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ASYMPTOTICS FOR LINEAR APPROXIMATIONS 
OF SMOOTH FUNCTIONS OF MEANS 

Andrea Pallini 

1. INTRODUCTION

The class of smooth functions of means contains several population character-
istics and estimates, providing an important theoretical framework for statistical 
inference. The class of smooth functions is known to include the univariate vari-
ance, the difference of means, the ratio of means, the ratio of variances, the cor-
relation coefficient, and the corresponding asymptotically pivotal versions. See 
Fuller (1976), chapter 5, Bhattacharya and Ghosh (1978), Hall (1992), chapter 2, 
Sen and Singer (1993), chapter 3, and Pallini (2000, 2002). 

An accurate linear approximation for smooth functions of means is studied in 

Pallini (2002), with an error of order 2( )pO n  in probability, as the sample size n

diverges. Here, we study a higher-order version of the basic linear approximation 
studied in Pallini (2002), yielding an error in approximation of smaller order 

3( )pO n , as n  diverges. We show that the asymptotic distribution of the basic 

and higher-order linear approximations is normal, as n  diverges. We also study 
the corresponding sample versions of the basic and higher-order linear approxi-
mations, which can be used for approximating the sample estimate of a smooth 

function of means, with errors of order 5/2( )pO n  and 7/2( )pO n , respectively, 

as n  diverges.
In particular, in section 2, we propose a higher-order version of the linear ap-

proximation of smooth functions of means proposed in Pallini (2002), by using a 
specific definition of difference of derivatives. We study a common asymptotics 
for the basic and its higher-order linear version, as n  diverges. We show that 
these linear approximations are asymptotically normal, as n  diverges. Finally, in 
section 3, we discuss the details of a simulation study on the ratio of means ex-
ample, in order to see the computational issues and show the effectiveness of 
these linear approximations. 
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2. LINEAR APPROXIMATIONS

2.1. Notation

Let 1{X , , X }n  be a random sample of n  independent and identically 

distributed (i.i.d.) observations drawn from a finite-dimensional q -variate ran-

dom variable X , with distribution F  and finite vector of means 1[X ]E .

We denote by  a real-valued population characteristic of interest. More 

precisely,  is defined as ( )g , where 1:g U  is a smooth function, 
qU , fulfilling the conditions of Appendix 4.1. A natural estimator of  is 

ˆ ( x )g , where 1
i1

x X
n

i
n  is the vector of q  sample means. 

2.2. The basic linear approximation 

In Pallini (2002), it is shown that 

1 2
i

1

( y ) ( ) { ( Y ) ( )} ( )
n

p

i

g g g n g O n , (1) 

as n , where 1

1
y Y

n

ii
n , and i iY X , for every 1, ,i n . See 

also Appendix 4.2. The proof is detailed in Appendix 4.4.  
Result (1) is obtained by Taylor expanding the smooth function 

( y ) ( )g g around the origin 0  of q , as the sum of the n  Taylor expan-

sions of the functions 1
i( Y ) ( )g n g  around 0 , where 1, ,i n .

The set of smooth functions 1
i( Y ) ( )g n g , 1, ,i n , can be viewed 

as a sample of n  well-defined i.i.d. random variables. 

2.3. The higher-order linear approximation 

For every 1 1, ,t q , we denote by 
1
(u)tg  the derivative of the smooth func-

tion (u)g , 1

1

( t )(u) (u)/ utg g , where u U . We define the quantity  as 

1 1

1 1

1 1

1( t ) 1 (t )
i i

1 1 1

1
( y ) y ( Y ) Y

4

q qn

t t

t i t

g g n n , (2) 

where the derivatives are in the directions y  and 1
iYn , at the points y  and 

1
iYn , respectively. The coefficient 1/4  in (2) adjusts the difference of the 

derivatives for an exact correction of the term of order 2( )pO n  in (1), as 

n .
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Adding  (given by (2)) to the basic linear approximation (1), we obtain the 
higher-order linear approximation given by 

1 3
i

1

( y ) ( ) { ( Y ) ( )} ( )
n

p

i

g g g n g O n , (3) 

as n . See Appendix 4.3 for the Taylor expansion of the derivative. 

The order 3( )pO n  in (3) improves on 2( )pO n  in (1) by a good factor 1n , as 

n . See Appendix 4.5 for the proof. In Appendix 4.6, it is also seen that 
1/2( )pO n , as n .

2.4. Linear approximations of sample estimates 

The sample versions of the linear approximations (1) and (3) can naturally be 
obtained by substituting  with x . These sample versions can be adapted to 

yield linear approximations of the sample estimate ( x )g  of the smooth function 

( )g .

From (1) and (3), it follows that linear approximations of the estimates g(x)  

can be defined by 

1 5/21
i

1

( x ) ( (X x) x ) ( )
n

p

i

g n g n O n , (4) 

as n , and 

1 1 7/21
i

1

ˆ( x ) ( (X x) x ) 2 ( )
n

p

i

g n g n n O n , (5) 

as n , where 

1 1

1

1

11 ( t ) ( t )
i

1 1

ˆ 1
( (X x) x ) (X x )

4

qn

t i

i t

g n n . (6) 

The coefficient 2  in (5) adjusts ˆ  (given by (6)) for an exact correction of the 

term of order 5/2( )pO n  in (4), as n .

See Appendixes 4.7 and 4.8, for the proofs of the orders 5/2( )pO n  and 

7/2( )pO n , as n , in (4) and (5), respectively. In Appendix 4.9, it is also seen 

that 1/2ˆ ( )pO n  and 3/21 ˆ ( )pn O n , as n .

In Appendixes 4.10 and 4.11, it is shown that the linear approximations (4) and 
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(5) of the estimates ( x )g  are asymptotically normal, as n . In particular, it is 

seen that 

1/2 1 2
i

1

( (X x) x ) ( x ) (0, )
n

d

i

n g n n g N , (7) 

1/2 1 2
i

1

ˆ( (X x) x ) 2 ( x ) (0, )
n

d

i

n g n n g N , (8) 

as n , where 2  is the asymptotic variance. 

The asymptotic variance 1 2n  in (7) and (8) can be estimated by 

22 1
i

1

ˆ { ( (X x) x ) ( x )}
n

i

g n g . (9) 

In Appendix 4.12, it is shown that 1 3/22 2ˆ ( )pn O n , as n .

3. A SIMULATION STUDY

3.1. The ratio of means example 

The random sample  consists of n  i.i.d. bivariate observations 
(1) (2)

i i iX (V , V )T , where 2q , and 1, ,i n . The random variable ( 2 )
1V

ranges in a set of positive values. The population ratio of means is defined as  

1(1) ( 2 )( ) ( )g .

The sample ratio of means 1(1) ( 2 )( x ) x ( x )g  is given by

1(1) (1) ( 2 ) ( 2 )( y ) ( y )( y )g .

The basic linear approximation (1) is defined by  

1 (1) (1) (1)
1

i 1 ( 2 )(2) ( 2 )
1 1 i

Y
{ ( Y ) ( )}

Y

n n
i

i i

n
g n g

n
.

The quantity  (given by (2)) in the higher-order linear approximation (3) is 
defined by the derivative 

1

1

(1) (1)2
1(1) ( 2 )

( 2 ) ( 2 ) 2( 2 ) ( 2 )
1

y1
( y ) y y y

y ( y )
t

t

g ,
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in the direction y  at the point y , and, for every 1, ,i n , by the derivative 

1

1

1

2
1 1 1(t ) (1)

i i1 (2) ( 2 )
1 i

1 (1) (1)
1 (2)i

i1 2(2) ( 2 )
i

1
( Y ) Y Y

Y

Y
Y ,

( Y )

t i

t

g n n n
n

n
n

n

in the direction 1 Yin  at the point 1 Yin .

Sample quantities in (4), (5) and (6) are given by the function 

1 (1) (1) (1)
1 i

i 1 (2) (2) (2)
i

(X x ) x
( (X x) x )

(X x ) x

n
g n

n
,

and, for every 1, ,i n , by the derivative 

1 1

1

1

2
1 1 (t ) (t )

i i
1

1 (1) (1)
i1 (2) (2) (2)

i

( (X x) x ) (X x )

1
(X x )

(X x ) x

t

t

g n n

n
n

1 (1) (1) (1)
1 (2) (2)i

i1 2(2) (2) (2)
i

(X x ) x
(X x ) .

( (X x ) x )

n
n

n

3.2. Computational details 

Figures 1 and 2 plot the differences between the sample ratio of means ( )g x

and its linear approximations (4) and (5). Figures 3 and 4 compare the sample 
values of its linear approximations (4) and (5) with the corresponding quantiles of 
the standard normal distribution. 

Simulated data were generated from a bivariate folded-normal distribution and a 

bivariate lognormal distribution. In particular, let 1 (0,1)W N , 2 (0,1)W N

and 3 (0,1)W N  be independent random variables, where N(0,1) is the normal 

N(0,1) random variable. The folded-normal variable (1) (2)
1 1 1X (V , V )T  in Figure 1 

is defined by (1)
1 1 3V W W  and ( 2 )

1 2 3V W W , where the correlation coef- 

ficient of (1)
1V  and ( 2 )

1V  is 0.5 . Let 1 (0,1)W N , 2 (0,1)W N  and 

3 (0,1)W N  be independent random variables. The lognormal variable 
(1) (2)

1 1 1X (V , V )T  in Figure 2 is defined by (1)
1 1 3V exp(( )/ 2 )W W  and 

( 2 )
1 2 3V exp(( )/ 2 )W W , where the correlation coefficient of (1)

1V  and ( 2 )
1V

is 0.377541 .
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3.3. Empirical results 

Figures 1 and 2 show the performance of the sample linear approximations (4) 
and (5) for the ratio of means example. The simulated samples were generated 
with 40  different sizes n  that range from 2n  to 41n . Linear approxima-
tions (4) and (5) may be equivalent in performance. It is important to see that the 
linear approximations (4) and (5) in Figure 1 can be regarded as nearly exact, for 
all sizes 18n .

Figures 3 and 4 show the speed of convergence to normality of the linear ap-
proximations (4) and (5) for the ratio of means example, with small sample sizes 
n , 4n  and 7n . Results are preferable with data from the folded-normal dis-
tribution. 

3.4. Conclusions 

Sample linear approximations (4) and (5) are effective and very accurate. In any 
case, (5) may be more difficult than (4) to apply with some examples of smooth 
functions of means, since (5) demands the derivative of smooth functions.  

Sample linear approximations (4) and (5) can be used for simplifying asymptot-
ics in statistical inference for population smooth functions of means. Stochastic 
convergence of a sequence of smooth function of means can be studied by sto-
chastic convergence of a sequence of sums of well-defined i.i.d. smooth functions 
that define the sample linear approximations (4) or (5). 

Dipartimento di Scienze Statistiche “Paolo Fortunati” ANDREA PALLINI

Alma Mater Studiorum Università di Bologna 

4. APPENDIX

4.1. Assumptions 

We denote by 
1

( )
kt tg  the derivative of order k  of the smooth function 

(u )g , u U , 1

1

( )( )
... 0( ) (u )/ u ... u ,k

k

tk t
t t ug g  where 1E[ Y ] .

We let 1 k

1

(t ) (t )
1 1E[Y Y ]

kt t , and 1
i

1

y Y
n

i

n .

Let 1 0M , 2 0M and 3 0M  be finite constants. For every k s , where 

5s ,
1

( )
kt tg  exists and is bounded, 

1 1( )
kt tg M . The sample smooth 

function ( y )g  and the basic linear approximation 1
i

1

{ ( Y ) ( )}
n

i

g n g

are bounded, 
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Figure 1 – Difference between the sample ratio of means ( x )g  and its basic linear approximation 

given by (4) (panel (a)), and difference between ( x )g  and its higher-order sample linear approxima-

tion given by (5) (panel (b)), for 40  different sample sizes n  (horizontal axes) ranging from 2n

to 41n . Bivariate folded-normal observations from correlated ( 0.5 ) marginals. 
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Figure 2 – Difference between the sample ratio of means ( x )g  and its basic linear approximation 

given by (4) (panel (a)), and difference between ( x )g  and its higher-order sample linear approxima-

tion given by (5) (panel (b)), for 40  different sample sizes n  (horizontal axes) ranging from 2n

to 41n . Bivariate lognormal observations from correlated ( 0.377541) marginals. 
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Figure 3 – Plot ( , )x y  of the quantiles of the standard normal distribution ( x -axis) and the corre-

sponding sample values of the linear approximation (4) ( y -axis), sample size 4n  (panel (a)) and 

7n  (panel (c)). Plot ( , )x y  of the quantiles of the standard normal distribution ( x -axis) and the 

sample values of the higher-order linear approximation (5) ( y -axis), sample size 4n  (panel (b)) 

and 7n  (panel (d)). The ratio of means example, with bivariate folded-normal observations from 

correlated ( 0.5 ) marginals. 
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Figure 4 – Plot ( , )x y  of the quantiles of the standard normal distribution ( x -axis) and the corre-

sponding sample values of the linear approximation (4) ( y -axis), sample size 4n  (panel (a)) and 

7n  (panel (c)). Plot ( , )x y  of the quantiles of the standard normal distribution ( x -axis) and the 

sample values of the higher-order linear approximation (5) ( y -axis), sample size 4n  (panel (b)) 

and 7n  (panel (d)). The ratio of means example, with bivariate lognormal observations from cor-

related ( 0.377541 ) marginals. 
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2( y )g M ,

1
i 3

1

{ ( Y ) ( )}
n

i

g n g M .

4.2. Exact linear approximations 

Following Appendix 4.1, if the derivative 
1

( ) 0
st tg , for all 4s , then the 

basic linear approximation (1) is exact. If the derivative 
1

( ) 0
st tg , for all 

5s , then the higher-order linear approximation (3) is exact. 

4.3. Taylor expansion of the derivative 

For every u U , the Taylor expansion around u 0  of the derivative of the 
function (u )g  is 

1 1
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( 1)! k

k

q q

t t

t t

q q

t t

k t t
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g
k

In particular, for every u U , we have that 
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(t )

1 u 0

(t )(t ) (t )

1 1 1
u 0

q
(t )

1 1 u 0

(u ) u (u ) u
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q q

t t

t t

q

t

t

q q q

t t t
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3 41 2

1 2 3 4

1 2 3 4
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g

4.4. Proof of 2( )pO n  in the basic linear approximation (1), as n

From the definition (1), by Taylor expanding the function (u )g , where 

u U , around u 0 , it follows that 

4
1

i
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( y ) ( ) { ( Y ) ( )} ,
n

k
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g g g n g R

where the quantities 1 , 2 , 3  and 4  are obtained as 
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respectively, and R is the remainder. Note that 11 (t )
1E[ Y ] 0n , where 1, ,i n ,

for every 1 1, ,t q . For every 1, ,kt q , 1, 2,3,4k , we have that 
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as n . These results on multivariate moments show that 1 0  and 

2 3E[ ] E[ ] 0 . Then, 
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4
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There exists a finite constant 4 0M , such that 4M

1 2 3 4E[ ]R . For every 0t , we also have that 
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Setting t , where 0 , we obtain the Tchebychev inequality 
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4
1

4
1

k

k

P R M .

It finally follows that 2
1 2 3 4 ( )pR O n , as n , because 

4 (1)M O  and 2( )O n , as n . Accordingly, it holds that 3( )pR O n ,

as n .

4.5. Proof of 3( )pO n  in the higher-order linear approximation (3), as n

Following Appendix 4.3, the quantity 5  is defined as 
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From (3), it follows that 
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where  is given by (2), the quantities *
k  are obtained as * /4k k kk ,

1, 2,3,4,5k , and *R  is the remainder. For every 1, ,kt q , 1, 2,3,4,5k ,

we have that 

3 4 51 2

1 2 3 4 5

4 3(t ) (t ) (t )(t ) (t )E[ y y y y y ] ( ),t t t t tn O n

3 4 51 2

1 2 3 4 5

5 4(t ) (t ) (t )(t ) (t )
i i i i i

1

E Y Y Y Y Y ,
n

t t t t t

i

n n

as n . Following Appendix 4.3, and these results on multivariate moments, 

we have that * *
1 4 0  and * *

2 3E[ ] E[ ] 0.  We also have that 
* * *
5E[ ] 0R , where 3* ( )O n ¸ as n . Finally, it can be 

shown that 3* * * * * *
1 2 3 4 5 ( )pR O n , as n , and (accordingly) 

4* ( )pR O n , as n .
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4.6. Proof of 
1/2( )pO n , as n  , where  is given by (2) 

Following Appendix 4.3, we have that 
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4.7. Proof of 5/2( )pO n  in the linear approximation (4), as n
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1 11/2 (t ) (t ) (t ) (t )
i i

1 1 1

ˆ 1
( (X x) x ) (X x ) (X x )

2

1
{ ( ) ( )} (X x ) (X x ) ,

2

q qn

t t

i t t

q qn

t t p

i t t

g n n n

g O n n n

1 2 3

1 2 3

3 31 1 2 2

1 2 3

1 2 3

31 1 2 2

1
3 i

1 1 1 1

1 1 1 (t ) (t )(t ) (t ) (t ) (t )
i i i

1/2

1 1 1 1

1 1 1 (t ) (t(t ) (t ) (t ) (t )
i i i

1ˆ ( (X x) x )
6

(X x ) (X x ) (X x )

1
{ ( ) ( )}

6

(X x ) (X x ) (X x

q q qn

t t t

i t t t

q q qn

t t t p

i t t t

g n

n n n

g O n

n n n 3 ) ) ,

as n . We also have that 1
1

ˆ ( )pO n , 3/2
2

ˆ ( )pO n  and 5/2
3

ˆ ( )pO n ,

as n . It can be shown that 1
1

ˆ ˆ ( )pR O n , where R̂  is the remainder, as 

n , and (accordingly) 3/2ˆ ( )pR O n , as n . Then, 

1 3/2
i

1

0 { ( (X x) x ) ( x )} ( ),
n

p

i

g n g O n

as n , and (4) is finally proved. 

4.8. Proof of 7/2( )pO n  in the higher-order linear approximation (5), as n

Following Appendix 4.7, with ˆ  given by (6), we have that * *
1 2

ˆ ˆ 0 . It can 

be shown that 5/2*ˆ ( )pR O n , where *R̂  is the remainder, as n . Then, (5) 

is finally proved. 

4.9. Proof of 1/2ˆ ( )pO n , as n , where ˆ  is given by (6) 

Following Appendix 4.7, we have that  

1 1

1

1

1/2 1 (t ) (t )
i

1 1

ˆ 1
{ ( ) ( )} (X x )

4

qn

t p

i t

g O n n ,

as n . Finally, we have that 1/2ˆ ( )pO n  and 1 3/2ˆ ( )pn O n , as 

n .
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4.10. Asymptotic normality of the linear approximation (4), as n

The variance 1
i

1

VAR ( Y ) ( )
n

i

g n n g  of the basic linear approxima-

tion (1) is 

1

1

1

1 2 2 3(t ) 2
i

1 1

1 22

VAR ( ) Y ( ) { ( )}

( ) ,

qn

t p

i t

g n O n n n O n

n O n

as n , where 

1 2 1 2

1 2

2

1 1

( ) ( ) .
q q

t t t t

t t

g g

The characteristic function ( )n u  of 

11 11/2 (t )
i

1

( Y ) ( )
n

i

n g n n g ,

where 1u , is 

1 11/2
i

1

1 11/2
i

1

2

2 12 2 1
i

1

2
3/2

( ) E exp ( Y ) ( )

E 1 ( Y ) ( )

1
( Y ) ( )

2

1 ( ) ,
2

n

n

i

n

i

n

i

u iu n g n n g

iu n g n n g

i u n g n n g

u
O n

as n . Actually, it holds that 

2
3/2( ) 1 ( ) ,

2
n

u
u o n

as n . Then, we have that 
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2( ) exp( /2) ,n u u

as n , which is the characteristic function of the normal N(0,1) distribution. 

Following Appendixes 4.4 and 4.7, we finally have the asymptotic result (7). 

4.11. Asymptotic normality of the higher-order linear approximation (5), as n

In Appendix 4.4, it is seen that 1 0 . The variance 

1
i

1

VAR ( Y ) ( )
n

i

g n n g  of the higher-order linear approximation 

(3) then is 

1

1

1

1 2 1 2(t ) 2
i

1 1

( ) Y ( ) ( )
qn

t p

i t

VAR g n O n n O n ,

as n , where 2  is defined in Appendix 4.10.  

The characteristic function * ( )n u  of

1 11/2
i

1

( Y ) ( )
n

i

n g n n g ,

where 1u , is 

2
5/2* ( ) 1 ( ) ,

2
n

u
u o n

as n . Then, we have that 

* 2( ) exp( /2) ,n u u

as n , which is the characteristic function of the normal N(0,1) distribution. 

Following Appendixes 4.5, 4.8 and 4.9, we finally have the asymptotic result (8). 

4.12. Proof of 1 3/22 2ˆ ( )pn O n  , as n , where 2ˆ  is given by (9) 

From the definition (9), we have that 

1

1

1

2

1 3/22 (t )
i

1 1

ˆ ( ) Y ( )
qn

t p

i t

g n O n ,
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as n . The asymptotic variance 2  is defined in Appendix 4.10. Then, it fi-

nally follows that 1 3/22 2ˆ ( )pn O n , as n .
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RIASSUNTO

Analisi asintotica per approssimazioni lineari di medie 

Viene definita e studiata una versione di ordine più accurato della linearizzazione di 
funzioni regolari di medie proposta in Pallini (2002). Viene dimostrato come questa ver-

sione migliori l’errore di approssimazione di ordine 2( )pO n  in probabilità, al divergere 

della numerosità campionaria n , producendo un errore più piccolo di ordine 3( )pO n , al 

divergere di n . Viene dimostrata la normalità asintotica di entrambe le linearizzazioni al 
divergere di n . Vengono presentati i risultati empirici di uno studio di simulazione 
sull’esempio del rapporto di due medie. 

SUMMARY

Asymptotics for linear approximations of smooth functions of means 

A higher-order version of the linear approximation of smooth functions of means 
proposed in Pallini (2002) is defined and studied. This version is shown to improve over 

the error of order 2( )pO n  in probability, as the sample size n  diverges, yielding a smaller 

error of order 3( )pO n , as n  diverges. Both linear approximations are shown to have a 

normal distribution, as n  diverges. Empirical results of a simulation study on the ratio of 
means example are presented. 


