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1. Introduction

Record values and associated statistics are of great importance in several real life prob-
lems involving weather, economic studies, sports and so on. Chandler (1952) defined
the record statistics as successive extremes occurring in a sequence of independent and
identically distributed (iid) random variables. The prediction of a future record value is
an interesting problem with many real life applications. For example the predicted value
of the amount of next record level of water that a dam will capture from rain and hold or
discharge is helpful for future planning purposes, predicted intensity of the next strongest
earthquake is essential for disaster management planning, prediction of next level of new
record in athletic events is helpful for subjecting the prospective athletes to rigorous train-
ing and practice and so on.

Usually in many events associated with athletics, temperature, wind velocity etc.,
only record breaking observations observed till then are made available to future refer-
ence. In such situations one is compelled to rely upon the available record data only to
deal with inference problems of the parent distribution. A difficulty that one encounters
in dealing with statistical inference problems based on record values is about their limited
occurrence, as the expected values of interarrival times of records is infinite Glick (1978).
However one may observe that generally the kth record values as introduced by Dziub-
dziela and Kopocinski (1976) occur more frequently than those of the classical records.
Further the sequence of kth record values for k > 1 is free from the inclusion of outliers
occurring in the data. Suppose {Xn} is a sequence of iid random variables. Then for a
positive integer k ≥ 1, the sequence of kth upper record times {TU(n,k), n ≥ 1} is defined
as Nevzorov (see, 2001,p. 82):

TU(1,k) = k

and for n≥ 1,
TU(n+1,k) = min{ j : j > TU(n,k), X j > XTU(n,k)−k+1:TU(n,k) },
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where Xi:m denotes the i-th order statistic in a sample of size m. Now if we write

XU(n,k) = XTU(n,k)−k+1:TU(n,k) , for n = 1, 2, . . .

then {XU(n,k)} is known as the sequence of the kth upper record values. In an analogous
way, one may define the kth lower record times and kth lower record values. The kth
member of the sequence of the classical record values is also called as kth record value.
This contradicts with the kth record values as defined in Dziubdziela and Kopocinski
(1976). Pointing out this conflict in the usage of kth record values of Dziubdziela and
Kopocinski (1976), and as it generates the classical record values for k = 1, Minimol
and Thomas (2013, 2014) and Paul and Thomas (2013) have called the kth record val-
ues as defined in Dziubdziela and Kopocinski (1976) as the Generalized(k)record values.
Agreeing with the contention of Minimol and Thomas (2013, 2014) and Paul and Thomas
(2013), we also call the kth record values of Dziubdziela and Kopocinski (1976) as gen-
eralized(k)record values all through this paper.

It is to be noted that, a lot of research is going on to detect outliers in a data so as
to delete them for devising more reasonable statistical methods to the problem of inter-
est. The integer parameter k involved in generalized upper(k)record value (GURV) can be
chosen in such a manner that the record data generated discard away the specified number
of outliers which are feared to be crept into the data. For example if some initial scrutiny
of the data revels that there is a possibility of occurrence of only one outlier in terms of
its largeness in the data and the if general interest is with upper record values, then it is
enough to consider generalized upper(2)record values as the desirable record data that
may be used for further analysis and storage of it for future purposes. Inventing more
and more characterization results based on the distributional properties of the statistics
arising from a distribution makes the model mathematically tractable for developing sta-
tistical methods to analyse the data arising from it. Arnold et al. (1998, pp. 43-44) have
stated that all distributional properties of k-records (i.e. GURV’s) arising from the cdf
F(x) can be studied from those of classical records arising from F1:k(x) = 1− (1−F(x))k.
This statement cannot be taken unilaterally for every case. For example for the classical
upper record values if it is proved that the statistics g(XU(m), XU(n)) and h(XU(n)) are inde-
pendently distributed iff the parent cdf is F(x) (see Dallas, 1982 for classical records from
Weibull distribution (WD)) and again if it is proved that g(XU(m,k), XU(n,k)) and h(XU(n,k))
are independently distributed iff the parent cdf is F(x) (see theorem 1 of this paper for
GURV’s from WD) then clearly for k = 1, the latter result implies the former. How-
ever if X

′

U(m) and X
′

U(n) are the classical records from F1:k(x), then one cannot claim that
g(X

′

U(m), X
′

U(n)) and h(X
′

U(n)) are independently distributed as we know that it is impossible
to have the same characterization result to F(x) and 1− (1−F(x))k simultaneously. Hence
at least for generating characterization results in the general sense, one has to carry out
the investigation based on generalized(k)record values rather than dealing with classical
record values arising from F1:k(x). Again it is found that generalized(k)record values
helps in estimating the location parameter of the parent distribution with more preci-
sion when compared with the estimate based on classical record values (For example see
Remark 9 of this paper). The above considerations and the advantage observed in elimi-
nating the outliers effect in the generalized(k)record value data the authors are motivated
to make a study on GURV’s arising from WD.

Several applications of GURV’s can be found in the literature. For some recent works
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on characterization of parent distributions using recurrence relations on moments of gen-
eralized record values see, Minimol and Thomas (2013, 2014) and Pawlas and Szynal
(1998, 1999) . Extensive applications of classical record values in inference problems
are seen in the available liturature and for details one may refer, Arnold et al. (1998) and
Gulati and Padgett (2003). However such works are not seen established for GURV’s and
hence detailed study on this problem also becomes much relevent.

Suppose {Xi, i ≥ 1} is a sequence of (iid) random variables with absolutely continuous
cumulative distribution function (cdf) F(x) and probability density function (pdf) f (x).
Let {XU(n,k)} be the sequence of GURV’s generated from the sequence {Xi}. Then the pdf
of XU(n,k) and the joint pdf fXU(m,k),XU(n,k) (x, y) of XU(m,k) and XU(n,k) are given by (Arnold
et al., 1998)

fXU(n,k) (x) =
kn

Γ(n)
[− ln {1 − F(x)}]n−1 [1 − F(x)]k−1 f (x),−∞ < x < ∞. (1)

and

fXU(m,k),XU(n,k) (x, y) = kn

{
− ln[F̄(x)]

}m−1

Γ(m)

{
ln[F̄(x)] − ln[F̄(y)]

}n−m−1

Γ(n − m)
f (x) f (y)

F̄(x)
[F̄(y)]k−1, (2)

for x < y, 1 ≤ m < n; n ≥ 2, where F̄(x) = 1 − F(x).
A random variable Z is said to have a WD (see Weibull, 1951) if its probability density

function is given by

g(z) =
c
σ

( z − θ
σ

)c−1

exp
{
−

( z − θ
σ

)c}
, z > θ, σ > 0, −∞ < θ < ∞, c > 0, (3)

where θ, σ and c are known as location, scale and shape parameters respectively. The cdf
corresponding to the pdf given in (3) is

G(z) = 1 − exp
{
−

( z − θ
σ

)c}
, z > θ, σ > 0, −∞ < θ < ∞, c > 0. (4)

Also the pdf of the standard form of WD (θ = 0 and σ = 1) is given by

f0(y) = cyc−1 exp {−yc}, y > 0, c > 0, (5)

with corresponding cdf given by

F0(y) = 1 − exp {−yc}, y > 0, c > 0. (6)

The WD has found applications in modelling and analysis wind speed data, rainfall
data, flood data and so on. Also this model has been seen utilized in many health science
problems, microscopic degradation studies, meteorological analysis and so on (for details
see Johnson and Balakrishnan, 1994; Rinne, 2008).

Dallas (1982) has discussed some distributional and characterization results on clas-
sical record values arising from WD. Estimation of parameters of WD using classical
record values are delt with in Balakrishnan and Chan (1993).

In this work we make a study on some interesting properties of GURV arising from
WD and the application of those record values to deal with some inference problems of
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this distribution. In section 2 we derive the exact expressions for the means, variances and
covariances of GURV’s arising from WD. Further we have identified certain properties
of GURV’s which characterize the WD and those characterization theorems are given in
section 3. In section 4 we derive some further interesting distributional aspects of statistics
defined out of GURV arising from WD. Section 5 deals with the problem of estimation
of the location and scale parameters of WD when the shape parameter involved in it is
known. In this section we discuss the simultaneous estimation of all parameters of WD as
well. In section 6 we consider the problem of prediction of next immediate future GURV
that may occur from WD using Best Linear Unbiased Predictor (BLUP) based on initial
GURV’s arising from a WD. In the last section we have illustrated the estimation of the
parameters and prediction of the next GURV based on the initial GURV’s arising from
WD by using a real life data set.

2. GURV Arising from StandardWD

Let {YU(i,k)} be the sequence of GURV arising from standard WD defined in (5). Then by
(1), the pdf of YU(n,k) is given by

fYU(n,k) (x) =
knc
Γ(n)

ycn−1e−kyc
, y > 0, n = 1, 2, . . . , k = 1, 2, . . . , c > 0. (7)

The joint pdf of YU(m,k) and YU(n,k) for m < n based on (2) is given by

fYU(m,k),YU(n,k) (x, y) =
c2kn

Γ(m)Γ(n − m)
(yc − xc)n−m−1 xcm−1ycn−1e−kyc

, (8)

0 < x < y < ∞. Using (7) and (8), we have derived the exact expressions for the means,
variances and covariances of GURV’s arising from the standard WD and are given below:

E(Y i
U(n,k)) =

Γ(n + i
c )

k
i
c Γ(n)

, (9)

Var(YU(n,k)) =
1

k
2
c Γ(n)

Γ
(
n +

2
c

)
−

(
Γ(n + 1

c )
)2

Γ(n)

 , (10)

and

Cov(YU(m,k),YU(n,k)) =
Γ(m + 1

c )

k
2
c Γ(m)

Γ(n + 2
c )

Γ(n + 1
c )
−
Γ(n + 1

c )
Γ(n)

 . (11)

3. Characterization ofWD Using GURV

In this section we deal with some properties of GURV’s which characterize a sub-family
F of distributions belonging to the general family of WD defined by the pdf (3). We say
that a random variable X has a distribution belonging to F if its pdf is given by

f (x) =
c
σ

( x
σ

)c−1
e−(

x
σ )c

, x > 0, σ > 0. (12)
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The cdf corresponding to (12) is then defined by

F(x) = 1 − e−(
x
σ )c

, x > 0, σ > 0. (13)

Theorem 1. Let {Xi, i ≥ 1} be a sequence of iid random variables each distriuted
identically with a common continuous cdf F(x) and pdf f (x). Let F̄(0) = 1 and F(x) < 1
for all x > 0. Let {XU(n,k)} be the sequence of GURV’s generated from the sequence {Xi}.
Then F(x) = 1 − e−(

x
σ )c

for all x > 0, σ > 0 and c > 0, if and only if XU(m,k)

XU(n,k)
and XU(n,k),

(for, m < n) are independently distributed.

Proof. The joint probability density function of XU(m,k) and XU(n,k) for 1 ≤ m < n is
given by

fXU(m,k),XU(n,k) (x, y) = kn

{
− ln[F̄(x)]

}m−1

Γ(m)

{
ln[F̄(x)] − ln[F̄(y)]

}n−m−1

Γ(n − m)
f (x) f (y)

F̄(x)
[F̄(y)]k−1,

(14)
where 0 ≤ x < y < ∞. Also the joint pdf can be written in the form

fXU(m,k),XU(n,k) (x, y) = kn {R(x)}m−1

Γ(m)
{R(y) − R(x)}n−m−1

Γ(n − m)
r(x)r(y)e−k{R(y)}, (15)

where R(x) = − ln(1−F(x)) and r(x) = d
dx (R(x)). If F(x) = 1−e−(

x
σ )c

for all x > 0, σ > 0
and c > 0, then the joint pdf fXU(m,k),XU(n,k) (x, y) of XU(m,k) and XU(n,k) is

fXU(m,k),XU(n,k) (x, y) =
c2kn

σ2Γ(m)Γ(n − m)

( x
σ

)cm−1 {( y
σ

)c
−

( x
σ

)c}n−m−1 ( y
σ

)c−1
e−k( y

σ )c

, (16)

where 1 ≤ m < n and c > 0. If we make the transformation T = XU(m,k)

XU(n,k)
Z = XU(n,k), then

the Jacobian of the transformation is |J| = z. Thus we can write the joint pdf fT,Z(t, z) of
T and Z as

fT,Z(t, z) =
c2kn

σΓ(m)Γ(n − m)
tcm−1 {1 − tc}n−m−1

( z
σ

)cn−1
e−k( z

σ )c

, (17)

where 0 < t < 1, z > 0, σ > 0 and c > 0. The marginal pdf of T is given by

fT (t) =
c2kn

σΓ(m)Γ(n − m)
tcm−1 {1 − tc}n−m−1

∞∫
0

( z
σ

)cn−1
e−k( z

σ )c

dz

=
cΓ(n)

Γ(m)Γ(n − m)
tcm−1 {1 − tc}n−m−1 for 0 < t < 1, c > 0. (18)

Also, the pdf fZ(z) of Z is given by

fZ(z) =
ckn

σΓ(n)

( z
σ

)nc−1
e−k( z

σ )c

. (19)

From (17), (18) and (19), we obtain fT,Z(t, z) = fT (t) fZ(z). Hence T and Z are indepen-
dently distributed.
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Now we prove the sufficient part of the theorem. Let T = XU(m,k)

XU(n,k)
and Z = XU(n,k) be

distributed independently. Then the Jacobian of the transformation is |J| = z. Now using
(15) we can write the joint pdf fT, Z(t, z) of T and Z as

fT,Z(t, z) =
kn

Γ(m)Γ(n − m)
[R (zt)]m−1 [R(z) − R (zt)]n−m−1

[
F̄(z)

]k
r (zt) r(z)z. (20)

The pdf fZ(z) of Z is given by

fZ(z) =
kn

Γ(n)
[R(z)]n−1

[
F̄(z)

]k
r(z). (21)

Since T and Z are independent, we get the pdf fT (t) of T from (20) and (21) as

fT (t) =
Γ(n)

Γ(m)Γ(n − m)

[
R (zt)
R(z)

]m−1 [
1 − R (zt)

R(z)

]n−m−1 r (zt)
R(z)

z.

The distribution function of T is then given by

FT (t) =
Γ(n)

Γ(m)Γ(n − m)

t∫
0

[
R (zv)
R(z)

]m−1 [
1 − R (zv)

R(z)

]n−m−1
∂

∂v

[
R (zv)
R(z)

]
dv.

On putting R(zv)
R(z) = u, we obtain

FT (t) =
Γ(n)

Γ(m)Γ(n − m)

R(zt)
R(z)∫

0

um−1 (1 − u)n−m−1 du.

The right side of above equation can be written as a Binomial sum and hence we have

FT (t) =
n−1∑
i=m

(
n − 1

i

) [
R (zt)
R(z)

]i [
1 − R (zt)

R(z)

]n−i−1

. (22)

The above result is true for every positive integer m such that m < n. On putting m = n−1,
we have

F∗T (t) =

[
R (zt)
R(z)

]n−1

,

where F∗T (t) is the distribution function of XU(n−1,k)

XU(n,k)
. That is

[R (zt)]n−1 = F∗T (t) [R(z)]n−1 , (23)

Since 0 < z < ∞, on putting z = 1, in the above equation we get

F∗T (t) = [λR (t)]n−1 ,

where λ = [− ln (1 − F(1))]−1 is a positive constant. Using this in the equation (23) we
get

[R (zt)]n−1 = [λR (t)]n−1 [R(z)]n−1 for 0 < t < 1. (24)
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Observe that the above equation makes the right side of FT (t) given in (22) as well free
of z for all m < n. Hence on multiplying both sides of the above equation by λn−1 we get

[λR (zt)]n−1 = [λR (t)]n−1 [λR(z)]n−1

λR (zt) = λR (t) λR(z).

Subtituting λR (.) by R1 (.), we get

R1 (zt) = R1 (t) R1(z). (25)

Clearly (25) is a well known Cauchy functional and hence from Aczel (1966), we observe
that the only non-constant continuous solution of (25) is R1(x) = xc, for all x > 0 where
c is a constant. Thus we have F̄(x) = e

−xc
λ . As F̄(x) is a survival function c cannot be

negative . Hence we write F(x) = 1 − e
−xc
λ , where λ = σc, σ > 0, c > 0. This completes

the proof.

Corollary 2. Let {Xi, i ≥ 1} be a sequence of iid random variables each distriuted
identically with a common continuous cdf F(x) and pdf f (x). Let F̄(0) = 1 and F(x) < 1
for all x > 0. Let {XU(n,k)} be the sequence of GURV’s generated from the sequence {Xi}.
Then F(x) = 1 − e−(

x
σ )c

for all x > 0, σ > 0 and c > 0, if and only if XU(m,k)+XU(n,k)

XU(n,k)
and

XU(n,k), (for m < n) are independently distributed.

Corollary 3. Let {Xi, i ≥ 1} be a sequence of iid random variables each distriuted
identically with a common continuous cdf F(x) and pdf f (x). Let F̄(0) = 1 and F(x) < 1
for all x > 0. Let {XU(n,k)} be the sequence of GURV’s generated from the sequence {Xi}.
Then F(x) = 1 − e−(

x
σ )c

for all x > 0, σ > 0 and c > 0, if and only if XU(m,k)

XU(m,k)+XU(n,k)
and

XU(n,k), (for m < n) are independently distributed.

The proof of the above corollaries are omitted as they are just similar to the proof of the-
orem 1.

Note 1. If we have several data sets from a population, then for any fixed n and m,
we may plot the points (T, Z) (where Tand Z are variables as defined in theorem 1) cor-
responding to each data set in a graph sheet. If the points in the graph corresponding to
(T, Z) are seen scattered all over the region without any pattern, then as an implication of
theorem 1, one may conclude that the WD as defined in (12) could be taken as a suitable
distribution of the population random variable. Similar attempts may be made with the
results in each of the Corollaries 2 to 3 to check the suitability of WD as a model to the
population distribution.

Though the result proved in theorem 1 for classical record values has been proved
by Dallas (1982), there is importance to our results since the knowledge of the results of
theorem 1 helps the practicing statisticians in applying the results in modelling problems
when there is fear of possibility of contamination in the data by outliers with very large
values. It is to be of interest to note that such outliers themselves become classical record
values where as GURV’s has the mechanism to eliminate those outliers. Further when
outliers crept into the data it restrict the occurrence of the number of classical records
and lead one to erroneous inferences where as we have scope to observe more number of
GURV’s and device inference procedures free from outliers in the original data.
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4. Some Distributional Aspects of GURV Arising from StandardWD

In this section we derive some interesting properties of GURV’s arising from standard
WD. These results are also useful for dealing with some inferential aspects of the WD.

Proposition 4. Suppose m and n are positive integers such that 1 ≤ m < n and YU(m,k)
and YU(n,k) are mth and nth GURV’s arising from standard WD defined in (5). Then

E
{

YU(m,k)

YU(n,k)

}
=

E
(
YU(m,k)

)
E

(
YU(n,k)

) . (26)

Proof. We have

E(YU(m,k)) = E
({

YU(m,k)

YU(n,k)

}
YU(n,k)

)
.

From the independence of YU(m,k)

YU(n,k)
and YU(n,k) (see theorem 1) we write

E(YU(m,k)) = E
{

YU(m,k)

YU(n,k)

}
E

(
YU(n,k)

)
.

The required result then easily follows.

As a consequence of the above proposition we then have

E
{

YU(m,k)

YU(n,k)

}
=
Γ(n)Γ(m + 1

c )

Γ(m)Γ(n + 1
c )
. (27)

The folowing theorem describes a generalized independence property of a colleciton
of statistics defined from GURV’s arising from standard WD. To derive the results we
require some basic results such as joint distribution of a collection of selected GURV’s
arising from an arbitrary distribution whose support set is restricted to the set of positive
reals say R+. This result can be obtained by integrating out unnecessary terms from the
joint distribution of GURV’s and we state this result as a lemma without proof.

Lemma 5. Let {X j, j ≥ 1} be a sequence of iid random variables with pdf f (x) and
cdf F(x) with support set R+. Let {XU(n,k)} be the sequence of GURV’s generated from the
sequence {X j, j ≥ 1}. Let r1, r2, . . . , ri be positive integers such that 1 ≤ r1 < r2 < . . . < ri
and let XU(r1,k), XU(r2,k), . . . , XU(ri,k) be i selected GURV’s from the sequence {XU(n,k), n ≥ 1}
of GURV’s of {X j, j ≥ 1} . Then the joint pdf of these selected GURV’s is given by

fXU(r1 ,k) ,...,XU(ri ,k) (xr1 , . . . , xri ) = kri
f (xr1 )
F̄(xr1 )

[
− ln F̄(xr1 )

]r1−1

Γ(r1)

i∏
h=2

f
(
xrh

)
F̄

(
xrh

)
×

{[
− ln F̄

(
xrh

)]
−

[
− ln F̄

(
xrh−1

)]}rh−rh−1−1

Γ(rh − rh−1)

[
F̄

(
xri

)]k
. (28)

Theorem 6. Let r1, r2, . . . , ri be positive integers such that 1 ≤ r1 < r2 < . . . < ri

and let YU(r1,k), YU(r2,k), . . . , YU(ri,k) be the corresponding GURV’s arising from (5). Then
the random variables V1 =

YU(r1 ,k)

YU(r2 ,k)
, V2 =

YU(r2 ,k)

YU(r3 ,k)
, . . . , Vi−1 =

YU(ri−1 ,k)

YU(ri ,k)
and Vi = YU(ri,k),
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are all statistically independent with the distribution of V j is given by the pdf g j(v j) =
cv

cr j−1
j (1−vc

j)
r j+1−r j−1

B(r j,r j+1−r j)
, 0 < v j < 1, j = 1, 2, . . . , i − 1 and that of Vi is given by h(vi) =

ckri e−kvc
i vcri−1

i
Γ(ri)

, 0 < vi < ∞.

Proof. The joint distribution of YU(r1,k), YU(r2,k), . . . , YU(ri,k) can be derived using (28)
and is given by

fr1 ,r2 ,...,ri (xr1 , xr2 , . . . , xri ) =
kri ci

Γ(r1)Γ(r2 − r1) . . . Γ(ri − ri−1)

× (xc
r1

)r1−1
(
xc

r2
− xc

r1

)r2−r1−1
. . .

(
xc

ri
− xc

ri−1

)ri−ri−1−1

× (xr1 xr2 . . . xri )
c−1e−kxc

ri , 0 < xr1 < . . . < xri < ∞. (29)

If we put v1 =
xr1
xr2

, v2 =
xr2
xr3

, . . . , vi−1 =
xri−1
xri

and vi = xri then we have

xri = vi, xri−1 = vi−1vi, . . . , xr2 = v2v3 . . . vi, xr1 = v1v2 . . . vi. (30)

The Jacobian of the transformation is given by

|J| = v2v2
3 . . . v

i−2
i−1vi−1

i . (31)

Using (30) in (29), multiplying it by |J| and simplifying we get the required result.

Corollary 7. Suppose YU(1,k), YU(2,k), . . . , YU(n,k) are the first n GURV’s arising from
standard WD. Then the random variables V1 =

YU(1,k)

YU(2,k)
, V2 =

YU(2,k)

YU(3,k)
, . . . , Vn−1 =

YU(n−1,k)

YU(n,k)
and

Vn = YU(n,k), are all statistically independent with the pdf of V j is given by g j(v j) =
cvc j−1

j

B( j,1) ,

0 < v j < 1, j = 1, 2, . . . , n − 1 and that of Vn is given by h(vn) = ckne−kvc
n vcn−1

n
Γ(n) , 0 < vn < ∞.

Proof. By putting i = n and r1 = 1, r2 = 2, . . . , rn = n in theorem 6, we get the
required result.

The importance of theorem 6 is that it helps one to obtain the product moments of any
order of GURV’s arising from standard WD in a very simple manner. For example if p,
q, r, s are positive integers such that 1 ≤ p < q < r < s, then for the GURV’s YU(p,k),
YU(q,k), YU(r,k), YU(s,k) and positive integers a, b, d, e we have

E
[
Ya

U(p,k)Y
b
U(q,k)Y

d
U(r,k)Y

e
U(s,k)

]
= E

{YU(p,k)

YU(q,k)

}a {
YU(q,k)

YU(r,k)

}a+b {
YU(r,k)

YU(s,k)

}a+b+d {
YU(s,k)

}a+b+d+e
 .

If we put V1 =
YU(p,k)

YU(q,k)
, V2 =

YU(q,k)

YU(r,k)
, V3 =

YU(r,k)

YU(s,k)
and V4 = YU(s,k), then from theorem 6,

we have

E
[
Ya

U(p,k)Y
b
U(q,k)Y

d
U(r,k)Y

e
U(s,k)

]
= E

[
{V1}a {V2}a+b {V3}a+b+d {V4}a+b+d+e

]
= E

[{V1}a
]

E
[
{V2}a+b

]
E

[
{V3}a+b+d

]
E

[
{V4}a+b+d+e

]
=

B(p + a
c , q − p)

B(p, q − p)
×

B(q + a
c +

b
c , r − q)

B(q, r − q)

×
B(r + a

c +
b
c +

d
c , s − r)

B(r, s − r)
×
Γ(s + a

c +
b
c +

d
c +

e
c )

Γ(s) k
a+b+d+e

c

=
Γ(p + a

c )Γ(q + a+b
c )Γ(r + a+b+d

c )Γ(s + a+b+d+e
c )

Γ(p)Γ(q + a
c )Γ(r + a+b

c )Γ(s + a+b+d
c ) k

a+b+d+e
c
. (32)
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5. Estimation of the Parameters ofWD

In this section we consider the situation where the only experimental details available are
the GURV’s observed corresponding to sample of observations realized from WD. Hence
the estimation methods proposed in the sub sections 5.1 and 5.2 utilize only the available
GURV’s.

5.1. Estimation of the Parameters of WD when the Shape parameter c is known

In this section we describe the problem of estimation of location parameter θ and scale
parameter σ of WD defined by (3) based on the available GURV’s provided the shape
parameter c is known, by least-squares method. Let XU(1,k), XU(2,k), . . . , XU(n,k) be the first
n GURV’s arising from WD defined in (3) with known c. Then clearly YU(i,k)=

XU(i,k)−θ
σ
, i =

1, 2, . . . , n are distributed as the first n GURV’s arising from the standard WD defined in

(5). From (9) and (11) we write αi = E(YU(i,k)) =
Γ(i+ 1

c )

k
1
c Γ(i)

and σi, j = Cov
(
YU(i,k),YU( j,k)

)
=

Γ(i+ 1
c )

k
2
c Γ(i)

{
Γ( j+ 2

c )
Γ( j+ 1

c )
− Γ( j+ 1

c )
Γ( j)

}
.

Let X = [XU(1,k), XU(2,k), . . . , XU(n,k)]T and Y =
[
YU(1,k),YU(2,k), . . . , YU(n,k)

]T . Then
the mean vector E(Y) and the dispersion matrix D(Y) of Y are given by E(Y) = α =
[α1, α2, . . . , αn]T and D(Y) = Σ = ((σi, j)). Now we can write

E(X) = 1θ +ασ , (33)

where 1 is a column vector of n ones and

D(X) = σ2 Σ. (34)

Clearly (33) and (34) form the well-known generalized Gauss-Markoff setup. Then for

∆ =
(
αTΣ−1α

) (
1TΣ−11

)
−

(
αTΣ−11

)2
,

we obtain the BLUEs θ∗ and σ∗ of θ and σ respectively as (see Arnold et al., 1998)

θ∗ =

αTΣ−1
(
α1T − 1αT

)
Σ−1

∆

 X =
n∑

j=1

a j,nXU( j,k) = aT X (35)

and

σ∗ =

1TΣ−1
(
1αT −α1T

)
Σ−1

∆

 X =
n∑

j=1

b j,nXU( j,k) = bT X, (36)

where a = (a1,n, a2,n, a3,n, . . . , an,n)T and b = (b1,n, b2,n, b3,n, . . . , bn,n)T are the vectors of
constants. Further

Var (θ∗) = σ2
{
αTΣ−1α

∆

}
, Var (σ∗) = σ2

{
1TΣ−11

∆

}
and Cov (θ∗, σ∗) = σ2

{
−αTΣ−11

∆

} (37)
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Now based on the expectations, variances and covariances of GURV’s arising from
WD we state and prove the following theorem, which helps one to obtain the coeffi-
cients of GURV’s involved in the estimators of θ and σ of WD from the corresponding
coefficients of the classical upper record values involved in the estimates of the above
parameters.

Theorem 8. Let {Xi, i ≥ 1} be a sequence of iid random variables each distributed
identically as a WD with pdf f (x) given in (3). Let {XU(n,k)} be the sequence of GURV’s
generated from the sequence {Xi}. Then the coefficient vectors aT and bT of the vector
of first n GURV’s involved in the of Best Linear Unbiased Estimates θ∗ and σ∗ of the
location parameter (θ) and the scale parameter (σ) respectively are given by

aT = (a∗)T and bT = k
1
c
(
b∗

)T , (38)

where (a∗)T and
(
b∗

)T are the coefficient vectors of the vector of first n classical upper
record values involved in the Best Linear Unbiased Estimates θ∗0 and σ∗0 of the location
and scale parameters of the WD respectively. Further

Var (θ∗) = k
−2
c Var (θ∗0) Var (σ∗) = Var (σ∗0) and Cov (θ∗, σ∗) = k

−1
c Cov (θ∗0, σ

∗
0). (39)

Proof. Let aT be the coefficient vector of BLUE of location parameter (θ) based on
first n GURV’s. Then from (35) we have

aT =

 αTΣ−1
(
α1T − 1αT

)
Σ−1(

αTΣ−1α
) (

1TΣ−11
)
− (

αTΣ−11
)2

 .
From (9), (10) and (11) we can write

α = k
−1
c α0 and Σ−1 = k

2
c Σ−1

0 ,

where α0 and Σ−1
0 are the mean vector and inverse of the dispersion matrix of the vector

of first n classical upper record values arising from the standard WD. So the coefficient
vector of BLUE of location parameter based on first n GURV’s can be simplified as

aT =

 k
−1
c αT

0 k
2
c Σ−1

0

(
k
−1
c α01T − 1k

−1
c αT

0

)
k

2
c Σ−1

0(
k
−1
c αT

0 k
2
c Σ−1

0 k
−1
c α0

) (
1T k

2
c Σ−1

0 1
)
−

(
k
−1
c αT

0 k
2
c Σ−1

0 1
)2


=

 αT
0 Σ
−1
0

(
α01T − 1αT

0

)
Σ−1

0(
αT

0 Σ
−1
0 α0

) (
1TΣ−1

0 1
)
−

(
αT

0 Σ
−1
0 1

)2

 = (a∗)T .

The proof of bT = k
1
c (b∗)T ,Var (θ∗) = k

−2
c Var (θ∗0), Var (σ∗) = Var (σ∗0) and Cov (θ∗, σ∗) =

k
−1
c Cov (θ∗0, σ

∗
0), follows easily, if we proceed as in the case of proving aT = (a∗)T .

Remark 9. From the results of the theorem 8 we conclude that the estimate θ∗ of
θ is higher in precision than the estimate θ∗0, for any k ≥ 2 and c > 0. Further the
precision of θ∗ for fixed k in estimating θ decreases as c increases. Howeverσ is estimated
with equal precision by σ∗ and σ∗0 for fixed values of c and k. Hence we recommend
the experimenters to keep (or store) generalized upper(k)record values of the sequence
instead of the classical record values observed in the data for future purpose and for
estimating the parameters of the Weibull model.
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Balakrishnan and Chan (1993) have tabulated the component values of the vectors a∗,
b∗ , Var (θ∗0) and Var (σ∗0) for different values of n. We can use those tabulated values
and the results of theorem 8, to obtain the coefficient vectors aT and bT of θ∗ and σ∗

respectively and their variances without any direct computation for determining them.

5.2. Estimation of the parameters of WD when all parameters are unknown

It is unrealistic to assume always that the shape parameter c of WD is known. How-
ever when c is unknown we may recommend first an estimator of c and then use the
BLUE’s θ∗ and σ∗ for estimating θ and σ. In this case we make use of a systematic
approach utilizing the concept of method of moments estimation and Best Linear Unbi-
ased Estimation (BLUE) based on GURV’s to estimate the parameters. If XU(1,k), XU(2,k),
. . . , XU(n,k) are the first n available GURV’s arising from (3), then it is clear to note that
θ ≤ XU(1,k) < XU(2,k) < . . . , < XU(n,k) < ∞. As XU(1,k) is the closest observation point to θ
we may take XU(1,k) = θ0 as an estimate of θ. Now from (27), we can write

E
{

XU(i,k) − θ
XU(i+1,k) − θ

}
=
Γ(i + 1)Γ(i + 1

c )

Γ(i)Γ(i + 1 + 1
c )
=

i
i + 1

c

as XU(i,k)−θ
XU(i+1,k)−θ is distributed identically as the ratio, YU(i,k)

YU(i+1,k)
of GURV’s arising from standard

WD defined by the pdf f0(y) which is given in (5). Now using θ0 for θ and keeping in
mind the approach adopted in method of moments estimation we write the following

XU(i,k) − θ0
XU(i+1,k) − θ0

=
i

i + 1
c

, i = 1, 2, . . . , n − 1.

Then an estimator ĉi of c based on XU(i,k) and XU(i+1,k) is given by

ĉi =
XU(i,k) − θ0

i(XU(i+1,k) − XU(i,k))
, i = 1, 2, . . . , n − 1. (40)

Now there are n−1 estimates ĉ1, ĉ2, . . . , ĉn−1 for c so that, we may take the mean of these
estimates as an estimate ĉ of c and is given by

ĉ =
∑n−1

i=1 ĉi

n − 1
. (41)

Using ĉ as a known value of c, now use the results of Section 5.1 to estimate ultimately θ
and σ by BLUEs.

To illustrate the closeness of the estimated value of c with its true value, we have
used Mathematica software and simulated 100 independent observations from WD with
scale parameter σ = 2.0 and location parameter µ = 1.0 and for some assumed values
of c, collected GURV’s from them and repeated it for 1000 runs. In each case we have
estimated the shape parameter c by ĉ as given in (41), taken the average ˆ̂c from 1000 times
and it is given below.
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TABLE 1
Estimates of c for various values of k based on GURV’s of a simulation study with 1000

runs, for µ = 1.0, σ = 2.0, c = 2.5(0.5)3.5 and k = 2(1)4.

Values of c
k True Estimated (ˆ̂c) True Estimated (ˆ̂c) True Estimated (ˆ̂c)
2 2.5 2.50034 3.0 3.01361 3.5 3.53560
3 2.5 2.51804 3.0 3.02162 3.5 3.52452
4 2.5 2.50124 3.0 3.01464 3.5 3.50258

It seems that in each case the estimated value ˆ̂c is very close to the true value of the
parameter c.

6. Prediction for future records using BLUP

Prediction of future records are of natural interest in many contexts. Statistical prediction
is the problem of inferring about the occurance of future value of a phinomena based on
current and past values recorded in the phenomena. In the available literature one can
observe that considerable works have been carried out on both parametric and nonpara-
metric predictions. For more details on prediction one may refer to Gulati and Padgett
(2003).

Now we discuss the problem of predicting the future GURV using the available
GURV’s of WD for known values of c. Suppose XU(1,k), XU(2,k),. . . , XU(n,k) are the n
available GURV’s. Then our interest here is on predicting the next GURV XU(n+1,k). The
best linear unbiased predicted value of the next record can be obtained (see Arnold et al.,
1998) as

X∗U(n+1,k) = θ
∗ + αn+1σ

∗ + wTΣ−1(X − θ∗ 1 − σ∗α), (42)

where X is the vector of the n observed GURV’s from WD as defined in (3), α and Σ are
the vector of means and dispersion matrix of the vector of n GURV’s arising from standard
WD, 1 is a vector of n one’s, αn+1 is the expected value of (n + 1)th GURV arising from
the standard WD and wT = (σ1,n+1, σ2,n+1, ..., σn,n+1) is the vector of the covariance
between the (n + 1)th GURV with the initial GURV’s arising from standard WD and θ∗

and σ∗ are the BLUEs of θ and σ of (3) based on the first n GURV’s respectively. The
equation (42) can also be written as

X∗U(n+1,k) =

n∑
i=1

fi,nXU(i,k) = fT X, (43)

where fT is the coefficient vector of X and is given by fT = ( f1,n, f2,n, . . . , fn,n).
In the following theorem we establish a connection between Best Linear Unbiased Pre-
diction (BLUP) based on classical record values and that based on GURV’s in predicting
(n + 1)th GURV respectively.

Theorem 10. Let XU(1,k), XU(2,k), . . . XU(n,k) be the first n available GURV’s and let
XU(1,1), XU(2,1), . . . XU(n,1) be the first n classical record values. Then the coefficients fi,n of
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XU(i,k), i = 1, 2, . . . , n involved in the BLUP of immediate next GURV XU(n+1,k) as given

in X∗U(n+1,k) =
n∑

i=1
fi,nXU(i,k) are identically same as the coefficents of the classical record

values XU(i,1), i = 1, 2, . . . , n involved in the BLUP of the next classical record value
XU(n+1,1). That is

fT =
(
f∗
)T , (44)

where
(
f∗
)T is the coefficient vector in the BLUP of XU(n+1,1) based on the first n classical

upper record values.

Proof. The best linear unbiased predicted value of the next GURV can be obtained
by the equation

X∗U(n+1,k) = θ∗ + αn+1σ
∗ + wTΣ−1(X − θ∗ 1 − σ∗α).

If a and b are the vectors as defined in (35) and (36), then we have

X∗U(n+1,k) = aT X + αn+1bT X + wTΣ−1(X − (aT X) 1 − (bT X)α)

=
[
aT + αn+1bT + wTΣ−1(1 − aT 1 − bTα)

]
X (45)

= fT X, (46)

where fT is defined as in (43). Let a∗ and b∗ are the coefficient vectors of the vector of
first n classical record values in the BLUE’s of θ and σ arising from (3). Further using the
notaions used in theorem 8 if we replace the quantities involved in the coefficient vector
of X involved in (45) corresponding to those involved in the BLUP X∗U(n+1,1) based on first

n classical record values then we have a = a∗ and b = k
1
c b∗ . Clearly

fT = aT + αn+1bT + wTΣ−1(1 − aT − bTα)

= (a∗)T
+ k

−1
c α∗n+1

(
k

1
c b∗

)T
+ k

−2
c wT

0 k
2
c Σ−1

0

(
1 − (a∗)T 1 −

(
k

1
c b∗

)T
k
−1
c α0

)
,

where α∗n+1 is the expected value of (n + 1)th classical record value arising from standard
WD and wT

0 = (σ0(1,n+1), σ0(2,n+1), ..., σ0(n,n+1)) is the vector of the covariance between
the (n + 1)th classical record value with the initial classical record values arising from
standard WD. Hence we have

fT = (a∗)T
+ α∗n+1 (b∗)T

+ wT
0Σ
−1
0

{
1 − (a∗)T 1 − (b∗)T α0

}
=

(
f∗
)T . (47)

This completes the proof.

The coefficients of the available first n classical upper record values or those of first n
GURVs in predicting the appropriate future records are not seen determined specifically
for WD. Hence we have determined the coefficients of XU(i,k) for i = 1, 2, . . . , n, n = 2(1)5,
c = 2.5(0.5)5 in the BLUP of X∗U(n+1,k) and are presented in Table 2. Due to the invariance
nature of these coefficients for different choices of k as seen in theorem 10, the coefficients
in Table 2 can be used as such for prediction of a future classical upper record value or
for the prediction of a future GURV for any k ≥ 2 as well.
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TABLE 2
Coefficients fi,n of XU(i,k) involved in the BLUP X∗U(n+1,k) =

n∑
i=1

fi,n(XU(i,k)) for n=2(1)5,

c=2.5(0.5)5

Coefficients fi,n of XU(i,k) in X∗U(n+1,k) =
n∑

i=1
fi,n(XU(i,k))

n c f1,n f2,n f3,n f4,n f5,n
2 2.5 -0.70000 1.70000

3 -0.66667 1.66667
3.5 -0.64286 1.64286
4 -0.62500 1.62500
4.5 -0.61111 1.61111
5 -0.60000 1.60000

3 2.5 -0.30000 -0.07143 1.37143
3 -0.27778 -0.08333 1.36111
3.5 -0.26191 -0.09259 1.35450
4 -0.25000 -0.10000 1.35000
4.5 -0.24074 -0.10606 1.34680
5 -0.23333 -0.11111 1.34444

4 2.5 -0.17927 -0.04268 -0.03049 1.25244
3 -0.16260 -0.04878 -0.03659 1.24797
3.5 -0.15081 -0.05332 -0.04147 1.24560
4 -0.14205 -0.05682 -0.04545 1.24432
4.5 -0.13528 -0.05960 -0.04876 1.24364
5 -0.12990 -0.06186 -0.05155 1.24330

5 2.5 -0.12358 -0.02942 -0.02102 -0.01659 1.19062
3 -0.11028 -0.03308 -0.02481 -0.02030 1.18847
3.5 -0.10096 -0.03569 -0.02776 -0.02332 1.18773
4 -0.09409 -0.03763 -0.03011 -0.02581 1.18763
4.5 -0.08882 -0.03913 -0.03202 -0.02789 1.18785
5 -0.08467 -0.04032 -0.03360 -0.02964 1.18822

Clearly the above table serves as an aid for practicing statisticians in predicting the im-
mediate next GURV XU(n+1,k) for n = 2(1)6 and given values of c = 2.5(0.5)5. It is to be
noted that the values in the table remains the same whatever is k for k = 1, 2, . . .

7. Illustration of the Results by a Real Life Data

Roberts (1979,p. 4) has given the monthly and annual maxima of the one-hour mean
concentration of Sulfur dioxide (SO2) from Long Beach, California, for the years 1956-
1974. Chan (1993) indicated that the WD is a reasonable model for this data set Chan
(also see 1998). From these monthly maxima of the hourly concentration of SO2, we
obtain five generalized(2)record values and are given as

XU(1,2) = 31.0, XU(2,2) = 44.0, XU(3,2) = 47.0, XU(4,2) = 51.0, XU(5,2) = 55.0.
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These generalized(2)record values are used to estimate the parameters of WD. The shape
parameter c can be estimated by the equation (41) and we estimated its value as ĉ= 1.1875.
Now we take the estimated value of c as its known value and use the results of this paper
(given in section 5.1) to estimate the location and scale parameters by BLUE based on
GURV’s for k = 2 and the estimated values are

θ∗ = 1.28351 ∗ XU(1,2) + 0.04099 ∗ XU(2,2) + 0.022249 ∗ XU(3,2) + 0.014249 ∗ XU(4,2)

−0.36099 ∗ XU(5,2) = 23.51, (48)

σ∗ = −0.60108 ∗ XU(1,2) − 0.01919 ∗ XU(2,2) − 0.010419 ∗ XU(3,2) − 0.006673 ∗ XU(4,2)

+0.63736 ∗ XU(5,2) = 14.747, (49)

with Var(θ∗) = 0.278518σ2 , Var(σ∗) = 0.203228σ2 and Cov(θ∗, σ∗) = −0.130432 σ2.
Now we consider the BLUP given in section 6 and the formula given in (43) to predict
the 6th generalized(2)upper record value and is obtained as

X∗U(6,2) = −0.21617 ∗ XU(1,2) − 0.00690 ∗ XU(2,2) − 0.00375 ∗ XU(3,2) − 0.00239 ∗ XU(4,2)

+1.22922 ∗ XU(5,2) = 60.3036.

Clearly the above predicted value of the 6th GURV eliminates one possible outlier in the
data and gives a clue to workout the extent to which the society has to divise ways and
means to keep the SO2 level under control in the Californian Beach.
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Summary

In this paper we study the generalized upper(k)record values arising from Weibull distribution. Ex-
pressions for the moments and product moments of those generalized upper(k)record values are
derived. Some properties of generalized upper(k)record values which characterize the Weibull dis-
tribution have been established. Also some distributional properties of generalized upper(k)record
values arising from Weibull distribution are considered and used for suggesting an estimator for
the shape parameter of Weibull distribution. The location and scale parameters are estimated using
the Best Linear Unbiased Estimation procedure. Prediction of a future record using Best Linear
Unbiased Predictor has been studied. A real life data is used to illustrate the results generated in
this work.

Keywords: Best Linear Unbiased Estimation; Best Linear Unbiased Predictor; Characterization;
Generalized upper(k)record values; Weibull Distribution.


