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1. Introduction

Bivariate distributions specified by their marginals has been a topic of consider-
able interest in distribution theory. Among these the Farlie-Gumbel-Morgenstern
(FGM) family of distributions was studied extensively by many authors. This fam-
ily is represented by the bivariate distribution function, with marginal distribution
functions F1(x1) and F2(x2), as

F (x1, x2) = F1(x1)F2(x2)[1 + α(1− F1(x1))(1− F2(x2))]; |α| < 1. (1)

For the properties and applications of (1), we refer to Johnson and Kotz (1975),
Schucany et al. (1978), Drouet Mari and Kotz (2001) and various references there
in. One important limitation of the family is that its coefficient correlation is
restricted to the narrow range of (− 1

3 ,
1
3 ), so that its application is confined to

data that exhibits low correlation. Accordingly there has been several attempts
to modify (1) by several researchers like Kotz and Johnson (1977), Cambanis
(1977), Huang and Kotz (1984, 1999), Bairamov et al. (2001), Amblard and
Girard (2009), Bekrizadeh et al. (2012) and Carles et al. (2012) to enhance the
range of correlation as well as to impart more flexibility aimed at extending the
domain of application. The Cambanis system defined by the distribution function

F (x1, x2) =F1(x1)F2(x2)[1 + α1(1− F1(x1)) + α2(1− F2(x2))

+ α3(1− F1(x1))(1− F2(x2))],
(2)

obtained by the addition of two linear terms in F1 and F2 to (1) differs from the
other extensions of the Farlie-Gumbel-Morgenstern family in the method of con-
struction and in the properties. While introducing this family Cambanis (1977) has
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shown that if the random variables corresponding to (2) are uncorrelated, they are
independent and also gave an interpretation to the parameters. Other than this,
a systematic study of the properties of the distribution and its application does
not appear to have been discussed in literature. The present paper is an attempt
in this direction. Apart from the generalization of a well discussed family there
are several factors that makes our work worthwhile. In the first place under some
simple conditions on the parameters it is totally positive (reverse rule) of order
two, the strongest condition for positive (negative) association. The coefficients of
association like Kendall’s tau, Spearman’s rho and various time-dependent mea-
sures of association have quite simple expressions and mutual implications. We
can use the family as a model for lifetimes in a two-component device or system.
A peculiar feature of the bivariate reliability function derived of this model is that
it can be expressed in terms of the univariate reliability functions of the marginals
of (2) and those of the baseline distributions F1 and F2. Further it can be used as
a model in all situations where the Farlie-Gumbel-Morgenstern family is applied.

The present work is organized into four sections. In section 2, we enumerate
the distributional characteristics. This is followed by the reliability properties in
section 3. We demonstrate the application of the family in modelling bivariate
lifetime data in section 4. The study ends with a brief conclusion in section 5.

2. Distributional properties

The survival function and the probability density function of the vector (X1, X2)
following Cambanis distribution are, respectively

H̄(x1, x2) = F̄1(x1)F̄2(x2)[1− α1F1(x1)− α2F2(x2) + α3F1(x1)F2(x2)], (3)

and

h(x1, x2) = f1(x1)f2(x2)[1 + α1(1− 2F1(x1)) + α2(1− 2F2(x2))

+ α3(1− 2F1(x1))(1− 2F2(x2))]. (4)

When (3) is absolutely continuous the parameters satisfy the conditions

(1 + α1 + α2 + α3) > 0, (1 − α1 − α2 + α3) > 0, (1 − α1 + α2 − α3) > 0
and (1 + α1 − α2 − α3) > 0, where α′s are real constants. The marginal survival
functions are

H̄i(xi) = F̄i(xi)[1− αiFi(xi)], i = 1, 2. (5)

Unlike the FGM, the marginals are not F1 and F2 from which the bivariate
family is constructed, but the marginals H1 and H2 are uniquely determined by
F1 and F2. From (5), the marginal densities work out to be

hi(xi) = fi(xi)[1 + αi(1− 2Fi(xi))]. (6)

Let Z1 and Z2 be the random variables with distribution functions F1 and F2.
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Then

µr,0 = E(Xr
1 ) =

∫ ∞

−∞
xr1h1(x1)dx1

=

∫ ∞

−∞
xr1(1 + α1 − 2α1F1(x1))f1(x1)dx1

= (1 + α1)M1(r, 0, 0)− 2α1M1(r, 1, 0),

where
M1(r, s, t) = E(Zr

1F
s
1 F̄1

t
), (7)

is the probability weighted moment (PWM) of order (r,s,t) of Z1. For a detailed
study of the properties and application of PWM we refer to Greenwood et al.
(1975). For brevity we suppress the suffix t=0 in the following deliberations.
Defining M2(r, s, t) as the PWM of Z2,

µ0r = E(Xr
2 ) = (1 + α2)M2(r, 0)− 2α2M2(r, 1). (8)

Further from (4),

E(X1X2) =

∫ ∞

−∞

∫ ∞

−∞
x1x2h(x1, x2)dx1dx2

=M1(1, 0)M2(1, 0) + α1[M1(1, 0)− 2M1(1, 1)]M2(1, 0) + α2[M2(1, 0)

−2M2(1, 1)]M1(1, 0) + α3[M1(1, 0)− 2M1(1, 1)][M2(1, 0)− 2M2(1, 1)],

and hence

Cov(X1X2) = (α3 − α1α2)[M1(1, 0)M2(1, 0)− 2M1(1, 1)M2(1, 0)

− 2M1(1, 0)M2(1, 1) + 4M1(1, 1)M2(1, 1)]. (9)

From (7), (8), and (9) the means and variances ofXi and the correlation coefficient
between X1 and X2 follow.

Two kinds of conditional distributions are of interest in studying the depen-
dence structures of bivariate distributions. Of these the distributions of Xi given
Xj > xj , i, j= 1, 2, i ̸= j has survival function

P [Xi > xi|Xj > xj ] = F̄j(xj)
[1− α1F1(x1)− α2F2(x2) + α3F1(x1)F2(x2)]

1− αjFj(xj)
,

and that of Xi given Xj=xj is given by

P [Xi > xi|Xj = xj ] =
F̄i(xi)fj(xj)[αiFi(xi)− 1]

[1 + αj(1− 2Fj(xj))]
.

2.1. Dependence

There are different approaches to study the dependence or association between two
random variables. The classical method is to construct a coefficient that indicates
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the extent and nature of dependence. Prominent measures belonging to this family
are the Kendall’s tau, Spearman’s rho, and Blomqvist’s beta (Nelson (2006)).
Although one of these measures is sufficient to find the nature of dependence for
the Cambanis family, we discuss all so that the practitioner can choose one of his
choice.

When X1 and X2 are continuous random variables Kendall’s tau is calculated
as

τ = 4

∫ ∞

−∞

∫ ∞

−∞
H(x1, x2)h(x1, x2)dx1dx2 − 1,

For the Cambanis family

τ =
2

9
(α3 − α1α2). (10)

For the FGM, α1 = α2 = 0 and −1 < α3 < 1 so that τ ∈ (−2
9 ,

2
9 ). The Cambanis

family improves upon the dependence coefficient compared to the FGM. For ex-
ample, assume that α3=0.9, α1 = -0.41 and α2 = -0.5. Then FGM gives τ = 2α3

9
= 0.2 while for the Cambanis family τ=0.24. Notice that the choice of α1 and α2

are subject to the constraints on the parameters of (3).
The Spearman’s rho derived from

ρ = 12

∫ ∞

−∞

∫ ∞

−∞
[H(x1, x2)−H1(x1)H2(x2)]dH1(x1)dH2(x2),

=
(α3 − α1α2)

3
.

Finally the Blomqvists measure is the simplest of all expressed as,

β = 4H(MX1 ,MX2)− 1,

whereMX1 andMX2 are the medians ofX1 andX2. From (5), usingHi(Mxi) =
1
2 ,

i=1,2 we obtain

Fi(Mxi) =
1 + αi − (1 + α2

i )
1/2

2αi
.

Substituting this in H(., .), we find H(MX1 ,MX2) to obtain β. Thus,

β = α−1
1 α−1

2 (1 + α1 − (1 + α2
1)

1
2 )(1 + α2 − (1 + α2

2)
1
2 )

{1 + (α1 − 1− (1 + α2
1)

1
2 )

2
+

(α2 − 1− (1 + α2
2)

1
2 )

2

+
α3(α1 − 1− (1 + α2

1)
1
2 )(α2 − 1− (1 + α2

2)
1
2 )

4α1α2
} − 1.

A second approach to study the dependence structure is to make use of vari-
ous dependence concepts. The six basic positive dependence concepts used for
the purpose in the order of stringency are positive correlation, positive quadrant
dependence (PQD), association, right tail increase, stochastic increase, total pos-
itivity of order 2. Among these, a function g(x, y) is said to be totally positive
(reverse rule) of order two, abbreviated as TP2 (RR2) if
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g(x, y)g(u, v)− g(x, v)g(u, y) ≥ (≤)0,

for all x < u, y < v. When the support of the vector (X1, X2) is a cartesian prod-
uct set, then an equivalent condition for TP2 (RR2) is that the density function
h(x1, x2) satisfies

∂2

∂x1∂x2
log h(x1, x2) ≥ (≤)0.

For the Cambanis family

∂2 log h

∂x1∂x2
=

(α3 − α1α2)h1(x1)h2(x2)

[1− α1F1(x1)− α2F2(x2) + α3F1(x1)F2(x2)]2
,

showing that h(x1, x2) is TP2 (RR2) if α3 ≥ (≤)α1α2. The value of τ in (10)
further reveals that τ > 0 =⇒ (X1, X2) is TP2 (RR2). Thus τ > (<)0 is a
sufficient condition for all the six positive (negative) dependent concepts to hold.

The third class of dependence measures are time bound, they being dependent
on x1 and x2. In reliability and survival analysis the lifetime remaining to an in-
dividual or device after it has attained a specific age is of substantial interest. For
example, in medical studies such time-dependent measures are useful in determin-
ing the time of maximum association between interval from remission to relapse
and the next interval from relapse to death. Many time-dependent measures are
proposed to analyse the nature of association.

Clayton (1978) proposed

θ(x1, x2) =
H̄(x1, x2)

∂2H̄(x1,x2)
∂x1∂x2

∂
∂x1

H̄(x1, x2)
∂

∂x2
H̄(x1, x2)

,

where H̄ is an arbitrary absolutely continuous bivariate survival function, as a
measure of association. The variables X1 and X2 are positively or negatively
associated according as θ > 1 or < 1 and X1 and X2 are independent of θ = 1. In
terms of logarithms of the survival functions it can be seen that

θ(x1, x2)− 1 =
∂2

∂x1∂x2
log H̄(x1, x2)

∂ log H̄
∂x1

∂ log H̄
∂x2

.

Taking H̄ to be (3) after some algebra we find

θ(x1, x2)− 1 =
F̄1(x1)F̄2(x2)

[1− 2α1F1(x1)− α2F2(x2) + 2α3F1(x1)F3(x3)]

× (α3 − α1α2)

[1− α1F1(x1)− 2α2F2(x2) + 2α3F1(x1)F2(x2)]
.

Since the denominator is positive, it can be seen that the association is positive
(negative) iff α3 > (<)α1α2 and the variables are independent if α3 = α1α2.
We say that two continuous random variables X1 and X2 are right corner set
increasing (decreasing)- RCSI (RCSD), if

P (X1 > x1, X2 > x2|X1 > x
′

1, X2 > x
′

2),
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is non-decreasing (non-increasing) in x
′

1 and x
′

2 for all x1 and x2. Further Gupta
(2003) has shown that X1 and X2 are RCSI (RCSD) if and only if θ > (<) 1 .
Accordingly α3 > α1α2 is a necessary and sufficient condition that (X1, X2) is
RCSI (RCSD) which is equivalent to τ > (<) 0.

A second time-dependent measure discussed in Anderson et al. (1992) is

ψ(x1, x2) =
H̄(x1, x2)

H̄1(x1)H̄2(x2)
,

which for the Cambanis family simplifies to

ψ(x1, x2) = 1 +
(α3 − α1α2)F1(x1)F2(x2)

(1− α1F1(x1))(1− α2F2(x2))
.

The interpretation of ψ is that when ψ=1, X1 and X2 are independent and larger
(smaller) values of ψ greater (lesser) than unity implies positive (negative) asso-
ciation. Thus α3 > α1α2 (α3 < α1α2) indicate positive (negative) association.
By definition (X1, X2) is positive (negative) quadrant dependent - PQD (NQD),
if H̄(x1, x2) ≥ (≤)H̄1(x1)H̄2(x2), so that ψ(x1, x2) > (<) 1 is equivalent to PQD
(NQD) and this happens only if α3 > α1α2. Notice that whenever τ > (<) 0
both θ(x1, x2) and ψ(x1, x2) exhibit positive (negative) association, but the for-
mer cannot account for the extent of association as it does not depend on the terms
containing x1 and x2 in the latter measures. The advantage of time-dependent
measures is that a further analysis of its behaviour is possible. For example in the
case of the uniform distribution with

Fi(xi) = xi, 0 ≤ xi ≤ 1, i = 1, 2,

H̄(x1, x2) = (1− x1)(1− x2)[1− α1x1 − α2x2 + α3x1x2],

ψ(x1, x2) = 1 +
(α3 − α1α2)x1x2

(1− α1x1)(1− α2x2)
,

∂ψ

∂x1
=

(α3 − α1α2)x2
(1− α1x1)2(1− α2x2)

.

Suppose α3 > α1α2 so that X1 and X2 are positively associated. This association
will show a decreasing trend in x1 whenever α1 < 0 and increasing trend for α1 > 0
and similarly in x2.

The behaviour of the local dependence function of Holland and Wang (1987)
viz,

δ(x, y) =
∂2

∂x1∂x2
log h(x1, x2),

is already clear from our discussions on TP2. There are other measures like local
correlation coefficient of Bjerve and Doksum (1993) and linear dependence func-
tion of Bairamov et al. (2003) discussed in literature. The expressions for these
functions for the general family are intractable, but there is closed form expressions
for some of the members
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Example 2.1. The Bjerve and Doksum measure is

ρ(x1) =
σX1β(x1)

(σX1
β(x1))2 + σ2(x1)

,

where σ2
X = V (X1), β(x1)=

∂
∂x1

[E(X2|X1 = x1)], σ
2(x1) = V (X2|X1 = x1). For

the bivariate exponential law

h(x1, x2) = e−x1e−x2 [1 + α1(2e
−x1 − 1) + α2(2e

−x2 − 1)

+ α3(2e
−x1 − 1)(2e−x2 − 1)], x1, x2 > 0,

ρ(x1) =
σX1(α3 − 2α1)e

−x1

σ2
X1

(α3 − 2α1)2e−2x1 + σ2(x1)
,

where

σ2
X1

= 1− 5α1

2
− α2

1,

and

σ2(x1) = (1 +
α2

2
− α2

2

4
) + (α2(α1 −

α3

2
))(2e−x1 − 1)

+ (α1 −
α3

2
)2(2e−x1 − 1)2.

Generally, the coefficient ρ(x1) lies between -1 and +1. But we can see from the
above expression that the association is positive when α3 > 2α1 and negative when
α3 < 2α1.

3. Application to reliability modelling

3.1. Hazard rates

Gupta (2016) has analysed the FGM from a reliability point of view. We extend
some of these results to the Cambanis family and provide some new applications.
Two basic concepts required for our discussions are the bivariate hazard rate and
the mean residual life. There are several definitions for the hazard rate in the
multivariate case, of which we first consider the bivariate scalar hazard rate of
Basu (1971), defined as

a(x1, x2) =
h(x1, x2)

H̄(x1, x2)
.

For the Cambanis family

a(x1, x2) = (11)

f1(x1)f2(x2)[1 + α1(1− 2F1(x1)) + α2(1− 2F2(x2)) + α3(1− 2F1(x1))(1− 2F2(x2))]

F̄1(x1)F̄2(x2)[1− α1F1(x1)− α2F2(x2) + α3F1(x1)F2(x2)]
.

Denoting by ri(xi) = fi(xi)/F̄i(xi) and si(xi) = hi(xi)/H̄i(xi), the marginal
hazard rates of the distributions Fi and Hi, i=1, 2, we can obtain a relationship
between si(xi) and ri(xi) in the form

si(xi) = ri(xi) +
αiri(xi)F̄i(xi)

1− αiF̄i(xi)
.
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Solving

Fi(xi) =
1

αi
[(αi − 1) +

ri(xi)

si(xi)
], i = 1, 2. (12)

Substituting (12) into (11), we get an expression for the bivariate hazard rate in
terms of the univariate hazard rates ri and si , after noting that the right side of
(11), f1f2/F̄1F̄2 = r1r2. Thus an important property of the Cambanis family is
that its scalar hazard rate is determined from the marginal hazard rates. Further
note that such a result is not true for the FGM, as the expression (12) holds for
αi > 0 only and to get FGM we need αi = 0.

The hazard gradient of (X1, X2) is

(b1(x1, x2), b2(x1, x2)) = (
−∂ log H̄
∂x1

,
−∂ log H̄
∂x2

),

which is a second approach to define bivariate hazard rate. Now

bi(x1, x2) = ri −
(α3f3−i − αi)fi

(1− α1F1 − α2F2 + α3F1F2)

=
ri[1− si−ri

αisi
{α3

α3−i−1
α3−i

+ ri
si
} − α1]

1− ((α1 − 1) + r1
s1
)− ((α2 − 1) + r2

s2
) + α3

α1α2
((α1 − 1) + r1

s1
)(α2 − 2)( r2s2 )

,

i = 1, 2.

A third definition hazard rate is the bivariate conditional hazard rate defined as

(c1(x1, x2), c2(x1, x2)) = (
h(x1|x2)

P (X1 > x1|X2 = x2)
,

h(x2|x1)
P (X2 > x2|X1 = x1)

)

where h(x1|x2), h(x2|x1) are the conditional density functions of

(X1|X2 = x2), (X2|X1 = x1)

. These rates are calculated as

ci(x1, x2) =
fi(xi)[1 + α1(1− 2F1(x1)) + α2(1− 2F2(x2)) + α3(1− 2F1(x1))(1− 2F2(x2))]

F̄i(xi)(1− αiFi(xi))
,

i = 1, 2.

Thus the conditional failure rates can also be expressed in terms of ri(xi) and
si(xi).

3.2. Mean residual life

The mean residual life of Xi is given by

m1(x1) = E(X1 − x1|X1 > x1) =
1

H1(x1)

∫ ∞

x1

H1(t)dt

=
1

F̄1(x1)(1− α1F1(x1))
[

∫ ∞

x1

F̄1(t)dt− α1

∫ ∞

x1

F̄1(t)F1(t)dt]. (13)



The Cambanis family of bivariate distributions etc. 177

Likewise for the distribution F1, the mean residual life is

n1(x1) =
1

F̄1(x1)

∫ ∞

x1

F̄1(t)dt. (14)

From (13) and (14) ∫ ∞

x1

F̄1(t)dt = F̄1(x1)n1(x1), (15)

and∫ ∞

x1

F̄1(t)F1(t)dt = α−1
1 [n1(x1)F̄1(x1)− F̄1(x1)(1− α1F1(x1))m1(x1)]. (16)

Now the bivariate mean residual life is the vector (µ1(x1, x2), µ2(x1, x2)) where

µ1(x1, x2) = E(X1 − x1|X1 > x1, X2 > x2)

=
1

H̄(x1, x2)

∫ ∞

x1

H̄(t, x2)dt, (17)

and

µ2(x1, x2) =
1

H̄(x1, x2)

∫ ∞

x2

H̄(x1, t)dt. (18)

Using (15) and (16) in the expression for (17) simplifies to a closed form expression
for µi as

µ1(x1, x2) =
(α3

α1
− α2)F2(x2)n1(x1)− (α3

α1
F2(x2)− 1)(1− α1F1(x1))m1(x1)

1− α1F1(x1)− α2F2(x2) + α3F1(x1)F2(x2)
,

Similarly from (18)),

µ2(x1, x2) =
(α3

α2
− α1)F1(x1)n2(x2)− (α3

α2
F1(x1)− 1)(1− α2F2(x2))m2(x2)

1− α1F1(x1)− α2F2(x2) + α3F1(x1)F2(x2)
.

where n2 and m2 are the mean residual life functions corresponding to F2 and
H2. An aspect of special interest in reliability analysis is the monotonicity of the
reliability functions. From the expressions of the various functions, it is easy to
recognize that the regions of the parameter space for which the hazard rates of
mean residual life are increasing or decreasing are not easily determined analyti-
cally. However we note from Shaked (1977) that since h(x1, x2) is TP2 (RR2) if
α3 ≥ (≤)α1α2.

(a) b1(x1, x2) is decreasing when α3 > α1α2

(b) c1(x1, x2) is decreasing when α3 > α1α2

(c) µ1(x1, x2) is increasing when α3 > α1α2.
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3.3. The exponential case

Since exponential distribution play an important role in reliability analysis. In
this section, we discuss the reliability properties of the Cambanis model when
Fi(xi) = 1 − exp[−λixi], λi > 0. In this case, the marginal distributions of Xi,
i=1, 2 have survival functions

H̄i(xi) = e−λixi [1− αi(1− e−λixi)]

= (1− αi)e
−λixi + αie

−2λixi , (19)

which is a generalized mixture of two exponential laws with parameters λi and
2λi, respectively. Although the sum of the mixing constants is unity, αi can be
negative. The hazard rate of Hi is

si(xi) =
(1− αi)λie

−λixi + 2λiαie
−2λixi

(1− αi)e−λixi + 2αie−2λixi
.

Differentiating si(xi) with respect to xi, we see that the sign of dsi
dxi

depends on

Ai(xi) = −3αi(1− αi)e
−3λixi .

Thus the marginal hazard rate is decreasing (DHR) for 0 < αi < 1 and increasing
(IHR) if αi lies outside (0,1). On account of this the marginals can accommodate
IFR and DFR data. The mean residual life function of Xi is

mi(xi) =
λ−1
i (1− αi) + (2λi)

−1αie
−λixi

(1− αi) + αie−λixi
.

SinceXi is DHR in 0 < αi < 1 and IHR otherwise, it follows thatXi has increasing
mean residual life (IMRL) in 0 < αi < 1 and decreasing mean residual life for other
values of αi. From theorem 2 in Nair and Preeth (2009), the distributions (19) is
characterized by the relationship

mi(xi) =
3

2λi
− 1

2λ2i
si(xi),

with βi = 1−αi, βi ≥ 0, so that seperate calculation of mi(xi) from H̄i(xi) is not
neccesary.

To analyse the bivariate reliabiliy functions, we note that

H̄(x1, x2) = e−λ1x1−λ2x2 [1− α1(1− e−λ1x1)− α2(1− e−λ2x2)

+ α3(1− e−λ1x1)(1− e−λ2x2)],

and hence the hazard gradient has components

b1(x1, x2) =

λ1 +
(α2 − α3(1− e−λ2x2)λ1e

−λ1x1)

1− α1(1− e−λ1x1)− α2(1− e−λ2x2) + α3(1− e−λ1x1)(1− e−λ2x2)
,
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and

b2(x1, x2) =

λ2 +
(α1 − α3(1− e−λ1x1)λ2e

−λ2x2)

1− α1(1− e−λ1x1)− α2(1− e−λ2x2) + α3(1− e−λ1x1)(1− e−λ2x2)
.

Using (19), the mean residual life function reduces to

µ1(x1, x2) =

1− (2− e−λ1x1)(α1

2 − α3

2 (1− e−λ2x2))− α2(1− e−λ2x2)

λ1[1− α1(1− e−λ1x1)− α2(1− e−λ2x2) + α3(1− e−λ1x1)(1− e−λ2x2)]
,

Similarly

µ2(x1, x2) =

1− (2− e−λ2x2)(α2

2 − α3

2 (1− e−λ1x1))− α1(1− e−λ1x1)

λ2[1− α1(1− e−λ1x1)− α2(1− e−λ2x2) + α3(1− e−λ1x1)(1− e−λ2x2)]
.

3.4. Series and parallel systems

Recall that when a two component system with (X1, X2) as the lifetimes of the
components is connected in parallel, the lifetimes of the system isW=max (X1, X2)
. If the joint lifetimes of the components is of Cambanis form, the survival function
of W is

F̄W (x) = 1−H(x, x)

= 1− F1(x)F2(x)[1− α1F̄1(x)− α2F̄2(x) + α3F̄1(x)F̄2(x)].

The hazard rate function of the system becomes

FW (x) =− ∂ log F̄W

∂x
=[{1− α1F̄1(x)− α2F̄2(x) + α3F̄1(x)F̄2(x)}{F1(x)f2(x)

+ f1(x)F2(x) + F1F2{α1f1(x) + α2f2(x)− α3F̄1(x)f2(x)

− α3F̄2(x)f1(x)}][1−H(x, x)]−1.

(20)

This can be expressed in terms of r1, r2, s1, and s2 and was done in the previous
section. We have the mean residual life of W as

mW (x) =
1

F̄W (x)

∫ ∞

x

F̄W (t)dt

=

∫∞
x

[1−H(t, t)]dt

1−H(x, x)

=

∫∞
0

[1−H(x+ t, x+ t)]dt

1−H(x, x)
.
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Sometimes a maintenance strategy requires that maintenance be undertaken when
the two components are in working condition. In that case, the residual life of
interest is

w(x) = E(W − x|U > x), U = min(X1, X2),

=

∫ ∞

0

2H̄(x+ t, x)− H̄(x+ t, x+ t)

H̄(x, x)
dt.

When the system is connected in series, U = min(X1, X2) is the system life
length with survival function

F̄U (x) = H̄(x, x)

= F̄1(x)F̄2x[1− α1F1(x)− α2F2(x) + α3F1(x)F2(x)]

and hazard rate

rU (x) = −∂ log F̄U (x)

∂x

= r1(x) + r2(x) +
α1f1(x) + α2f2(x)− α3(F1(x)f2(x) + f1(x)F2(x))

1− α1F1(x1)− α2F2(x2) + α3F1(x1)F2(x2)

= r1(x) + r2(x) +A(x1, x2). (21)

In the case of independence of X1 and X2, rU is the sum of the hazard rates s1(x)
and s2(x). Since si(x)[1− αiF̄i(x)] = ri(x), i=2, we can write

rU (x) = s1(x) + s2(x) + [A(x1, x2)− α1F̄1(x)s1(x)− α2F̄2(x)s2(x)]

The term in the square braces on the right gives the effect of dependence between
X1 and X2 on the hazard rate of the system life. By definition the mean residual
life of the parallel system is

mU (x) =
1

H̄(x, x)

∫ ∞

x

H̄(t, t)dt.

The condition for the monotonicity of the hazard and mean residual life functions
were discussed in the previous section. In the case of series and parallel systems,
the hazard rate functions are obtained by (20) and (21) as,

rW (x) =
e−(λ1+λ2)x(λ1 + λ2 − α1λ2e

−λ1x − α2λ1e
−λ2x)

1− e−(λ1+λ2)x[1− α1e−λ1x − α2e−λ2x + α3e−(λ1+λ2)x]

and

rU (x) = λ1+λ2+
[α1 − α3(1− e−λ2x)]λ1e

−λ1x + [α2 − α3(1− e−λ1x)]e−λ2x

1− α1(1− e−λ1x)− α2(1− e−λ2x) + α3(1− e−λ1x)(1− e−λ2x)
.

All the reliability functions have closed form expressions and are easily calculated.
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4. Modelling survival data

In this section, we illustrate the application of Cambanis family in modelling real
life data. The data is on the survival distribution of incubation times of individuals
known to have sexually transmitted disease who were later determined to have had
sex with an individual who had the disease verified in the clinic after the time of
their encounter, reported in Klein and Moeschberger (1997, p. 146). For 25
individuals the time in months from the first encounter and the time in months
from the first encounter to the clinical confirmation of disease were recorded for
42 months. We denote by X1 and X2, the time to surviving the first encounter
and the diagnosis of the disease respectively.

The main problem with associating Cambanis family to real data is that the
marginals of X1 and X2 are not F1 and F2 and these are to be chosen from a
list of candidate distributions that satisfy some Hi(xi), i=1,2 that are relevant
to the observations on X1 and X2. In the absence of any physical considerations
suggesting the form of Hi, the black box modelling approach was pursued. It was
found that for a choice of Weibull distributions,

F̄i(xi) = exp[−{xi
ai

}bi ], xi > 0; ai, bi > 0, i = 1, 2,

and H̄i(xi) = F̄i(xi)[1− αiFi(xi)], the observations on X1 and X2 gave the max-

imum likelihood estimates as â1=17.5476, â2=1.2832, b̂1=1.6826 and b̂2=2.1515,
α̂1=0.0148 and α̂2=0.0597. With these estimates the maximum likelihood esti-
mate of α3 based on (X1, X2) values was obtained as α̂3=-0.7972. Accordingly
the fitted distributions are

H̄(x1, x2) = F̄1F̄2[1− 0.0148F1(x1)− 0.0597F2(x2)− 0.7972F1(x1)F2(x2)]. (22)

H̄1(x1) = F̄1(x1)[1− 0.0148F1(x1)], (23)

and
H̄2(x2) = F̄2(x2)[1− 0.0597F2(x2)], (24)

where

F̄1(x1) = exp[−(
x1

17.5476
)]1.6826; F̄2(x2) = exp[−(

x2
1.2832

)]2.1515. (25)

The Kolmogorov-Smirnov test statistic for H̄1 is 0.0832, for H̄2 is 0.0934 and
the Kolmogorov-Smirnov test for bivariate distributions prescribed in Justel et al.
(1997) provided the value for the test statistic as 0.1338. Thus the hypothesis of
Cambanis distribution with F1 and F2 as Weibull is not rejected.

Regarding the dependence coefficients between X1 and X2 we have τ=-0.1773,
ρ=-0.2659 as estimated values against the respective sample values -0.1559 and
-0.2267 exhibiting the proximity between the sample values and the estimates of
the population values. Obviously there is negative dependence betweenX1 and X2

implying that as the time to first encounter increases, the time to be affected by the
disease decreases. This fact is also substantiated by the analysis of the reliability
functions of the fitted models (22) through (25). In the first place we observe that
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F1 and F2 being Weibull distributions with b1 > 1 and b2 > 1 respectively, their
hazard rate functions are increasing. From Section 3.1, the marginal hazard rates
are related through

si(xi) = ri(xi) +
αiri(xi)F̄i(xi)

1− αiF̄i(xi)
.

Differentiating with respect to xi and simplifying we find

dsi(xi)

dxi
=

dri(xi)

dxi
+ F̄i(xi)

[(1− αiF̄i(xi))αi
dri(xi)
dxi

− αir
2
i (xi)]

[1− αiF̄i(xi)]2

=

dri(xi)
dxi

[1− αiF̄i(xi)]− αir
2
i (xi)

[1− αiF̄i(xi)]2
.

The sign of si(xi) depends on the sign of [1 − αiF̄i(xi)]
dri(xi)
dxi

− αir
2
i (xi), which

is positive at the estimated values indicating increasing nature of the marginal
hazard rates. Since α3 < α1α2, in the present problem among the components
of the bivariate hazard rates bi(x1, x2) and ci(x1, x2), b1(x1, x2) and c1(x1, x2)
are increasing in x1 and b2(x1, x2) and c2(x1, x2) are increasing in x2. Further
conclusions about the various characteristics can be derived from the reliability
functions.

5. Conclusion

In the present work, we have studied the Cambanis family of bivariate distri-
butions. Various distributional properties such as moments, covariance etc were
derived. An important aspect to be investigated in bivariate models is its depen-
dence structure. The expressions of dependence coefficients like Kendall’s tau,
Spearmans rho and Blomquist’s β were derived along with the conditions for
positive and negative dependence. Time dependent measures of Clayton, Ander-
son, Bjerve and Doksum etc and dependence concepts like, TP2, RCSI and PQD
were examined to find the regions of the parameter space that provide positive
and negative dependence. Necessary theoretical results were proposed to use the
distribution in the context of modelling lifetime data by finding expressions for
reliability functions. It was shown that the bivariate hazard and mean residual
life functions can be written in terms of functions of the marginal distributions.
Finally the scope of modelling survival data with Cambanis bivariate distribution
was illustrated for real data.
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Summary

The Cambanis family of bivariate distributions was introduced as a generalization of
the Farlie-Gumbel-Morgenstern system. The present work is an attempt to investigate
the distributional characteristics and applications of the family. We derive various co-
efficients of association, dependence concepts and time-dependent measures. Bivariate
reliability functions such as hazard rates and mean residual life functions are analysed.
The application of the family as a model for bivariate lifetime data is also demonstrated.

Keywords: Bivariate Cambanis family; association measures; total positivity; bivariate
hazard rates; bivariate mean residual life; series and parallel systems.


