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1. Introduction

Our aim in this paper is to estimate the lifetime distribution or its complement,
the survival function, for data that is subject to middle censoring. Middle cen-
soring occurs when a data point becomes unobservable if it falls inside a random
interval. This is a generalization of left and right censored data and is quite
distinct from the case of doubly censored data.

Middle censoring was first introduced by Jammalamadaka and Mangalam
(2003) for non-parametric estimation of lifetime distributions. Middle censored
data was analyzed in Iyer, Jammalamadaka and Kundu (2008) when the lifetimes
are exponentially distributed, whereas Jammalamadaka and Mangalam (2009)
study such censoring in the context of circular data. An example of middle
censoring could be when a patient temporarily withdraws from a clinical study,
but is later re-entered into the study. This could also happen if a patient is in
a trial under continual evaluation and the monitoring equipment fails or power
goes out for a period of time before being able to resume measurements.

In many situations there is auxiliary information about the subjects under
study, in the form of covariates Z , which may affect the lifetimes of individuals.
This is natural since every machine is operated under different conditions, and
different people will have different medical histories which affect their lifetimes.
For example, a doctor might want to know how long a person with diabetes
will live. Each person has a different age, weight, blood pressure, sex, family
history, and many other factors affecting their overall health. Obviously, one
must account for these covariates in a model in order for it to be effective.
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The case of middle censoring with covariates has recently been examined.
Jammalamadaka, Prasad, and Sankaran (2016) provide a general, semi- para-
metric approach to regression in the context of middle censoring with minimal
constraint on the baseline lifetime distribution. Bennett, Iyer, and Jammala-
madaka (2017) examines a fully parametric approach to middle censoring with
covariates, where the baseline lifetime distribution is either gamma or Weibull
distributed.

In this paper we consider two models that are commonly applied, namely
the Cox proportional hazard model (PH) and the accelerated failure time model
(AFT). The approach given here differs from Jammalamadaka, Prasad, and
Sankaran (2016) in that more attention is paid to the baseline lifetime distribu-
tion. An alternative approach to estimating the baseline lifetime distribution is
given and an additional covariate model is studied, namely the AFT model. This
paper also differs from BIJ (2017) since it takes a much more general approach
to estimating the baseline survival function and considers the semi-parametric
Cox PH model.

The proportional hazards model was introduced by Cox (1972). Under this
model, there is a common hazard function but each patient has a modifier which
multiplies the hazard by a function of the covariates. Specifically, it is defined
by

h(t|Z) = h0(t)ψ(Z). (1)

The baseline hazard function, h0(t), is usually considered to be a nuisance pa-
rameter and is not estimated. A common choice for the function of the covariates
is ψ(Z) = exp

(
θTZ

)
. In this case, the baseline hazard function simplifies to

h0(t) = h(t|Z = 0). (2)

Thus the PH model is a semi-parametric model. With the above choice of ψ(Z),
we can rewrite the model in terms of the survival function

S(t|Z) = (S0(t))
ψ(t) , (3)

where S0(t) is the survival function associated with the baseline hazard function
h0(t). Looking at the natural logarithm of the ratio of hazards, one will notice a
proportionality. Hence, this model is commonly referred to as the “proportional
hazards” model. This is given by

ln

(
h (t|Z)

h (t|Z∗)

)
= θT (Z− Z

∗) . (4)

One can see that for two individuals with different sets of covariates, Z and Z
∗,

the proportional hazard of one individual relative to the other is constant over
time.

To the best of the authors’ knowledge, existing literature on this model does
not estimate the baseline hazard function, h0(t), but only the parameter θ that
reflects the impact of the covariates,Z,on the lifetimes. Cox (1972) suggested
using the following partial likelihood to estimate the regression coefficients

L(β) ∝

n∏

i=1

(
exp

(
θTZi

)
∑

j∈R(Ti)
exp (θTZj)

)
. (5)
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While this is not the complete likelihood, it is shown to provide good estimates
with a small loss of efficiency (Efron (1977)). This model has been further
developed and refined to make it more accurate. We show how the baseline
survival function can be estimated when the covariate distribution has mass at
0. This assumption is required to obtain an initial estimate for the baseline
survival function. Otherwise there is an identifiability issue with the model.
In the case of continuous covariates, one could use the data corresponding to
covariate values around zero to obtain an initial estimate. The PH model is most
commonly used in biology and medicine due to its flexibility and the baseline
hazard function does not need to be known.

The Cox Proportional Hazard model has been studied in the case of right
censoring (see for instance Cox (1972) and Efron (1977)). This model is heavily
relied upon in the study of medical data and pharmaceutical studies. As such, a
more general class of censoring mechanism, such as the middle censoring, would
be beneficial in many of these applications.

Another popular model for survival analysis is the Accelerated Failure Time
(AFT) model. Mathematically, this model is given by

S(t|Z) = S0

(
exp

(
βT

Z
)
t
)
, (6)

where exp
(
βT

Z
)
is called the accelerating factor. The reason why this is called

an accelerated failure time model is because the covariates, Z, can either speed
up or slow down the failure time of an individual.

A key contribution of this paper is a method which estimates the baseline
survival function under a general censoring scheme as well as the effect of the
covariates. In Sections 2 and 3 we derive the estimation procedure for the Cox
Proportional Hazard model and the Accelerated Failure Time model respectively.
In Section 4 we apply this procedure to the problem of contingent valuation.

2. Proportional Hazards Model

In this section, we discuss the problem of estimation of the baseline as well as
the parameter of the lifetime distribution in the presence of middle censoring.
Recall that the Cox PH model is given by

S (t|Z) = S0 (t)
exp(θZ) , (7)

where S (t) is the survival function for a non-negative random variable. With
this semi-parametric set-up, the density of lifetimes is given by

f (t|Z) = −
∂

∂t
S (t|Z) = f0 (t) exp (θZ) [S0 (t)]

exp(θZ)−1
. (8)

To the best of the authors’ knowledge, previous research done with this model
was only concerned with estimating the regression parameters, θ. The baseline
survival function is treated as a nuisance parameter and is not estimated. It
would be extremely beneficial to have a method that estimates both the regres-
sion parameters, θ, and the baseline survival function.

Let us denote the “actual” lifetimes of the n individuals by t1, · · · , tn, and
not all of them are observable. For each individual there is a random period of
time [ℓi, ri] for which the lifetime of the ith individual is unobservable. Thus,



330 Bennett, Iyer and Jammalamadaka

the actual lifetime is observed if ti /∈ [ℓi, ri] and if ti ∈ [ℓi, ri] then only the
interval is observed. The lifetimes are assumed to be independent and identically
distributed (i.i.d.) from an unknown probability density function of the form
given in (8). Additionally, the censoring intervals, [L1, R1] , · · · , [Ln, Rn], are
assumed to be i.i.d. from an unknown bivariate distribution function G (·, ·).
Finally, the lifetimes and the censoring intervals are taken to be independent of
each other, as is common in survival analysis.

For convenience of notations and without any loss of generality, let the fol-
lowing be the observed failure times

uncen = (t1, · · · , tn1) (9)

and the following denote the observed middle censored data from (8) under the
general censoring scheme described above

cen = ((ln1+1, rn1+1) , · · · , (ln1+n2 , rn1+n2 .)) (10)

Then the full likelihood is given by

L (θ) =
∏

uncen

f (ti|zi)
∏

cen

[S (li|zi)− S (ri|zi)] . (11)

Hence, the corresponding log-likelihood is

lfull (θ) = luncen (θ) + lcen (θ) , (12)

where

luncen (θ) =
∑

uncen

ln (f0 (ti)) + θ
∑

uncen

zi +
∑

uncen

(exp (θzi)− 1) ln (S0 (ti)) (13)

and
lcen (θ) =

∑

cen

ln (S (li|zi)− S (ri|zi)) . (14)

This requires estimation of the baseline survival function, S0 (t), or equivalently
the baseline density, f0 (t), in order to estimate the covariate effect, θ. Esti-
mating the survival function non-parametrically can be done by using the self-
consistent estimator (SCE) or the non-parametric MLE (NPMLE) given in Jam-
malamadaka and Mangalam (2003) provided we could modify the data appro-
priately. One can estimate the baseline density function by fitting a smoothing
spline to the estimate of the baseline survival function and differentiating it, but
this can cause large errors in estimating the derivative of the log-likelihood. We
can avoid this by writing out the derivative of the log-likelihood.

l′ (θ) =
∂

∂θ
luncen (θ) +

∂

∂θ
lcen (θ) , (15)

where the derivatives of the uncensored and censored data are as given below.

∂

∂θ
luncen (θ) =

∑

uncen

zi +
∑

uncen

zi exp (θzi) ln (S0 (ti)) , (16)

∂

∂θ
lcen (θ) =

∑

cen

∂
∂θ

(S (li|zi)− S (ri|zi))

S (li|zi)− S (ri|zi)
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=
∑

cen

zi e
θzi ln [S0 (li)] [S0 (li)]

eθzi
− zi e

θzi ln [S0 (ri)] [S0 (ri)]
eθzi

S (li|zi)− S (ri|zi)
. (17)

This expression does not involve the baseline density, f0 (t). While there is not
a general, closed form solution to (15), it can be solved numerically.

We now have the framework necessary to set up an algorithm to find not only
the maximum likelihood estimate of the regression parameter θ, but also estimate
the baseline survival function, S0 (t), in a Cox PH model where the distribution
of covariate values has mass at 0. Under these conditions, the algorithm is as
follows:

1. Estimate S
(1)
0 (t) via SCE (or NPMLE) only using the data at baseline

level. That is, use all observations for which zi= 0.

2. Estimate θ(1) by solving for the root of (15) using S
(1)
0 (t).

3. Find t̃i = S
(1)−1

0

[
S
(1)
0 (ti)

exp(θ(1)zi)
]
; details of this step are given in the

paragraph below. One can find l̃i and r̃i in the same fashion. Note that if
zi= 0, then t̃i = ti by definition of the Cox PH model. This is the key step
which provides the data required to estimate the baseline survival function
more accurately using all of the data.

4. Estimate S
(2)
0 (t) via SCE (or NPMLE) using all of the t̃i, l̃i, & r̃i as data.

5. Estimate θ(2) by solving for the root of 15 and using S
(2)
0 (t) to solve for

the necessary probabilities in it.

6. Repeat steps (3)-(5) until a convergence criterion is met. Throughout this
paper, we use the convergence criterion of a difference of 0.0001 between
successive estimates of θ.

We now provide a justification for step 3 of the above algorithm. By the

probability integral transformation, if we define ui = S
(1)
0 (ti)

exp(θ(1)zi) , then
the u′is have a uniform distribution. To scale these back to the baseline sur-

vival function, we need to find t̃i = inft

{
S
(1)
0 (t) ≤ ui

}
. The correct choice is

t̃i = S
(1)−1

0 (ui) = S
(1)−1

0

[
S
(1)
0 (ti)

exp(θ(1)zi)
]
.

To illustrate the usefulness of this algorithm, a simulation study was done.
In all cases, the baseline density, f0 (t), was taken to be exponential with mean
10. The censoring mechanism consists of intervals whose left end points as well
as lengths are independent exponentially distributed random variables. The
covariates, Zi, were generated from a Binomial (1, 0.5) distribution where the
true covariate effect is θ = 1. As a graphical aide, graphs of the final estimate
of F0 (t) with sample sizes n = 250 and 1000 are given in Figure 1. In each of
these figures, the empirical CDF (ECDF) of the uncensored data is given as a
starting point, the true CDF, and the fitted CDF are given. In each case, the
fitted CDF moves away from the original ECDF towards the true CDF. As the
sample size, n, increases, the estimated CDF does a significantly better job at
estimating the true distribution.

To illustrate the estimation of the covariate effect θ, N = 100 samples were
simulated with sample sizes n = 100, 250, 500, and 1000. Again, the true value
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Figure 1 – Cox PH model, with Discrete Covariates

TABLE 1

Simulations for Cox PH model, Binomial Covariates

θ̂MLE MSE (θ) p̄ Sp̄
n=100 0.9276 0.0697 0.2343 0.0384
n=250 0.9806 0.0231 0.2344 0.0302
n=500 0.9922 0.0083 0.2356 0.0191
n=1000 0.9948 0.0056 0.2326 0.0126

of θ was set equal to 1. The results of this simulation study are given in Table 1.
Here, we see that as the sample size increases, the accuracy of θ̂MLE increases.
Additionally, it’s variability decreases, as is seen by inspecting the MSE in the
table. Finally, p̄ represents the average amount of censoring in N = 100 samples,
and Sp̄ is the standard deviation of the amount of censoring. On the whole,
roughly 23% of these observations are censored. Even under this relatively high
amount of censoring, the fitted CDF and MLE of θ perform remarkably well.
In the above analysis the covariate can only take on two values, Z = 0 or 1.
Next we consider covariates coming from a trinomial distribution. In all cases,
the baseline density, f0 (t), was taken to be exponential with mean 10. The
censoring mechanism is the same as above. The covariates, Zi, were generated
from a Trinomial (0.6, 0.2, 0.2) distribution and the true covariate effect is θ =
1. Plots of this procedure are given in Figure 1. As with Binomial covariates, the
estimate of the baseline distribution is quite good and improves as the sample
size increases.
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TABLE 2

Simulations for Cox PH model, Trinomial Covariates

θ̂MLE MSE (θ) p̄ Sp̄
n=250 0.8708 0.0648 0.2118 0.0309
n=500 0.9318 0.0358 0.2104 0.0357
n=1000 0.9683 0.0085 0.2146 0.122

Next, multiple simulations were run to show the effectiveness of this method-
ology with respect to the trinomial regression parameter, θ. Samples of size n
= 250, 500, and 1000 were considered, and N = 100 replications of each sample
were studied. The results of this simulation study are given in Table 2. As in the
case of Binomial (1, 0.5) covariates, the estimate of θ becomes more accurate as
the sample size increases. Generally, samples of size n = 500 were stable, with
samples of size n = 1000 giving consistently accurate results. In all simulations,
roughly 21% of these observations are censored. Even under this relatively high
amount of censoring, the fitted CDF and MLE of θ perform remarkably well.
The authors have used values of θ ranging from 1 to 100 in simulations, along
with Gamma and Weibull distriubtions. In all cases, the algorithm performed
similarly to the results presented in this paper.

3. Accelerated Failure Time Model

We now consider the accelerated failure time model in the presence of middle
censoring. Recall that the accelerated failure time (AFT) model has survival
function of the form

S (t|Z) = S0

(
t eθZ

)
(18)

Equivalently, the density function is given by

f (t|Z) = −
∂

∂t
S (t|Z) = eθZ f0

(
t eθZ

)
(19)

This model has been used for right censored and interval censored data. It is
common practice in engineering and in reliability studies to assume that the
baseline survival function, S0(t), is known. One of the more commonly assumed
lifetime distributions is the exponential distribution. Thus our procedure for
estimating the baseline survival function will provide a basis for selecting such
parametric forms.

We first recall the fact that the Cox PH assumption is equivalent to the AFT
assumption when the baseline distribution is an exponential distribution. To see
this more clearly, if T ∼ Exp(a) then

S(t) = e−a t for t > 0 (20)

Hence
S0

(
t eθZ

)
= exp

[
−a t eθZ

]
= (exp [−a t])

eθZ

= S0(t)
eθZ (21)

Thus these models are indeed equivalent. If one assumes that the true distri-
bution of lifetimes is an exponential distribution, then the same methodology
described in Section 2 for the Cox PH model can be used. To make this explicit,
the algorithm is as follows:
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1. Estimate S
(1)
0 (t) via SCE (or NPMLE) using all of the data.

2. Estimate θ(1) by solving for the root of 15 and using S
(1)
0 (t) to solve for

the necessary probabilities in it.

3. Find t̃i = ti exp
(
θ(1)zi

)
; details of this step are given in the paragraph

below. One can find l̃i and r̃i in the same fashion.

4. Estimate S
(2)
0 (t) via SCE (or NPMLE) using all of the t̃i, l̃i, & r̃i as your

data.

5. Estimate θ(2) by solving for the root of 15 and using S
(2)
0 (t) to solve for

the necessary probabilities in it.

6. Repeat steps (3)-(5) until convergence criteria is met.

Again to see why step 3 in the above algorithm is correct, define the following

ui = S
(1)
0

(
ti exp

(
θ(1)zi

))
. (22)

Then the u′is have a Uniform distribution by the probability integral transfor-
mation theorem. To scale these back to the baseline survival function, we need

to find t̃i = inf
t

{
S
(1)
0 (t) ≤ ui

}
. The correct choice is

t̃i = S0 (ui) = S
(1)−1

0

[
S
(1)
0

(
ti exp

(
θ(1)zi

))]
= ti exp

(
θ(1)zi

)
(23)

A major addition to modelling the data in this manner is that one can check
if the true baseline density is exponential or not. This is accomplished with a
standard goodness of fit test, such as the Kolmogorov-Smirnov test. A program
was written to study the semi-parametric AFT model. We considered the case
where the baseline density, f0 (t), is exponential with mean 10. The censoring
mechanism is the same as in Section 2. The covariates, Zi, were generated
from a Binomial (1, 0.5) distribution and the true covariate effect is θ = 1.
As a graphical aide, graphs of the final estimate of F0 (t) with sample sizes
n = 100, 250, and 500 are given in Figure 2. In each of these figures, the
empirical CDF of the uncensored data is given as a starting point, the true
CDF, and the fitted CDF are also given. In each case, the fitted CDF moves
away from the original ECDF towards the true CDF. Again, as the sample size,
n, increases, the estimated CDF does a significantly better job at estimating the
true distribution. To estimate the covariate effect, θ, N = 100 samples were
simulated with size n = 100, 250, and 500. Again, the true value of θ was chosen
to be 1. The results of this simulation study are given in Table 3. Here, we see
that as the sample size increases, the accuracy of θ̂MLE increases. Additionally,
its variability decreases, as is seen by inspecting the MSE in the table. Finally,
p̄ represents the average amount of censoring in these N = 100 samples, and
Sp̄ is the standard deviation of the amount of censoring. With a high amount
of censoring, 23%, this procedure gives extremely accurate results. Under this
semiparametric framework, we are not confined to covariates coming from a
Multinomial distribution. To illustrate this, we considered the same set-up as
above, except now the covariates, Zi, were generated from an Exponential (1)
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Figure 2 – Exponential AFT model

TABLE 3

Simulations for Exponential AFT model, Binomial Covariates

θ̂MLE MSE (θ) p̄ Sp̄
n=100 1.0396 0.0752 0.2422 0.0407
n=250 1.0214 0.0278 0.2291 0.0271
n=500 0.9996 0.0156 0.2351 0.0178
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TABLE 4

Simulations for Exponential AFT model, Exponential Covariates

θ̂MLE MSE (θ) p̄ Sp̄
n=100 0.9911 0.0445 0.2198 0.0439
n=250 0.9922 0.0202 0.2163 0.0236
n=500 0.9943 0.0067 0.2163 0.0179

distribution with a true covariate effect of θ = 1. Graphs of the ECDF and final
estimate of F0 (t) with sample sizes n = 100, 250, and 500 are given in Figure
2. Again, the true CDF is very accurately estimated.

As before, N = 100 samples were simulated with size n = 100, 250, and 500
with a true value of θ = 1. The results of this simulation study are given in Table
4. Here, we see that as the sample size increases, the accuracy of θ̂MLE increases.
Additionally, its variability decreases, as is seen by inspecting the MSE in the
table. With a high amount of censoring, roughly 21%, this procedure yields
extremely accurate results. The authors have used values of θ ranging from 1 to
100 in simulations, along with Gamma and Weibull distriubtions. In all cases,
the algorithm performed similarly to the results presented in this paper. Note
that for the time being, we have only dealt with one covariate; we believe that
this approach will work when dealing with multiple covariates, although this
needs to be studied further.

4. Application to Contingent Valuation

One major area of research in economics is Cost Benefit Analysis (CBA). The
goal of CBA is to decide which policy maximizes the welfare of the population.
In environmental economics, this valuation is obtained through Contingent Val-
uation Methods (CVM). In CVM surveys, people are asked how much they value
a certain natural resource. This is done in two different ways, indirectly and di-
rectly (cf. Hanley, Shogren and White (2001)). The indirect valuation method
uses indirect measures to reveal how much a natural resource is worth. The
direct method of valuation is much more straightforward, as is suggested by its
name. With these types of surveys, people are asked about their Willingness To
Pay (WTP) to increase the quality of a natural resource. We refer the reader to
Hanley, Shogren and White (2001), Braden & Kolstad (1991), and Smith (1993)
for further details on CVM and WTP.

4.1. Scandinavian WTP Example

The following data was obtained by Cecilia Hakansson from Sweden and Katja
Parkkila from Finland in a 2004 survey on people’s WTP (see Hakansson (2007)).
This survey was a study in which respondents were asked a classic and interval
open ended (CIOE) questions in order to investigate the economic feasibility of
altering the path of a river around a major hydro-power plant on the Vindel
River, in Northern Sweden near the Finnish border. The proposed plan would
reduce the production of electricity by allocating more water to flow through
the waterways built to let the wild salmon swim upstream to spawn, and hence
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TABLE 5

Averages for WTP Data by Country

Left Data Exact Data Right Data Fitted CDF

Swedes 17.31 30.91 42.40 31.11
Finns 20.65 30.36 45.28 30.56

this would increase the overall number of wild salmon in the river. The goal of
this survey was to learn about citizen’s WTP to increase the volume of salmon
reaching the spawning area every year.

The proportion of respondents choosing to give an interval for their WTP was
roughly 50%, a very high level of censored data. Another interesting observation
in the data is that over 95% of WTP values given were rounded to the nearest
5 Swedish kronor (SEK) increment, such as 20, 50, or 100 SEK. Due to this
tendancy of people rounding monetary values to the nearest 5 or 10, interval
(censored) data can be much more useful in trying to estimate the true average
WTP of a population.

Additionally, we computed the average values for all of the left and right
endpoints of the interval data, and the average value of the exact data separately
for each country. This was done in order to compare them to the theoretical
average value from the fitted distribution. See Table 5 for the values. The mean
of the left interval data is less than the mean of the exact data and both are
less than the mean of the right interval data for both countries. Moreover, the
average from the fitted CDF is very close to the average of exact data and is
between the averages of the left and right interval data as well.

4.2. Data Analysis

A model with a single covariate was then fit to the Swedish data. The choice of
the single covariate, β = annual income by incremental category, was determined
by economic theory. When this data was fit, the effect of annual income was
estimated to be 0.0747, with an associated p-value of 0.0060 (calculated using
the asymptotic normality of MLE’s with n = 132 observations in this dataset).
This is consistent with the interpretation that people with higher incomes are
willing to pay more to preserve natural resources.

This same model was fit for the Finnish data with the same choice of co-
variate, β = annual income by incremental category. Now the effect of annual
income was estimated to be 0.0910, with an associated p-value ¡0.0001 (calcu-
lated the same as before but with n = 203 observations in this dataset). Thus
in both Scandinavian countries, people with higher incomes are willing to pay
more to help the salmon stock in their countries.

This survey study on WTP is an excellent real-world problem modeled by
implementating a middle censoring algorithm. Previously, economists mostly
dealt with only exact data or dichotomous choice questions due to complications
in analyzing data. If one assumes a middle censored model, a much richer class
of questions can be asked, resulting in much more meaningful data.
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5. Conclusion

As shown in this paper, this approach does well to fit data when it is simulated
from an Exponential distribution. While not presented here, this method also
performs well when the underlying distribution is Gamma or Weibull. Further
research needs to be done in other cases, such as when the data comes from
a Log-Normal distribution. This method also does well when considering one
covariate and when applied to a real world dataset.

A limitation in this paper is how continuous covariates are dealth with. Cur-
rently it is common practice to discretize them into categories. For example,
blood pressure is a continuous variable but it is usually grouped into one of four
broad categories, low, normal, elevated and high. In economics, people are often
asked about their income, but these responses are usually binned into either
groups by $10, 000 increments or into other groups, such as low income, lower
middle-class, upper middle-class, wealthy, and ultra wealthy. The approach
presented in this paper would apply when it makes sense to bin a continuous
covariate into discrete groups. An approach to handle continuous covariates
without categorizing them is an area requiring further reseach. Finally, we have
only dealt with a single covariate at this point, but see no serious impediment
to studying several covariates.
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Summary

We are interested in estimating the distribution of lifetimes, also called survival times,
subject to a general censoring scheme called “middle censoring” (see Jammalamadaka
and Mangalam (2003)). Both the Cox proportional hazards (Cox PH) and accelerated
failure time (AFT) models are considered since each model has a baseline distribution
function that is modified by the presence of covariates. The key contribution presented
is the estimation of the effect of the covariate as well as the baseline distribution
function. We conclude with an application to a contingent valuation study.

Keywords: Middle censoring; Cox PH model; Accelerated failure time model (AFT);
Contingent valuation; Willingness to pay.


