n7) M

as 7 —> o , where ?=ﬂ_1Z;Yi, and Y, =X, —u, for every 7=1,...,n . See

also Appendix 4.2. The proof is detailed in Appendix 4.4.
Result (1) is obtained by Taylor expanding the smooth function

g(y + u)— g(u) around the origin 0 of R?, as the sum of the » Taylor expan-
sions of the functions g¢(z” Y, + u) — g(u) around 0, where i =1,....7 .

The set of smooth functions g(ﬂlei +u)—g(u), i=1,...,n, can be viewed
as a sample of 7 well-defined i.i.d. random variables.

2.3. The higher-order linear approximation
For every ¢, =1,...,9, we denote by &, (u) the derivative of the smooth func-

tion g(u), g (u)= dg(u)/ou'" | where ue U. We define the quantity T as

I'=

N

q 7 q
{ Do T+ =2 g (Y, + p) nlY@} : )
t1:1

i=14#=1

where the derivatives are in the directions 7 and #~'Y,, at the points §+ # and
n 'Y, + u, respectively. The coefficient 1/4 in (2) adjusts the difference of the

. . . _2 .
derivatives for an exact correction of the term of order O,(z ) in (1), as

n—>x0 .
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Adding T" (given by (2)) to the basic linear approximation (1), we obtain the
higher-order linear approximation given by

ST+ 1) - g() =S g0 Y, + )= g} +T+0,(n™), ©)

i=1

as 7 —>» o0 . See Appendix 4.3 for the Taylor expansion of the derivative.
The order O, (n7%) in (3) improves on 0, (%) in (1) by a good factor #', as
n— . See Appendix 4.5 for the proof. In Appendix 4.6, it is also seen that

F:Op(ﬁfl/z),as 7n—>00 .

2.4. Linear approximations of sample estimates

The sample versions of the linear approximations (1) and (3) can naturally be
obtained by substituting # with X. These sample versions can be adapted to

yield linear approximations of the sample estimate g(X) of the smooth function

84 -
From (1) and (3), it follows that linear approximations of the estimates g(x)

can be defined by
d® =Y g (X, ~ D)+ D)+ 0,07%), @
i=1
as 7 —> o , and
(X)=n" Z g (X =) +X)+n 20 +0, (2, (5)
i=1
as 7 —> 0 , where

. 1 &<
P=—722, 07 X -0+ (XY -5 ©)

i=14=1
The coefficient 2 in (5) adjusts I (given by (6)) for an exact correction of the
term of order O, (ﬂ_s/z) in (4),as n—> 0.

See Appendixes 4.7 and 4.8, for the proofs of the orders Op(;fS/ ?Y and
0, (ﬂ_7/2) ,as 7 — 0, in (4) and (5), respectively. In Appendix 4.9, it is also seen

that f‘ZOP(n_l/z) and ﬂ_leOp(ﬁ_S/z),as n—>00 .

In Appendixes 4.10 and 4.11, it is shown that the linear approximations (4) and
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(5) of the estimates g(X) are asymptotically normal, as #» — o0 . In particular, it is

seen that
”1/2{ z o7 (X, )+ X) —ng() } — 5 N(0,67%), (7
”1/2{ i g(ﬂ—l(Xi —§)+§)+2f—ﬂg(§) } — N(0,5%), 8

2 . . .
as 7 —>» o0 , where o~ is the asymptotic variance.

The asymptotic variance # ' in (7) and (8) can be estimated by
6% =2 {e(r (X, =R+ %)~ g} ©)
i=1

-3/2

In Appendix 4.12, it is shown that 6° =#"'¢” + O,(n"""),as n—>0.

3. A SIMULATION STUDY

3.1. The ratio of means example

The random sample N consists of »# 1id. bivariate observations
X, =(V", V)" where g=2, and i=1,...,n. The random variable V,*

ranges in a set of positive values. The population ratio of means is defined as
guy=pV (WH™

The sample ratio of means g(X) = ) s given by
T +m)="+ g FY + u?)

The basic linear approximation (1) is defined by

P CCINORNO
N CIORENCON &

Zﬂ: Y, + )= glu) = Z {

The quantity I' (given by (2)) in the higher-order linear approximation (3) is
defined by the derivative

2 1 <O L,
- —(1) _ —(1) y H —(2)
TV E Y o o)
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in the direction y at the point y + x4, and, for every 7 =1,...,#, by the derivative

2 1
-1 “Ixt) 1)
2 . gzl(” Y, +u)n YU = @ 2 " Y
n=1 n oY+ p
Al M
n_ Y +p Y@

1

(Y +u?)?

in the direction #~ 'Y, at the point 7~ Y, + 4.

z

Sample quantities in (4), (5) and (6) are given by the function

p (XD -0y 4 50

1 _ —
g(ﬂ (X1 - X) + X) - ﬂ_l (X§2> _§(2)> 4 i(z) 5

and, for every 7=1,...,7, by the derivative

2
&, (1 (X =)+ ) (X[ -X)
H=1
= I p X O —x0)
n (X -3+ ‘

”il(XED _§(1)) +§(1)

1@ _<®
—— n (X7 —=x7).
(' (XP —xP)+x@)? 1

3.2. Computational details

Figures 1 and 2 plot the differences between the sample ratio of means g(X)

and its linear approximations (4) and (5). Figures 3 and 4 compare the sample
values of its linear approximations (4) and (5) with the corresponding quantiles of
the standard normal distribution.

Simulated data were generated from a bivariate folded-normal distribution and a

bivariate lognormal distribution. In particular, let 7, =|N(0,1)|, W, =|N(0,1)|
and W, = ‘ N (0,1)‘ be independent random variables, where N(0,1) is the normal
N(0,1) random variable. The folded-normal variable X, =(V,"”, V)" in Figure 1
is defined by V," =, +W, and V,"” =1, +W,, where the correlation coef-
ficent of V'V and V,* is p=0.5. Let W, =N(0,1), W, =N(0,1) and
W,=N(0,1) be independent random wvariables. The lognormal wvariable
X, =(V,V, V)" in Figure 2 is defined by V,*) =exp((W, +W)//2) and
V) =exp(W, + W)/ \/E) , where the correlation coefficient of V' and V,”
is p=0.377541.
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3.3. Empirical results

Figures 1 and 2 show the performance of the sample linear approximations (4)
and (5) for the ratio of means example. The simulated samples were generated
with 40 different sizes 7 that range from #»=2 to »=41. Linear approxima-
tions (4) and (5) may be equivalent in performance. It is important to see that the
linear approximations (4) and (5) in Figure 1 can be regarded as nearly exact, for
all sizes #2>18.

Figures 3 and 4 show the speed of convergence to normality of the linear ap-
proximations (4) and (5) for the ratio of means example, with small sample sizes
n, n=4 and n="7. Results are preferable with data from the folded-normal dis-
tribution.

3.4. Conclusions

Sample linear approximations (4) and (5) are effective and very accurate. In any
case, (5) may be more difficult than (4) to apply with some examples of smooth
functions of means, since (5) demands the derivative of smooth functions.

Sample linear approximations (4) and (5) can be used for simplifying asymptot-
ics in statistical inference for population smooth functions of means. Stochastic
convergence of a sequence of smooth function of means can be studied by sto-
chastic convergence of a sequence of sums of well-defined i.i.d. smooth functions
that define the sample linear approximations (4) or (5).

Dipartimento di Scienge Statistiche “Paolo Fortunati” ANDREA PALLINI
Alma Mater Studiorum Universita di Bologna

4, APPENDIX

4.1. Assumptions

We denote by g, .., (1) the derivative of order & of the smooth function

gu+u)y,uel, g, (u)=0"glu+p)/ou' 00|, , where u=E[Y, +u].

We let ‘utlmt/g :E[Y]('H) ...Yl(tk)] , and ?:7’]_12 Yi .

i=1

Let M, >0, M, >0and M, >0 be finite constants. For every £<y, where

s<5, g,.., (u4) exists and is bounded, | g, .., (4) ‘S M, . The sample smooth

function g(y+ ) and the basic linear approximation Z {o(n™ 'Y, + ) — g(p)}

i=1

are bounded,
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Figure 1 — Difference between the sample ratio of means g(X) and its basic linear approximation

given by (4) (panel (a)), and difference between g(X) and its higher-order sample linear approxima-

tion given by (5) (panel (b)), for 40 different sample sizes # (horizontal axes) ranging from 7 =2
to # =41 . Bivariate folded-normal observations from correlated ( p = 0.5 ) marginals.
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Figure 2 — Difference between the sample ratio of means g(X) and its basic linear approximation

given by (4) (panel (a)), and difference between g(X) and its higher-order sample linear approxima-

tion given by (5) (panel (b)), for 40 different sample sizes # (horizontal axes) ranging from 7 =2
to 7 =41 . Bivariate lognormal observations from correlated ( p = 0.377541) marginals.
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Figure 3 — Plot (x, y) of the quantiles of the standard normal distribution (x -axis) and the corre-

sponding sample values of the linear approximation (4) ( y -axis), sample size #» =4 (panel (a)) and

n="T (panel (c)). Plot (x, y) of the quantiles of the standard normal distribution ( x -axis) and the

sample values of the higher-order linear approximation (5) (_y -axis), sample size #=4 (panel (b))

and #="7 (panel (d)). The ratio of means example, with bivariate folded-normal observations from

correlated (p =0.5) marginals.
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Figure 4 — Plot (x, y) of the quantiles of the standard normal distribution (x -axis) and the corre-

sponding sample values of the linear approximation (4) (_y -axis), sample size #» =4 (panel (a)) and

n="T (panel (c)). Plot (x, y) of the quantiles of the standard normal distribution (x -axis) and the

sample values of the higher-order linear approximation (5) ( y -axis), sample size # =4 (panel (b))

and #»=7 (panel (d). The ratio of means example, with bivariate lognormal observations from cot-
related ( p = 0.377541) marginals.
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| s(F+u) | <M,,

Zﬂl ™Y + )= g(w)} |<M;.

i=1

4.2. Exact linear approximations

Following Appendix 4.1, if the derivative &t (1)=0, for all s =4, then the

basic linear approximation (1) is exact. If the derivative g, .., (#)=0, for all

s 25, then the higher-order linear approximation (3) is exact.

4.3. Taylor expansion of the derivative

For every ue U, the Taylor expansion around u=0 of the derivative of the
function g(u+ u) is

q q
D g (atmyu™ =" g (u)u™
#=1 #=1

1 g 7
+Z ZZ g;l...fk(,u) u<t1>...u(tk)'

k22 (’é_l)! n=1 =1

In particular, for every u e U, we have that

q q
D g (utmu =" g (a+p)u®
#=1 H=1

u=0
Shy (t1) (t2)
+4 2D g, (a+myu® | b
#H=11,=1
u=0
N (t1)
+> g (ut+p)| u®
n=1 u=0

1 9 49 4

T ZZZ gll’zfa <u+’u) u(tl)

2 H=1t=11=1

q 4
+2 2> g, (utp)
1

n=1t,=

1) )

u=0

u(t1) u(tz)

u=0
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1 Sk ok (t) (t2) (t3) (ty)
+g ZZZZ gt1t2t3t4(u+lu)u uuu
h=1t,=11=11,=1 .
9.4 4
+ 3 z Z z g;1;2;7) ( u+ ,Ll) (tl)u(tz)u<t3> 4.
=11,=11,=1 _
4.4. Proof of O, (n™2) in the basic linear approximation (1), as n —» o0
From the definition (1), by Taylor expanding the function g(u+ u), where

ueU,around u=0, it follows that
7 » 4
g + )= g1)= 2 e Y+ )= g()} = 2 A, +R,
i=1 k=1
where the quantities A, A,, A, and A, are obtained as

q9
=D g (wy" ZZ g, (uyn Y =

1 i=14y=

9
2 &, (0F"Y M“ZZZ G, () YY)

=1 i=14=1t,=1

l\)|~
M‘Q

Il
—_

4

q9
D Lo () TIFHF

O\IH
M
M=

t=1t,=11=1
no 9 9 9
l ZZZ ( )ﬂ_3Y-(t1>Y-(t2)Y.(t3)
Bty (M ; ; AN
6 i=14=1t,=11=1
and
9. 9 49 4
! ZZZZ () THFTEF)
Brtyrg, (M) Y Y Y TY
=1t,=11=12,=1
1 9. 4. g
(CPAVACIAVACEY (t)
ZZZZZ gmzfﬂ(:u)” YH Y Y Y
i=14=11t,=11;=1¢,=1

respectively, and R is the remainder. Note that E[i’l_lthl)] =0, where 7=1,...

tor every 7, =1,...,q . Forevery 7, =1,...,9, £=1,2,3,4 , we have that
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—(t1) [Z n Y(H)}

E[V“”V“”FE{Z ﬂsz‘”th”} =i,

i=1

i=1

-3 t t
E[y(tO (t2>y(t%) |:z 7 Y( 1)Y( z)Y(t3):| = ,U; s
(t)(t)(t)(t)_—3 -2
By 'y y=y*=n"n,,, +0n "),
) () ) ) 3
- t t t t —C
E Z” YUY Y = Mttty >
/=1

as n—>00. These results on multivariate moments show that A, =0 and
E[A,]=E[A;]=0. Then,

>|E[A, +R]|=4>0.

There  exists a  finite constant M, >0, such that AM,A=

E| ‘A1 +A, +A;+A, +R‘] . For every #> 0, we also have that

+00 4
M, A= I%dp[ ZAk+R S%J
0 k=1
+0o0 4
ZJ‘L/JPL ZAk—i_R S%]
1A k=1

4

+00
zmjdl{ > A, +R Sﬂ}
7 k=1

=MP[ >z‘/1].

Setting 74 = ¢, where & >0, we obtain the Tchebychev inequality

$uen

k=1
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4
> A, +R

k=1

1

It finally follows that A, +A,+A;+A,+R=0,(n""), as n—> o, because

>5JS81M41.

M,=0(1) and A= O(n?), as n—>o0. Accordingly, it holds that R=0, (n),

as 7 —> 0 .

4.5. Proof of O, (1) in the higher-order linear approximation (3), as n —> 0o
Following Appendix 4.3, the quantity A; is defined as

1 9. 9. 4 4 4

120 ¢ Z z Z Z Z Lyttt (M) Y(t‘)y(tZ)y@%)y(%)y(t
=1

ty=1t,=1#,=1t;=1

1 ZZ i i i i S () n- Y(t1)Y(tz)Y(t;)Y(u)Y(ts)

120 i=14=1t,=1t;=12,=115=1

5

B

From (3), it follows that

dF+u)—gm)=D {g(n Y, + ) — g(u)} —T=D A, +R",

i=1 k=1

where T is given by (2), the quantities A, are obtained as A, =A, —kA, /4,
£=1,2,3,4,5, and R" is the remainder. For every 7, =1,...,9, £=1,2,3,4,5,

we have that

TETE)Fl) ) FEs) = 4 -3
E[y ] y ’ y ’ y ) y ’ ]_” /“11112;*31415 +O(” )a

n
=Syt )Gty ) | - —4
E Z n o YUYYTY Y =N My

i=1

as 7 —> 0 . Following Appendix 4.3, and these results on multivariate moments,
we have that AT = A: =0 and E[A,]= E[A;] =0. We also have that
‘E[A; +R"] ‘zﬂ* >0, where A" =0(x"), as n—>oo. Finally, it can be
shown that A} +A, +A, +A, +A. +R = 0, (n7%), as n—> o0, and (accordingly)

R ZOP(ﬂ_4),as n—>00.
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4.6. Proof of T =0, (ﬂ_l/z) ,as n—>0 , where I' is given by (2)

Following Appendix 4.3, we have that

q q
DL FTHWTY =D g () TV +0, (),

=1 =1

as 7 —» o , and

q9 q
Y g 7Y A Y =Y g (Y 40, (7,

=1 #=1

where 7=1,...,7,as n—>00 , for every ¢, =1,...,g . It follows that

n q9
DD g Y +0,07,

T 1i ( )_(tl) 1
== & M)y~ ——

as # —> o0 . Finally, FZOp(ﬂfl/z),as n—>00 .

4.7. Proof of O, (ﬂ_s/ %Y in the linear approximation (4), as n —» o0

Forevery 7, =1,...,q9, £=1,2,3, we have that

20 (X =x")=0,""),

i=1

n
Z ﬂ_l (XEH) _ i(t1)) ”_1 (thz) _ i(tZ)) — Op (”—3/2) ,

i=1

Z ﬂ_l(thl) _i(t])) ﬂ_l (X?z) —i(tZ)) ﬂ_l (tha) _g(%)) — Op (ﬁ—5/2) ;

i=1

as 7 —>» o0 . Following Appendix 4.4, and substituting x4 with X, we have that

. n 4
A== g (X, =) +%) (X[ -x1)

i=114=1

n 4
=220 {8, () + 0, ()b (X =X,

i=1 =1
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1L d ~ B B
Ay =2 2 D, (7 (X =D D) (X X7 (X )
i=14,=11,=1
IR L3 — - t —(t — t —(t
=0 XXX 4 )+ 0,7 )T (X =) 7 (X ),
i=1 4 =14,=1
171

= __ZZ Z Z gt1t213 1<Xi _§)+§)

6= 14 =1t,=1¢,=1

. ﬁ71 (X(H) _ i(tl)) ”*1 (X(tz) _ i(tZ)) ”*1 (X(%) _ i@s))

:__ZZ Z Z {gt1tzz‘3 (:u)+O (”_1/2>}

=1 1 =11=14=1

. ﬂ_l(thO _§<t1>) ﬂ_l (thz) _i(tz)) ﬂ_l (Xg%) _i(tzy)) ,

as 7 —> o . We also have that Al :Op(n_l), Az :Op(ﬂ‘3/2) and A3 =Op(ﬂ_5/2),

as 7 —> o0 . It can be shown that A, + R = 0, (n”'), where R is the remainder, as

-3/2
)

n—> o , and (accordingly) R=0 (7 ,as 7 —> o . Then,

0= Z (g0 (X, = %)+ )= g®H+0, (),

as 7 —> 00, and (4) is finally proved.

4.8. Proof of O, (7[7/ 2\ in the higher-order linear approximation (5), as n —

Following Appendix 4.7, with T' given by (6), we have that AT = A; =0. It can
be shown that R* =0 p (ﬂ_S/ %Y, where R’ is the remainder, as # — o0 . Then, (5)

is finally proved.

4.9. Proof of T = Op(ﬂ_1/2) , as n—>o0 , where U is given by (6)

Following Appendix 4.7, we have that

:—_ZZ {g¢1<ﬂ>+o (ﬂ 1/2)} —1(X(t1) —(t1))

i=1#=1

as n— o0 . Finally, we have that f=Op(ﬂ_1/2) and ﬂ_leOp(ﬂ_3/2), as

7n—> 0 .



Asymptotics for linear approximations of smooth functions of means 639

4.10. Asymptotic normality of the linear approximation (4), as n — oo

The variance VAR{Z 2™, + u)—n (g(,u)} of the basic linear approxima-

i=1
tion (1) 1s

ﬁ VAR {f g (wyn Y +0 ])(ﬂz):| =n{n o> +0(n")}

i=1 f=1
=n'o" +0(n %),

as 7 —> 0 , where

q q
o’ =2 g (g, (W) n, -
H=11,=1

The characteristic function ¢,(#) of
o { 280 Y + )= g(u) } :
i=1

1 .
where #€eR’, is

i=1

4,(n)=E exp{z‘wln“z { S oY, + )= g(u) }j

=E|1+mo 'n"? { Zg(ﬁ_lYi +u)—ng(u) }

i=1

2
1 7
+EZ'2%20'7271_1 { Zg(;[lYi +,u)—ng(,u)} +---

i=1

2
:1—%+O(ﬂ3/2),

as 7 —» o0 . Actually, it holds that
4
4,0 =1=—+or"),

as 7 — o , Then, we have that



640 A. Pallin

8, () —> exp(—u" / 2),

as # —> o0, which is the characteristic function of the normal N(0,1) distribution.
Following Appendixes 4.4 and 4.7, we finally have the asymptotic result (7).

4.11. Asymptotic normality of the higher-order linear approximation (5), as n —» 0

In Appendix 44, it is seen that A;=0. The variance

VAR|:Z g(ﬂ_l Y, +pu)—ng(u)+ F:l of the higher-order linear approximation

i=1

(3) then is

n 9
> VAR{ D (wyn Y+ op(nz)} =n o +0n?),

i=1 H=1

as 7 —> 0, where o~ is defined in Appendix 4.10.

The characteristic function ¢, (#) of

O'lﬂl/z{ ig(ﬂ_lYi +,u)—n<g(,u)+l“} ,

i=1

where # e R’ , 18
4
4, () =1=—+o(r""),

as 7 — o ., Then, we have that

4, () > exp(=4"/2),
as 7 —> 00 , which is the characteristic function of the normal N(0,1) distribution.
Following Appendixes 4.5, 4.8 and 4.9, we finally have the asymptotic result (8).
4.12. Proofof 6> =n"'c” + 0, ('Y, as n—> 0, where &> is given by (9)

From the definition (9), we have that

2
n q
6'=3 { > g, Y 0,7 } :

i=1 | #=1
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as 7 —> o0 . The asymptotic variance o’ is defined in Appendix 4.10. Then, it fi-

-3/2

nally follows that 6> =7"'o" + O,(n"""),as n—>0.
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RIASSUNTO

Analisi asintotica per approssimaziont lineari di medie
Viene definita e studiata una versione di ordine piu accurato della linearizzazione di
funzioni regolari di medie proposta in Pallini (2002). Viene dimostrato come questa ver-

sione migliori errore di approssimazione di ordine O p(;fZ) in probabilita, al divergere

N . . N . . -3
della numerosita campionatia 7, producendo un errote piu piccolo di ordine O, (7 ~), al

divergere di 7. Viene dimostrata la normalita asintotica di entrambe le linearizzazioni al
divergere di #». Vengono presentati i risultati empirici di uno studio di simulazione
sull’esempio del rapporto di due medie.

SUMMARY

Asympiotics for linear approximations of smooth functions of means

A higher-order version of the linear approximation of smooth functions of means
proposed in Pallini (2002) is defined and studied. This version is shown to improve over

the error of order O, (n~%) in probability, as the sample size # diverges, yielding a smaller

-3 . . . .
error of order O,(n "), as n diverges. Both linear approximations are shown to have a

normal distribution, as # diverges. Empirical results of a simulation study on the ratio of
means example are presented.



